
Incremental learning for RNN-Transducer based speech recognition models

Deepak Baby, Pasquale D’Alterio, Valentin Mendelev

Amazon Alexa

Abstract
This paper investigates an incremental learning framework for
a real-world voice assistant employing RNN-Transducer based
automatic speech recognition (ASR) model. Such a model
needs to be regularly updated to keep up with changing dis-
tribution of customer requests. We demonstrate that a simple
fine-tuning approach with a combination of old and new train-
ing data can be used to incrementally update the model spending
only several hours of training time and without any degradation
on old data. This paper explores multiple rounds of incremen-
tal updates on the ASR model with monthly training data. Re-
sults show that the proposed approach achieves 5-6% relative
WER improvement over the models trained from scratch on the
monthly evaluation datasets. In addition, we explore if it is pos-
sible to improve recognition of specific new words. We simulate
multiple rounds of incremental updates with handful of training
utterances per word (both real and synthetic) and show that the
recognition of the new words improves dramatically but with
a minor degradation on general data. Finally, we demonstrate
that the observed degradation on general data can be mitigated
by interleaving monthly updates with updates targeting specific
words.
Index Terms: speech recognition, end-to-end models, RNN-T,
incremental learning, targeted updates

1. Introduction
Traditional hybrid automatic speech recognition (ASR) systems
consist of an acoustic model (AM), a language model (LM) and
a pronunciation model (lexicon), all of which are trained inde-
pendently. In contrast, end-to-end automatic speech recogni-
tion systems use neural networks to directly transduce an in-
put sequence of acoustic features to an output sequence of to-
kens [1–4], without requiring the independent training of differ-
ent components. In particular, recurrent neural network trans-
ducer (RNN-T) [1] has shown superior performance in such ap-
plications as streaming [5–7] and on-device ASR [8, 9].

While end-to-end model training process is simpler than
that of a hybrid model, a large amount of transcribed audio
data is needed to achieve competitive performance. Hence, a
lot of computational resources are consumed and training time
is usually high. On the other hand, in order to maintain model
performance in a real-word voice assistant application, it needs
to be updated frequently to capture the various shifts occurring
over time in the distribution of the incoming requests (seasonal
changes, new trending words, acoustics from new device types,
etc.).

For hybrid ASR models this can be effectively addressed
by updating the LM and the lexicon. Such updates require only
textual data and phonetic knowledge and are usually sufficient
enough to enable the system to recognize new words. Even
though in theory end-to-end models could construct any word
using word-pieces, words that were not present in the training
set are often incorrectly recognized in practice [10, 11]. Since

end-to-end models are trained in a single step, to recognize new
words and to capture distribution shifts, the model is typically
trained from scratch with the addition of newly available train-
ing data. However, frequently training end-to-end models from
scratch is costly in terms of both time and computational re-
sources.

One of the techniques used for faster model updates and re-
ducing the training costs is incremental learning (IL) [12, 13],
where an existing ASR model is incrementally updated as new
training data become available. There exist prior works ex-
ploring IL for ASR, conducted in a hypothetical setup where
the data changes acoustically (reverberation, noise, accent)
or semantically (new domain, read speech vs conversational)
[14–16]. However, for applications such as voice assistants,
such drastic changes in acoustics or semantics are not expected.
This paper investigates a real-world scenario where an RNN-T-
based streaming ASR model is incrementally updated to ingest
newly available training data based on real production traffic.
Specifically, we investigate two use-cases for incrementally up-
dating a model:

1. Periodic Update: Incrementally update the RNN-T
model to ingest all the newly available training data to
keep the model up-to-date. This update could capture
distribution shifts and also possibly new words.

2. Targeted Update: Update the RNN-T model to learn
specifically new words with a few available training sam-
ples. The training samples could be transcribed audio
data or generated using text-to-speech (TTS) if no train-
ing data is available and to reduce data scarcity.

Ideally, we want to apply multiple rounds of periodic and tar-
geted updates without degrading on average data. The term
average data refers to the test data associated with the training
data used in the seed model. In addition, we assume that all the
previously used training data are available (data-replay). With
this setup, we investigate the following key research questions:

• Is fine-tuning sufficient to apply IL to ASR models in a
production scenario or are more sophisticated techniques
(e.g. different losses or architectural changes) actually
required in order to avoid overfitting to the newly in-
gested data? Can the potential overfitting be mitigated
by using data-replay?

• How many incremental updates can be performed before
there is a performance degradation and a from-scratch
training is required?

• Are a few training examples sufficient for targeted up-
dates? Can they be replaced by TTS utterances?

Experimental results show that the proposed fine-tuning
techniques work well for multiple rounds of periodic or tar-
geted incremental updates with and without TTS data. We show
that data-replay can be used to effectively address overfitting

Interspeech 2022
18-22 September 2022, Incheon, Korea

Copyright © 2022 ISCA 71 10.21437/Interspeech.2022-10795



and demonstrate that no additional regularization terms are re-
quired. We believe this is important in production scenarios,
since it allows to streamline the IL setup without making train-
ing procedure or loss function more complicated and without
increasing the amount of hyper-parameters to tune. Further-
more, the incrementally updated models outperform the mod-
els trained from scratch, while simple fine-tuning could better
capture the distribution shifts. The proposed approach achieves
>50x faster model updates, as it requires only ∼ 3 hours to
update the model, whereas training a model from scratch takes
∼ 7 days.

2. Related Work
Since there exists no standard benchmark for IL in the area of
ASR, most prior works investigate IL on a hypothetical setup
where for each IL iteration, the data distribution shift is very
strong. Thus, incrementally updating the model with the new
data leads to overfitting and performance degradation on pre-
viously learned data. Such setup requires additional efforts
to improve regularization, for example by using elastic weight
consolidation [16] and distillation loss [15]. This implies addi-
tional hyper-parameters to be tuned such as related to comput-
ing the Fisher information matrix and the associated loss weight
[16,17], making the training process less scalable, harder to de-
sign and maintain for production use.

This paper simulates a realistic scenario for periodic and
targeted updates, and investigates whether a simple fine-tuning
technique would reliably work for both scenarios. Moreover,
we explore multiple rounds of both periodic and targeted up-
dates and use data-replay to address the overfitting.

3. Methodology
3.1. Problem description

This paper simulates an incremental learning setup on a real-
world voice assistant application employing an RNN-T based
ASR system. Given such an RNN-T model trained from scratch
with all the data up to a certain month, say M0, this paper
investigates incrementally training the model for periodic and
targeted updates as formulated below. We denote the RNN-T
model from M0 as M0-RnnT.
Periodic Updates: Perform incremental updates on the M0-
RnnT model using the newly available training data from up-
coming time periods: {M1,M2, . . . ,Mn}. Typically, such
training data help capturing distribution shifts, i.e. it could be
dominated by popular words which are already present in the
M0 training data.
Targeted Updates: This setup simulates the hot-fixing scenario
where there are new words which were not present in the train-
ing data. In this case, the RNN-T model is updated using the
data containing these new words so that it learns to emit them.
Further, we explore multiple rounds of targeted updates at regu-
lar intervals as new words appear over time, which are denoted
as {T1, T2, . . . , Tn}. In a practical scenario, each targeted up-
date could capture multiple new words with limited transcribed
training data per word available.

Ideally, the ASR model needs to recognize new words be-
fore they are actually seen in production traffic and hence before
any transcribed real speech is available. This may be crucial,
e.g. with the release of new apps that respond to a new key-
word or for future trending words before they actually become
popular (e.g. being able to recognize names of Olympic ath-

letes before the Olympics start). In all these scenarios, TTS can
be a powerful tool, since text-only data is enough to enable the
model to recognize such words. Therefore, this paper also in-
cludes experiments which use synthetic audio data for targeted
updates.

The incrementally updated RNN-T models after each IL it-
eration should satisfy the following conditions:

• Perform well on the data associated with each incre-
mental update: for periodic updates the model should
perform better or on-par on the test set from Mi ∀i ∈
{1, 2, . . . n} compared to the RNN-T model trained from
scratch with all the data up to Mi. For targeted updates,
the RNN-T model should learn to emit the new words;

• Should not overfit to the datasets used for incremental
updates, i.e., no degradation or degradation within an ac-
ceptable threshold on a control dev set from M0 and also
on the dev sets associated with the previous IL updates.

For each IL iteration the incrementally updated model from the
previous stage is used as the seed model. Unlike the prior works
on IL, we assume that training data from all the previous IL
iterations are available (data-replay).

3.2. IL with simple fine-tuning

For both periodic and targeted updates, it is not expected that
the training data contain any drastic acoustic or semantic distri-
bution shifts. Therefore, we propose using a simple IL recipe
where the seed RNN-T model is updated with the new training
data and a small constant learning rate.

The main advantage of such a setup is that it streamlines
the IL process without requiring any changes to the model ar-
chitecture or to the training loss whilst limiting the introduction
of new hyper-parameters. As a consequence, the implementa-
tion of IL in this setup can be executed with minimal human
intervention.

3.3. Sampled data combination with data-replay

While the finetuning approach offers a simpler solution, as IL
involves multiple rounds of such updates, there is a risk of over-
fitting, since there are no additional regularization techniques
being applied. This could be particularly detrimental for tar-
geted updates with limited amount of training data. Because it
is assumed that data-replay is possible, a subset of the data used
in the previous training stages could be leveraged to balance
overfitting [5, 10]. In this setup every batch of training data
for IL is sampled, so that it contains x% of the new data and
(100 − x)% of the training data used to train the seed RNN-T
model.

4. Experimental setup
4.1. RNN-T Model

The model consists of a 8 layers deep encoder, a 2 layers deep
prediction network, a joint network as in [18] and an output
layer with a softmax nonlinearity. Each layer of the encoder
and the prediction network comprises 1024 Long Short-Term
Memory [19] units. The size of the joint network layer is 512
and the output layer size is 4001 corresponding to 4000 word-
pieces and a blank symbol. The word-piece model was trained
on a large set of voice assistant requests using a unigram lan-
guage model [20].

72



The model accepts 192 dimensional input feature vectors
each comprising three 64 dimensional Log-Mel-Filterbanks ex-
tracted every 10 milliseconds and stacked together. Training
objective is minimization of RNN-T loss function [1, 18] with
Adam optimizer [21], with total batch size of 1536 utterances
and warmup-hold-decay learning rate schedule. We also use
SpecAugment [22].

4.2. Data

The experiments were performed on a German RNN-T ASR
system trained using in-house de-identified far-field data. The
seed RNN-T model (M0-RnnT) is trained using a combination
of human transcribed and machine-transcribed data up to M0.
This constitutes around 300k hours audio in total. The model
was trained for 100 epochs with 5000 steps per epoch on 48
GPUs with a total batch size of 1536 samples/step. Training
such a model from scratch takes several days.

In this work, we explore only using human transcribed
training data for both periodic and targeted updates. For pe-
riodic updates, we consider three rounds of incremental updates
with monthly training data from M1, M2 and M3 which on
average contains 250 hours of training data per month. For
targeted updates, we identified 30 new words which were not
present in the training data up to M0. The training data for tar-
geted updates is created so that the number of training samples
per word varies from 10 to 15 samples.

For the experiments on targeted updates using TTS data,
the synthetic utterances were produced as following: each tran-
scription in the targeted training sets {T1, T2, . . . , Tn} is passed
to an all-neural TTS model [23] to generate a synthetic utterance
with a speaker profile randomly sampled from a pool of German
voice profiles (containing both male and female voices). This
produces n TTS targeted training datasets {T ′

1, T
′
2, . . . , T

′
n},

where each T ′
i , 0 < i ≤ n contains synthetic utterances gener-

ated from the set of transcriptions from Ti.
Since fine-tuning using such small datasets could lead to

overfitting, to study its impact and to find a reasonably good
setup, two different scenarios are considered: 1) three rounds of
targeted IL with 10 new words per iteration and 2) six rounds
of targeted IL with 5 new words per iteration.

4.3. IL with data-replay

For incrementally updating the ASR model for both periodic
and targeted updates, we explore fine-tuning the model at a
small learning rate for a small number of steps. We investigated
different learning rates and 1e − 5 was found to perform well.
In addition, the model is updated only for up to 3000 steps for
periodic updates and 600 steps for targeted updates. To reduce
the overfitting, data-replay at varying sampling weights are in-
vestigated.

4.4. Evaluation

For evaluating IL periodic updates, at i-th iteration of incremen-
tal update the test data from Mi and M0 were used to evaluate
the performance on the current month and the old data to keep
track of overfitting. In addition, the model was also evaluated
on test data from Mi+1 to assess hypothetical performance after
deployment. The relative reduction in word error rate (rWERR)
with respect to the M0-RnnT model is used as the evaluation
metric. For baseline models the monthly RnnT models trained
from scratch were used (dubbed M1-RnnT, M2-RnnT and M3-
RnnT).

Weights % WERR (%)
ID (old, new) m Devm Devm+1 Devold

1 (0, 100) +M1 5.4 0.9 1.7
2 +M2 1.8 8.0 2.2
3 +M3 8.9 4.6 1.7

4 (50, 50) +M1 6.0 0.4 2.0
5 +M2 4.8 8.3 2.2
6 +M3 8.9 4.6 1.7

7 (90, 10) +M1 2.7 -0.7 0.2
8 +M2 1.3 3.0 0.7
9 +M3 3.4 2.8 1.0

10 M1-RnnT 1.7 0.4 1.0
11 M2-RnnT 1.5 2.3 2.4
12 M3-RnnT 2.3 -1.6 2.2

Table 1: Incremental periodic updates starting with the RNN-T
model from t = M0 as seed using M1, M2 and M3 monthly
training data. For each IL update, monthly data is incremen-
tally added with the respective weight % given in the table.
WERR w.r.t. the M0 RNN-T model are shown.

For targeted updates, the recall metric is used to evaluate
how well the RNN-T model performs on recognizing the target
word. Additionally, the rWERR on M0 test data was evaluated
to track overfitting as multiple rounds of targeted updates are
performed.

5. Results and Discussion
5.1. IL periodic updates

The evaluation results for periodic updates with different data-
replay configurations are summarised in Table 1. Incremental
updates with monthly data leads to improvements on recent
data with minimal degradation on the average dataset Devold.
Data-replay with (50, 50) sampling ratio is found to be a good
operating point as it yields the best performance on recent
datasets coupled with no degradation on Devold. In addition,
this setup yields significant performance improvements on the
future datasets compared to the train from scratch baseline sys-
tems. These results demonstrate the effectiveness of the pro-
posed IL approach as it yields 5-6% WERR improvements over
the train from scratch models (cfr. on Devm+1 lines 11 vs. 5 and
12 vs. 6).

Moreover, periodic updates take only 3000 steps of RNN-T
training that is ∼ 3 hours compared to ∼ 7 days required to
train a model from scratch. Thus, the proposed approach en-
ables 50× speedup in addition to improved accuracy compared
to RNN-T models trained from scratch.

5.2. IL targeted updates

In this setup the seed RNN-T model is incrementally updated to
improve recognition of a small set of words. Table 2 summa-
rizes the results obtained for three and six rounds of targeted IL
updates. The seed model M0-RnnT model struggled to gener-
ate words that were not present in the training data, with a recall
rate of below 15% on average.

Table 2(a) shows the results obtained for three rounds of
targeted updates with real and TTS data while varying data-
replay weights. Even though fine-tuning without data-replay
(cfr. (0, 100) setup, lines 1-3) leads to significant improvements
in recall for multiple rounds, WER degradation of 33% on the

73



Weights % Real Data TTS Data
(old, target) t Recallt Testold Recallt Testold

1 (0, 100) + T1 85.4 -8.6 68.3 -7.5
2 + T2 95.2 -13.9 64.3 -11.9
3 + T3 90.2 -33.0 85.4 -17.5

4 (90, 10) + T1 82.9 0.2 63.4 +0.5
5 + T2 78.6 -1.2 61.9 0.2
6 + T3 90.2 -1.7 85.4 0.0

7 (95, 5) + T1 80.5 0.2 63.4 0.2
8 + T2 78.6 -0.2 57.1 -0.2
9 + T3 90.2 -1.5 85.4 0.0

10 (99, 1) + T1 65.9 -1.0 41.5 1.0
11 + T2 57.1 -0.7 47.6 -1.2
12 + T3 82.9 -1.0 73.2 -0.7
(a) Three rounds of IL targeted updates (10 new words per round)

Weights % Real Data TTS Data
(old, target) t Recallt Testold Recallt Testold

1 (95, 5) + T1 94.7 -0.5 78.9 -0.5
2 + T2 81.8 0.0 54.5 -0.5
3 + T3 100.0 0.2 90.9 -0.2
4 + T4 70.0 -1.2 40.0 0.5
5 + T5 100.0 -0.7 100.0 1.0
6 + T6 77.8 -2.0 72.2 -0.7

7 (99, 1) + T1 89.5 -1.0 68.4 -0.7
8 + T2 72.7 -0.2 31.8 -0.7
9 + T3 90.9 -0.7 86.4 -0.5
10 + T4 45.0 -1.2 25.0 -0.2
11 + T5 100.0 -1.2 100.0 0.0
12 + T6 77.8 -2.4 66.7 -0.5

(b) Six rounds of IL targeted updates (5 new words per round)

Table 2: Incremental targeted updates on the M0-RnnT model using real and synthetic training data to learn new words. Three rounds
of training were performed with training data containing utterances with 10 new words per round. Recall in % is shown to evaluate
the recognition of the new words. The recall levels of the seed M0-RnnT model were below 15% for every target word. In addition,
rWERR on Devold w.r.t. the seed model is included to track the overfitting.

average dataset is unacceptable. Adding data-replay effectively
addresses the overfitting but with a slight degradation in recall
compared to the no data-replay setting. Replacing real data with
TTS data also leads to similar conclusions except that TTS data
provides a smaller, but still significant, improvement in the re-
call. This is expected since the acoustics of the TTS data does
not match the real production environment. Overall, data re-
play (95, 5) is found to be a good operating point, as it provides
significant improvements in terms of recall with minimal degra-
dation on the average dataset.

Next, we investigated six rounds of targeted incremental
updates. The training data available for each round is < 75
words. Since (0,100) and (90,10) data-replay configurations
showed overfitting in the previous experiments, only the (95,
5) and (99, 1) setups were investigated. The evaluation results
in Table 2(b) show that the same recipe can be used for more
number of incremental updates.

Targeted IL updates require up to 600 steps of RNN-T train-
ing, which takes only 30-40 minutes. Compared to training
the model from scratch, the proposed targeted IL setup works
250× faster and yields significant improvements in recall on the
target words with minimal overfitting (< 2% WER degradation
on average dataset for most cases). Interestingly, with synthetic
data the degradation on the average dataset is lower than with
real data and is not degrading further when more incremental
training iterations are performed.

5.3. Alternating periodic and targeted updates

Finally, we simulate a realistic scenario where periodic and tar-
geted updates are performed in an alternating fashion. For this
experiment, we selected the best configurations obtained for pe-
riodic and targeted updates from the above experiments, i.e.,
data-replay of (50, 50) for periodic and (95, 5) for targeted IL
updates. Here we used only the real data for IL updates and
the results are provided in Table 3. Notice that there could be
overlap between targeted and periodic training datasets.

To summarize, the proposed simple fine-tuning setup to-
gether with data-replay achieves significant performance im-
provements over the models trained from scratch. In addition,

Dev sets rWERR (%) Recall (%)
m/t M1 M2 M3 M4 old T1 T2 T3

M0-RnnT 0.0 0.0 0.0 0.0 0.0 7.3 11.9 7.3
1 + M1 5.8 0.0 4.0 4.6 2.4 12.2 16.7 9.8
2 + T1 5.6 1.1 3.4 3.8 2.2 82.9 19.0 22.0
3 + M2 4.3 4.8 6.7 4.8 2.2 85.4 21.4 22.0
4 + T2 5.4 4.6 7.1 3.2 2.7 85.4 81.0 22.0
5 + M3 4.7 3.1 7.8 3.4 2.4 85.4 88.1 22.0
6 + T3 4.3 4.9 6.7 1.4 2.4 82.9 83.3 90.2

M1-RnnT 1.7 0.7 3.1 2.0 1.5 12.2 26.2 12.2
M2-RnnT 3.1 1.5 2.1 2.2 2.9 7.3 28.6 9.8
M3-RnnT 4.3 3.9 2.3 -1.6 2.4 7.3 26.2 17.1

Table 3: Incremental training with alternating periodic and tar-
geted updates. For periodic updates we used a data sampling
ratio of (50, 50) and for targeted updates (95, 5).

we can perform targeted updates which are required for RNN-
T models to be able to correctly recognize new words. Fur-
thermore, this setup has a reduced risk of overfitting and even
achieves improvement on average data.

6. Conclusions

This paper investigated incrementally updating an RNN-T ASR
model used a real-world production scenario using fine-tuning
with data-replay. The proposed approach is shown to yield sig-
nificant performance improvements over the model trained from
scratch with reduced risk of overfitting. We also demonstrated
that the same recipe can be used successfully for updates tar-
geting a small set of new words with very limited amount of
real or synthetic training data. Finally, we explored a setup with
alternating periodic and targeted updates which could help to
mitigate the overfitting problems observed during targeted up-
dates. The proposed approach allows to capture the distribution
shift in training data with time while spending only hours of
computations instead of days.

74



7. References
[1] A. Graves, “Sequence transduction with recurrent neural net-

works,” arXiv:1211.3711, 2012.

[2] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition.” in IEEE-ICASSP, 2016, pp. 4960–4964.

[3] G. Zweig, C. Yu, J. Droppo, and A. Stolcke, “Advances in all-
neural speech recognition.” in IEEE-ICASSP, 2017, pp. 4805–
4809.

[4] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu,
S. Satheesh, A. Sriram, and Z. Zhu, “Exploring neural transduc-
ers for end-to-end speech recognition.” in IEEE-ASRU, 2017, pp.
206–213.

[5] J. Li, Y. Wu, Y. Gaur, C. Wang, R. Zhao, and S. Liu, “On the
comparison of popular end-to-end models for large scale speech
recognition.” in INTERSPEECH. ISCA, 2020, pp. 1–5.

[6] X. Zhang, F. Zhang, C. Liu, K. Schubert, J. Chan, P. Prakash,
J. Liu, C.-F. Yeh, F. Peng, Y. Saraf, and G. Zweig, “Benchmark-
ing lf-mmi, ctc and rnn-t criteria for streaming asr.” in IEEE-SLT,
2020.

[7] C.-C. Chiu, A. Kannan, R. Prabhavalkar, Z. Chen, T. N. Sainath,
Y. Wu, W. Han, Y. Zhang, R. Pang, S. Kishchenko, P. Nguyen,
A. Narayanan, H. Liao, and S. Zhang, “A comparison of end-to-
end models for long-form speech recognition.” in IEEE-ASRU,
2019, pp. 889–896.

[8] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang,
D. Bhatia, Y. Shangguan, B. Li, G. Pundak, K. C. Sim, T. Bagby,
S.-Y. Chang, K. Rao, and A. Gruenstein, “Streaming end-to-end
speech recognition for mobile devices.” in IEEE-ICASSP, 2019,
pp. 6381–6385.

[9] T. N. Sainath, Y. He, B. Li, A. Narayanan, R. Pang, A. Bruguier,
S.-Y. Chang, W. Li, R. Alvarez, Z. Chen, C.-C. Chiu, D. Gar-
cia, A. Gruenstein, K. Hu, A. Kannan, Q. Liang, I. McGraw,
C. Peyser, R. Prabhavalkar, G. Pundak, D. Rybach, Y. Shang-
guan, Y. Sheth, T. Strohman, M. Visontai, Y. Wu, Y. Zhang,
and D. Zhao, “A streaming on-device end-to-end model surpass-
ing server-side conventional model quality and latency.” in IEEE-
ICASSP, 2020, pp. 6059–6063.

[10] X. Zheng, Y. Liu, D. Gunceler, and D. Willett, “Using synthetic
audio to improve the recognition of out-of-vocabulary words in
end-to-end asr systems,” in IEEE-ICASSP, 2021, pp. 5674–5678.

[11] C. Peyser, S. Mavandadi, T. N. Sainath, J. Apfel, R. Pang, and
S. Kumar, “Improving tail performance of a deliberation E2E
ASR model using a large text corpus,” in INTERSPEECH. ISCA,
2020, pp. 4921–4925.

[12] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and
K. Alahari, “End-to-end incremental learning.” in ECCV, vol.
11216, no. 12. Springer, 2018, pp. 241–257.

[13] Z. Li and D. Hoiem, “Learning without forgetting.” IEEE-TPAMI,
vol. 40, no. 12, pp. 2935–2947, 2018.

[14] S. Sadhu and H. Hermansky, “Continual learning in automatic
speech recognition,” in INTERSPEECH. ISCA, 2020, pp. 1246–
1250.

[15] L. Fu, X. Li, L. Zi, Z. Zhang, Y. Wu, X. He, and B. Zhou, “Incre-
mental learning for end-to-end automatic speech recognition,” in
IEEE-ASRU, 2021, pp. 320–327.

[16] S. Ghorbani, S. Khorram, and J. H. L. Hansen, “Domain expan-
sion in dnn-based acoustic models for robust speech recognition,”
in IEEE-ASRU, 2019, pp. 107–113.

[17] K. C. Sim, L. Johnson, G. Motta, L. Zhou, F. Beaufays, A. Benard,
D. Guliani, A. Kabel, N. Khare, T. Lucassen, P. Zadrazil, and
H. Zhang, “Personalization of end-to-end speech recognition on
mobile devices for named entities,” in IEEE-ASRU, 2019, pp. 23–
30.

[18] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing. Ieee,
2013, pp. 6645–6649.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] T. Kudo and J. Richardson, “Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” arXiv preprint arXiv:1808.06226, 2018.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[22] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[23] I. Vallés-Pérez, J. Roth, G. Beringer, R. Barra-Chicote, and
J. Droppo, “Improving multi-speaker TTS prosody variance
with a residual encoder and normalizing flows,” arXiv preprint
arXiv:2106.05762, 2021.

75


