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Abstract

To improve the performance of state-of-the-art automatic
speech recognition systems it is common practice to include
external knowledge sources such as language models or prior
corrections. This is usually done via log-linear model combi-
nation using separate scaling parameters for each model. Typ-
ically these parameters are manually optimized on some held-
out data.

In this work we propose to use individual scaling parame-
ters per subword output token. We train these parameters via au-
tomatic differentiation and stochastic gradient decent optimiza-
tion similar to the neural network model parameters.

We show on the LibriSpeech (LBS) and Switchboard
(SWB) corpora that automatic learning of two scales for a com-
bination of attention-based encoder-decoder acoustic model and
language model can be done as effectively as with manual tun-
ing. Using subword dependent model scales which could not be
tuned manually we achieve 7% improvement on LBS and 3%
on SWB. We also show that joint training of scales and model
parameters is possible and gives additional 6% improvement on
LBS.
Index Terms: model combination, scale tuning, shallow fusion

1. Introduction
Attention-based encoder-decoder (AED) models [1, 2] are in-
vestigated by many researchers in the field of automatic speech
recognition (ASR) due to their simple modeling approach and
end-to-end nature. It is, however, yet unclear how to best make
use of unpaired text-only data. A common approach to increase
the performance of AED models is the inclusion of an external
language model (LM). These LMs are trained on text-only data
and can therefore encode information from large text corpora
that otherwise cannot be used directly.

The simplest solution to integrate an external LM is to com-
bine the scores of acoustic model (AM) and LM via a log-linear
combination. This approach is also called shallow fusion [3].
Previous investigations have shown that shallow fusion yields
good results in most learning scenarios [4]. In comparison with
the usual setup, where AM and LM are trained separately and
later combined, it is also possible to train both models jointly.
In this case, parameters are often initialized with pretrained val-
ues. Investigations have shown that training the AM parameters
while keeping an external LM fixed can yield good improve-
ments [5].

The benefit here is likely due to the suppression of an inter-
nal language model (ILM) in the decoder of the AED model.
When AED models are trained, they learn an ILM from the
transcriptions of the parallel training data [6, 7]. Because of
conflicts between internal and external LM it is worthwhile to

subtract or suppress the ILM when including an additional ex-
ternal LM. An overview and a comparison of corresponding
methods can be found in [8] and includes ILM estimation via
context LMs.

In most of the mentioned approaches, different models are
combined with the help of scale parameters that control the in-
fluence of each component. These scale parameters have to be
tuned manually, which is usually done via grid search. When
more models are combined, the dimension of the search grid
grows exponentially and finding optimal scales by hand quickly
becomes infeasibly hard.

In this work we introduce a method to learn these scale pa-
rameters via automatic differentiation [9] and stochastic gradi-
ent decent [10]. This opens up the possibility to efficiently find
an arbitrary number of combination parameters and models. We
use this to investigate the use of individual scale parameters per
subword output token, similar to [11].

2. Log-linear Model Combination
2.1. Subword Agnostic Scales

When integrating an external LM into an ASR system, the defi-
nition of the posterior prediction probability changes. The prob-
ability distributions for the AM pAM
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)
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1 ) have to be combined. To obtain a valid probability

distribution, we have to perform a renormalization. We propose
two ways to achieve this renormalization. The straightforward
way is to perform it on a sentence level resulting in:
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where α and β ∈ R are scale parameters controlling the influ-
ence of AM and LM. We note that in general, it is not possible
to compute the above probability exactly, because of the sum
over all possible sentences. In decoding, however, because the
argmax is used to determine the best transcription and the de-
nominator is independent of the argument, the normalization
can be omitted. We note that in this case, only the ratio of the
two parameters matters. Therefore, one of them can be fixed to
1. This results in the following decision rule:
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+ β log pLM(wN

1 )
}

(2)
In the literature, this way of combining AM and LM is com-
monly referred to as shallow fusion [3, 4].
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The normalization can also be done on a per token basis:
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We note that in this case both scale parameters matter, even
when using the argmax.

2.2. Subword Dependent Model Scales

In this work we extend the model scales by introducing individ-
ual scale parameters on a per BPE subword unit level. That is,
each subword unit gets an individual AM and LM scale. We
redefine α := αw1 , . . . , αwk ∈ Rk and β := βw1 , . . . , βwk ∈
Rk where w1, . . . , wk are all possible subword units and k is
the total number of subword units. The definition for the sen-
tence level normalized prediction probability changes to
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and the token level normalized probability to
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3. Learning of Model Scales
Usually, the scale parameters from the decision rule of log-
linear combination α and β are tuned manually. This is com-
monly done via grid search, running the decoding process for
different scale parameters. In this work, we propose to learn
these parameters automatically. We use automatic differenti-
ation [9] of a training criterion F and a variant of stochastic
gradient descent [10] to find the optimal scale values similar to
how other model parameters are optimized.

3.1. Training Criteria

To train the scales we have to define a suitable training criterion.
In analogy to the AM training we first use the cross entropy
(CE) criterion. For simplicity we chose the per token renormal-
ization from Equation 4, which leads to
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This criterion, however, does not reflect the criterion that is used
in the manual tuning process where the word error rate (WER)
of the dev set is used directly. We therefore decided to also
investigate the automatic learning of model scales with a min-
imum word error rate (minWER) training criterion similar to

[12, 13]. This training criterion uses the sentence level renor-
malization and is given by
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1

)
(9)

where w̃Ñ
1 is the correct transcription of the input audio and

A (y, y′) is the accuracy of a token sequence y, treating y′ as
the ground-truth. In practice it is not feasible to compute this
sum exactly. Therefore, we use n-best lists to approximate the
search space. Also p̃ is being renormalized to this n-best list.

When training the subword dependent scale parameters in-
troduced in Section 2.2, we use the same training criteria, re-
placing the single scales with the subword dependent scale pa-
rameters.

4. Experimental Setup
For all of our experiments we use the RETURNN training
framework [14, 15]. Configs are available online.1 We evaluate
our methods on the LibriSpeech 960h and Switchboard 300h
corpora.

Our acoustic models are attention-based encoder-decoder
models with CNN+BLSTM encoder and a single layer LSTM
decoder that predict subword units generated by byte-pair-
encoding (BPE) (LBS:10025, SWB:534). The details of our
LibriSpeech Model can be found in [16] and our Switchboard
Model follows [8].

As our language model for LibriSpeech we use a 4 layer
LSTM based model with 140M parameters, the SWB LM is a 6
Layer transformer with 76M parameters, both trained on addi-
tional text data. In the experiments with joint training (Section
5.3) we also use a single layer LSTM LM, which has the same
size as the AM decoder. This LM was trained solely on the
transcriptions of the LibriSpeech corpus.

4.1. Training Procedure

As in the standard shallow fusion approach, we start by first
training both AM and LM separately with the CE objective
function. Afterwards, we combine them and initialize the scales
randomly with mean 1.0 and small variance. Then we train only
the introduced scale parameters while keeping the model pa-
rameters fixed.

We investigate the joint training of the parameters by first
training the scale parameters, AM and LM as described above
and then running a joint training phase. Here, we decided to
still keep the LM parameters fixed, as prior investigations [5]
have shown severe degradation when training the LM only on
transcribed audio data.

5. Results
5.1. Subword Agnostic Scale Training

We conduct experiments for subword agnostic scales, that is,
one scale parameter for AM and the LM each. We train the
scales for 5 epochs on the train or 100 epochs on the dev sets.

For LibriSpeech, the results of the experiments for both pre-
sented training criteria and datasets are displayed in Table 1.
Firstly, we observe that the scales learned with the cross en-
tropy training criterion produce slightly worse results than the

1https://github.com/rwth-i6/returnn-
experiments/tree/master/2022-scale-learning
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Table 1: Performance of learned subword agnostic and subword dependent scales trained on LibriSpeech using different training
criteria and subsets of data, where α is the (average) AM scale and β is the (average) LM scale

scale training
α β β

α

dev WER [%] test WER [%]
criterion set clean other clean other

baseline - - - - - 4.0 10.9 4.2 11.4
+ LM manual dev-other 2.77 1.00 0.36 2.9 8.3 3.2 9.0

subword
agnostic
scales

CE
train 1.24 0.26 0.21 3.0 8.7 3.2 9.3

dev-clean 1.10 0.51 0.46 3.1 8.4 3.5 9.3
dev-other 1.00 0.50 0.50 3.1 8.5 3.6 9.7

minWER
train 3.41 1.19 0.35 2.8 8.2 3.2 8.9

dev-clean 3.14 0.89 0.28 2.9 8.3 3.2 9.1
dev-other 2.82 1.46 0.52 3.1 8.3 3.5 9.2

subword
dependent

scales

CE
train 1.49 0.63 0.45 2.8 8.0 3.1 8.5

dev-clean 1.50 1.13 0.84 6.0 17.7 12.2 20.7
dev-other 1.40 1.36 0.90 8.5 8.1 9.1 15.1

minWER
train 1.50 0.63 0.45 2.7 7.8 3.0 8.4

dev-clean 1.50 0.64 0.45 2.5 7.9 3.1 8.5
dev-other 1.50 0.64 0.45 2.7 7.4 3.1 8.5

manually tuned ones. The results obtained from the scales
learned with the minWER criterion reach the same performance
as those obtained from manual tuning. For Switchboard, the re-
sults are presented in Table 2. Here, the manual results can be
found both by CE and minWER training.

In both cases, using the train set to estimate the scales seems
to be more stable and to generalize better to the other test sets.
This shows that our procedure can be used to automatically
learn the scales for the shallow fusion method.

5.2. Subword Dependent Scale Training

We also learn subword dependent scales, that is one AM scale
and one LM scale per subword unit, by training for 5 epochs on
the train dataset or for 100 epochs on the dev sets. Additionally,
for the minWER training criterion we initialize them with the
scales obtained from the CE training step.

The results on LibriSpeech for both the CE and the min-
WER criterion as well as the different training sets are displayed
in Table 1. For the CE criterion we observe a clear improvement
of 5.5 % over the shallow fusion baseline on test-other when us-
ing the training dataset. When using the minWER criterion, the
results are even better. For the training set we reach a relative
improvement of 6.6 % on the test-other dataset. When training
on the dev sets, we see a much bigger improvement on the set
we use for estimating the parameters but reduced generalization
of the model on other sets.

The results for Switchboard are presented in Table 2. We
see that subword dependent scales achieve the same perfor-
mance as the manual baseline on Hub5, but show better gener-
alization on RT03. No overfitting on Hub5’00 is observed when
using it to tune the scales. Training with minWER criterion on
the train set leads to the best results.

In both cases training on the dev sets is not stable enough
to reach the baseline results.

5.3. Joint Training

For joint training we initialize the model with pretrained AM,
LM, and scale parameters as presented above. Afterwards, we
continue fine tuning the AM parameters while keeping the LM
parameters fixed. We run experiments for both fixed as well as
trainable scale parameters. In the joint training phase we use the
decoder sized LM mentioned in section 4 since it better matches

Table 2: Performance of learned subword agnostic and subword
dependent scales trained on Switchboard using different train-
ing criteria and subsets of data

scale training WER [%]
criterion set Hub5’00 Hub5’01 RT03

baseline - - 12.3 11.9 14.3
+ LM manual Hub5’00 12.1 11.7 14.1

subword
agnostic
scales

CE train 12.1 11.6 13.8
Hub5’00 13.5 12.5 14.8

minWER train 12.1 11.7 13.8
Hub5’00 12.1 11.6 13.8

subword
dependent

scales

CE train 12.1 11.7 13.9
Hub5’00 20.9 22.8 22.0

minWER train 12.0 11.5 13.7
Hub5’00 14.0 14.5 16.5

the train set. After the joint training we replace this LM for the
usual more powerful one and retune the scales again. We use
the CE training criterion from Equation (8) in all training steps.

We run the training on LibriSpeech for 5 epochs in each
individual training step using the cross entropy criterion. The
results of the experiments are displayed in Table 3. We observe
that the joint training phase yields clear improvements in WER
of 13.8% relative on dev-other for subword agnostic scales and
6.3 for subword dependent scales. We further observe that fix-
ing the scale parameters during the joint training phase or con-
tinuing to tune them has a negligible effect.

The results of subword agnostic and subword dependent
scales after running the joint training phase are almost identi-
cal. This indicates that the advantage that is achieved by the
subword dependent scales can also be learned by the AM.

5.4. Subword Dependent Scales Analysis

We analyse the scales found by training with the minWER train-
ing criterion on the train dataset of LibriSpeech. In Figure 1a
we observe that the distribution of the scales follow a Gaussian
distribution with means ᾱ = 1.50 and β̄ = 0.63. When ex-
amining the correlation between AM and LM scales for each
subword (cf. Figure 1b) we find a Pearson coefficient of −0.52.
This implies a slight inversely proportional correlation. Accord-
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Table 3: Joint training results for subword agnostic and sub-
word dependent scales trained on LibriSpeech with the CE cri-
terion.

train dev WER [%] test WER [%]
AM scales clean other clean other

subword
agnostic

no yes 3.0 8.7 3.2 9.3

yes no 2.6 7.5 2.8 8.0
yes 2.6 7.6 2.8 8.2

subword
dependent

no yes 2.8 8.0 3.1 8.5

yes no 2.6 7.5 2.8 8.0
yes 2.6 7.5 2.8 7.9

(a) Distribution of AM scales (α) and LM scales (β)

(b) Correlation of α and β (c) Length distribution

Figure 1: Analysis of subword dependent AM scales α and LM
scales β trained on LibriSpeech 960h with minWER criterion

ing to Figure 1c the relative importance of AM and LM seems
to be independent of the length of the BPE token in characters.

6. Conclusion
In this work we proposed to use subword dependent model
scales for the log-linear combination of an attention-based
encoder-decoder acoustic model and a neural language model.
To this end, we automated the tuning process for model scales
by using automatic differentiation and gradient-based updates.

We conducted experiments with both cross entropy and
minimum word error rate training criteria on LibriSpeech and
Switchboard. Using subword agnostic scales and the minWER
criterion, we recovered the result of manual scale tuning. Train-
ing the scales on the whole training data showed better general-
ization of the scales to other test sets.

Additionally, when using subword dependent scales, we
achieved a clear improvement of 6.6% relative WER reduction
on the LibriSpeech test-other dataset and 2.8% improvement on
the RT03 test set. By training acoustic model parameters jointly
with the model scales we could increase the relative improve-
ment to 11.1% on test-other.

7. Acknowledgements
This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No 694537,
project ”SEQCLAS”). The work reflects only the authors’

views and none of the funding parties is responsible for any
use that may be made of the information it contains.

8. References
[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Transla-

tion by Jointly Learning to Align and Translate,” in Int. Conf on
Learning Representations (ICLR), May 2015.

[2] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversa-
tional speech recognition,” in Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), March 2016, pp. 4960–
4964.

[3] C. Gülcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin,
F. Bougares, H. Schwenk, and Y. Bengio, “On Using Monolingual
Corpora in Neural Machine Translation,” in Computer Speech &
Language, vol. 45, September 2017, pp. 137–148.

[4] S. Toshniwal, A. Kannan, C.-C. Chiu, Y. Wu, T. N. Sainath, and
K. Livescu, “A Comparison of Techniques for Language Model
Integration in Encoder-Decoder Speech Recognition,” in Proc
IEEE Spoken Language Technology Workshop (SLT), December
2018, pp. 369–375.
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