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Abstract

Recent work has shown that self-attention module in Trans-
former architecture is an effective way of modeling natural lan-
guages and images. In this study, we propose a novel ap-
proach for waveform synthesis utilizing Self-Attention Network
(SAN). To the best of our knowledge, Transformer architectures
or SANs have not yet been successfully applied in high-fidelity
waveform generation. The main challenge in applying SANs
to waveform generation tasks lies in its quadratic growth of the
computational complexity with respect to the input sequence
length, which makes it unsuitable for high sample-rate wave-
form generation. To solve this problem, we apply dilated slid-
ing window to vanilla SAN. This technique enables our model
to have a large receptive field while maintaining linear com-
putational complexity and a small footprint. We experimen-
tally show that the proposed model achieves smaller model size,
while producing audio samples with comparable speech qual-
ity in comparison with the best publicly available model. In
particular, our small footprint model has only 0.57M parame-
ters and can generate 22.05kHz high-fidelity audio 113 x faster
than real-time on a NVIDIA V100 GPU without engineered in-
ference kernels.

Index Terms: Transformer, neural vocoder

1. Introduction

As an important part of human-machine interface, text-to-
speech (TTS) technology is currently a research hotspot and has
a wide range of applications in the industry. The main pipeline
of the TTS system needs to train two models separately, includ-
ing an acoustic model that generate acoustic features (e.g. Mel-
spectrograms [1]) from text, and a vocoder that convert acoustic
features into raw waveform. Recently, several fully end-to-end
TTS models [2, 3, 4, 5] are proposed to generate waveform di-
rectly from text, but they either generate lower quality samples
or take more time to train than separately training method.
Vocoders can be roughly divided into two categories:
the vocoders used in statistical parametric speech synthesis
(SPSS)[6, 7], and the neural network-based vocoders. SPSS
vocoders have dominated waveform generation for decades, un-
til neural vocoders made a huge breakthrough in synthesizing
human-like audio [8] and have been widely used since then. Ac-
cording to the model they use, neural vocoders can be classified
into autoregressive vocoders, flow-based vocoders, GAN-based
vocoders, VAE-base vocoders and Diffusion-based vocoders.
Autoregressive models [8, 9] are the first and most expressive
model in waveform generation, but they suffer from slow infer-
ence speed due to their recurrent architecture. Later some works
introduce flow-based methods to accelerate inference. Parallel
WaveNet [10] and Clarinet [11] introduce inverse autoregres-
sive flow (IAF) to enable parallel synthesis, but they require
teacher distillation from autoregressive models and still requires

*equation contribution

Copyright (C) 2022 ISCA

tingc95@outlook.com

large computation. WaveGlow [12] and FloWaveNet [13] avoid
distillation and can generate high-fidelity waveforms in real-
time by incorporating non-causal WaveNet layers with normal-
izing flows. However, they require a significant amount of GPU
memory as well as a great amount of inference latency. There
are also several works of VAE-based vocoders and diffusion-
base vocoders. However, among all neural vocoders, GAN-
based ones [14, 15, 16, 17] show remarkable achievements, by
its ability to generate high quality voice while synthesizing or-
ders of magnitude faster.

Most GAN-based vocoders use dilated convolution to in-
crease the receptive field to model the long-dependency in
waveform sequence. This idea was firstly used in signal pro-
cessing and image segmentation, and then adopted by audio
generation. However, many recent works have shown that
Transformer [18] and its variants have great potential to replace
convolution networks as backbone architecture in many fields,
including NLP [19, 20] and CV [21, 22] models. Despite the
huge success in these areas, there are relatively few applications
of using Transformers to model audio data. TransformerTTS
[23] uses Transformer architecture for mel-spectrogram gener-
ation, Audiomer [24] proposes a convolutional Transformer net-
work which achieves state-of-the-art performance in end-to-end
Keyword Spotting task. However, to the best of our knowledge,
there is no successful application of Transformer in raw wave-
form generation task.

The main difficulty of incorporating SAN for raw wave-
form tasks lies in its inability of scaling to long sequences. In a
high-fidelity speech synthesize setting, the model needs to syn-
thesize with up to 22,050 samples per second and up to 16-bit fi-
delity. However, SAN’s computational complexity is quadratic
with respect to input sequence length. As a result, using vanilla
Transformer architecture directly on raw waveform is infeasi-
ble. In this work, we try to extend the Transformer architecture
to waveform generation task, and propose a Transformer-based
GAN vocoder. Our main contributions are summarized as fol-
lows:

1. We propose a convolution-free waveform generator,
which is mainly built upon self-attention modules. To the best
of our knowledge, we are the first to apply Transformer in high-
fidelity raw waveform generation task.

2. We introduce several design choices to reduce the com-
putational complexity of self-attention module, making the net-
work efficient to train and synthesis.

3. The proposed model enjoys small footprint, fast synthe-
size speed, and produces audio samples with comparable speech
quality in comparison with the best publicly available model
[17].

4. We conduct several experiments to demonstrate how to
trade-off between speech quality and size of model parameters.
This would be an important guide for practitioners to balance
between cost and performance when building their own TTS
systems.
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2. Related Works
2.1. GAN Vocoders

Although likelihood-based models, such as auto-regressive
models [8, 9, 11], flow-based models [12], diffusion-based
models [25, 26], contribute a lot to the development of audio
generation tasks, it is nevertheless well-established that the im-
plicit likelihood models, such as Generative Adversarial Net-
works (GANSs) [27], are one of the most dominant models that
can produce high-fidelity raw audio with high efficiency. There
are several GAN vocoders [28, 17, 29, 30] proposed recently.
Among them, [17] achieves the best audio quality, [29] outper-
forms other counterpart models in synthesis speed. [15] intro-
duces a robust model that can generate waveform of multiple
speakers. Despite the differences of these models in network
architectures, the generators of all these models are composed
of Convolution Neural Networks (CNN5). In this work, we take
a challenge of using Transformer blocks to build the generator,
which allows for a more parameter efficient implementation.

2.2. Transformer Architecture

The Transformer architecture, first proposed in [18], has be-
come the de-facto standard for NLP tasks. Recently, Trans-
former and its variants have made a great influence in computer
vision (CV) community. The success of Transformer architec-
ture in the field of NLP and CV inspires us to apply it to au-
dio tasks. Some prior works focus on generating high-fidelity
mel-spectrograms from text sequence using Transformer archi-
tecture [23] or feed-forward transformer blocks [31, 32]. How-
ever, to the best of our knowledge, there is no prior work that
using Transformer to build a neutral vocoder.

The Self-Attention Network (SAN), as the most impor-
tant module in Transformer architecture, has several proper-
ties that make it good fit for audio tasks in comparison of
CNNs: (1) the ability to capture long-range dependencies
for high-frequency audio data with large sequence length, (2)
parameter-independent scaling of receptive field size for build-
ing lightweight models, and (3) content-aware interactions as
opposed to content-independent interactions of CNNs. How-
ever, the vanilla SAN connects all input positions, requiring a
computational complexity of O(n?), where n is the sequence
length. As such, SANs are very fast for short-sequence tasks
like machine translation, but extremely slow and inefficient to
train for long-sequence tasks like waveform generation. To
address this limitation, some prior works propose to compute
sparse attention instead of a dense one to accelerate the Trans-
former model [33]. Some works[34, 35, 22, 21] utilize a local
window (with a window size of w) when computing dot-product
attention, which in theory reduces the self-attention complexity
to O(n - w). In this work, we investigate several techniques
to improve the model efficiency. To this end, we propose a
transformer-based neutral vocoder. Our model enjoys small
footprint, fast synthesize speed, and produces audio samples
with comparable speech quality in comparison with counterpart
models.

3. Proposed architecture

Similar to MelGAN [28] and HiFi-GAN [17], our overall archi-
tecture is based on GAN and using mel-spectrogram as input
to generate raw waveform. For discriminator, we choose the
multi-resolution discriminating(MRD) framework whose per-
formance is experimentally confirmed by [30]. Our implemen-
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tation of discriminator is identical to HiFi-GAN [17]. However,
our design of generator is different. As shown in Fig. 1, the
input is firstly processed by a linear layer and a Transformer
block, then fed into a stack of N similar blocks. Each block
contains one upsampling layer and £ Transformer blocks. Fi-
nally, a linear layer is used to project hidden vector to waveform
output. The upsampling is done by a stack of transposed con-
volutional layers. Each Transformer blocks consists of a multi-
head self-attention layer and a position-wise feed-forward linear
layer. A residual connection and a LayerNorm (LN) layer are
applied after each module of Transformer block. More details
about the computation of multi-head self-attention are shown in
the rest of this section.

3.1. Multi-head Self-Attention

Multi-head self-attention layer consists of multiple attention
heads working in parallel. Each attention head applies the at-
tention mechanism to its own input. Assuming X is the input
sequence, a multi-head self-attention is computed as:

Head' = Attention(XWyg, XWi, XWY,) 1)

Y = Concat(Head', ..., Headh)Wo +X 2)

where Wq, Wk, Wy, Wo are learned linear transformations
shared across all locations. Y 1is the output sequence with
the sample size as input X. The score function of scaled dot-
product attention can be formulated as:

Q-K"
Vi

Where dyi is the dimensionality of K. The rest part of this
subsection will discuss more details about the computation of
scaled dot-product attention.

Attention(Q, K, V) = SoftMax( ).V 3)

3.1.1. Sliding window

As aforementioned, the computational complexity of vanilla
SAN is quadratic with respect to the sequence length, so it is
inefficient when modeling long sequences. To reduce computa-
tional complexity, a natural idea is to compute attention within
a fixed-size local window. Assuming w is the window size,
the complexity of window-based self-attention is reduced from
O(n?) to O(n-w), which is linear to the sequence length. There
are two popular window-based attentions. One is using shifted
non-overlapping windows [22] and the other is using sliding
windows [35]. In image classification tasks, [22] shows that
shifted non-overlapping window-based attention outperforms
sliding window-based attention through their experimental re-
sult. However, to the best of our knowledge, no similar conclu-
sions have been found in our previous audio tasks. Instead, we
have come to a completely opposite conclusion through our ex-
periments. Following equation shows the proposed windowing
operation. The sliding windowing SW(-) is applied to both the
key and query vector:

T
Attention(Q, K, V) = SoftMaX(%) -SW(V)
K
)

The window of ‘"

element of the input vector is from (i —
%) to (i + %), centered around 4. Note that sliding windows
are used similar to that of CNNs. However, SANs can scale
to large window size without increasing the number of model

parameters.
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Figure 1: Overall model architecture. (a) Model architecture. (b) Transformer block implemented with dilated sliding windows.

3.1.2. Dilated Sliding window

The sampling rate of the audio data, usually between 8khz (tele-
phone channel) and 48khz (high-fidelity audio). Differs from
natural language generation tasks, waveform synthesis models
need to generate longer sequences (millions of samples instead
of dozens of words). It is quite challenge for neural networks
to learn long-term dependencies, so window-based technique
is always applied in audio-related tasks. This is quite reason-
able since audio’s locally invariant nature. It is well-known
that vanilla SAN is good at capturing long-term dependency.
But since we compute attention in sliding windows, the recep-
tion field size is limited by the window size. In prior works
[8, 17], convolutions with dilated kernels are widely used to
increase model’s reception field. Inspired by dilated convolu-
tions, we compute the attention inside dilated sliding windows.
This technique allows SANs to increase the reception field by a
constant scale factor, while not increasing the computation cost.
The computational complexity and reception field of proposed
methods are shown in Table 1. As can be seen, the reception
field grows linearly with the dilated factor d, while the com-
plexity remains O(n - w).

3.1.3. Relative position bias

Since the attention mechanism is position-insensitive, in order
to make use of the order information of the sequence, some po-
sition information needs to be injected into the sequence when
computing self-attention. In this work, we follow [22] by in-
cluding a relative position bias to each attention head:

Q-K'
Vi
where B € R" is the relative position bias, which is a learned

variable. w is the window size. We initialize B with zero vec-
tors in our experiments. In complementary experiments, we

Attention(Q, K, V) = SoftMax(

+B)-V. )
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employed sine and cosine functions proposed in vanilla Trans-
former [18] as the absolute positional embedding, and their per-
formance is nearly identical. More details can be found in sec-
tion 4.4.

Table 1: Computational complexity and receptive field of differ-
ent methods. n is the sequence length, w is the window size, d
is the dilated factor

Method Complexity  Receptive field
SAN O(n?) n

SAN + Sliding Window O(n - w) w

SAN + Dilated Sliding Window ~ O(n - w) d-w

4. Experiment
4.1. Datasets

All of our experiments are conducted on the LJ-Speech dataset
[36], which consists of 13,100 audio clips of a single female
speaker with a total length of approximately 24 hours. The au-
dio format is 16-bit PCM with a sampling rate of 22.05kHz. We
use an 80-band mel-spectrogram of the original audio as input
to the generator. The FFT size, hop size and window size are
1024, 256, 1024 respectively.

4.2. Model configurations

We firstly use a linear layer to convert 80-band mel-spectrogram
into a hidden representation of hiy;: dimension. 4 transposed
convolutional layers followed by leaky-relu activations are em-
ployed to gradually upsample the temporal dimension of input
sequence by factors of 8, 8, 2, 2. The number of channels per
upsampling layer is reduced by half. Each upsampling layer is
followed by a stack of 3 Transformer blocks with dilations of 1,



3, 5 respectively. The hidden dimension of the multi-head self-
attention layer and feed-forward linear layer are set to 8 X %
and 2 X h respectively, where h is the input dimension, 8 is the
number of head. The window sizes of all sliding windows are
set to 5. The final linear layer with tanh activation produces the
output waveform. We provide 2 variants of our model, a large
model with initial hidden dimensionality of hi,;: = 512 and a
small model with hni: = 128. We use AdamW optimizer with
B1 = 0.85, B2 = 0.99, and the weight decay of 0.01. The ini-
tial learning rate is 10~ and decays by 0.999 every epoch. The
batch size is set to 24 on 2 V100 GPU for the small model and
16 for the large model. The large model converges at 650k*"
training step while the small model converges at 900k*" train-
ing step.

The baseline systems are two most popular GAN vocoders:
HiFi-GAN [17] and MelGAN [28]. The official project reposi-
tory of Hifi-GAN ! and MelGAN ? with default configurations
are utilized. Audio samples of the proposed models and base-
line models are available at https://mcf330.github.
io/IS2022audiosample/.

4.3. Audio Quality and Synthesis Speed

We perform the Mean Opinion Score (MOS) test to evaluate
speech quality. 20 utterances were randomly selected from the
test set and then synthesized using the proposed models and
the baseline model. The MOS ranking, model size and syn-
thesis speed are shown in Table 3 and Table 2, respectively. It
can be seen that the proposed large model achieves compara-
ble MOS ranking to the state-of-the-art HiFi-GAN V1 model
while requiring fewer parameters. The proposed small model
has 0.57M parameters, and can synthesize 22.05 kHZ high-
fidelity speech 113 x faster than real time, which is competitive
to its counterparts, HiFi-GAN V2 and MelGAN. We notice that
there’s a decline of inference speed comparing with CNN coun-
terparts for our models. The main reason is that we use dilated
convolutional kernels to compute the attention, which leads to
inefficient use of GPU memory. Therefore, we believe that our
inference speed can be significantly improved by using some
customized GPU kernels as reported in [33].

Table 2: Model size and synthesis speed for different models.
The model is implemented in PyTorch without any customized
GPU kernels. We run synthesis on a single Tesla V100 GPU.
We select 20 audio clips for synthesis speed evaluation, and
synthesis each sentence 20 times to obtain the average synthesis
speed. When calculating the compositing speed, we exclude the
time overhead of transferring data between the CPU and GPU.

Synthesis Speed  Number of parameters

Model family (in kKHZ) (in millions)
HiFi-GAN V1 [17] 3,669 13.94
HiFi-GAN V2 [17] 16,702 0.92
MelGAN [28] 14,200 4.26
Ours (small) 2,491 0.57
Ours (large) 1,322 9.01

"https://github.com/jik876/hifi-gan
2https://github.com/descriptinc/
melgan-neurips
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Table 3: The MOS with 95% confidence intervals for different
methods on LJ-Speech data set. Higher is better.

Model family MOS (CI)

HiFi-GAN V1 [17] 4.25+0.11
HiFi-GAN V2 [17] 4.15+0.18
MelGAN [28] 3.98 +0.10
Ours (small) 4.13 £0.21
Ours (large) 422 +£0.17
Ground Truth 4.45 + 0.28

Table 4: MOS with 95% confidence intervals of ablation studies
on LJ-Speech dataset. Each ablation study involves removing
some components of the proposed network.

Model family MOS (CI)

Baseline 4.05 +0.22
— Sliding Window 3.01 +0.33
— Dilation 3.94 +0.21
— Relative attention bias  3.92 4+ 0.21

4.4. Ablations

We performed the following ablation analyses on the large
model using MOS evaluation: sliding window vs shifted non-
overlapping window; dilated attention kernels vs. dense atten-
tion kernels; relative position bias vs. absolute positional em-
bedding. Ideally, we would like to train a model with vanilla
self-attention layers for thorough comparison with the proposed
model. However, we found that models using vanilla self-
attention layers are not feasible to train due to GPU memory
constraints.

we compare the performance of these ablations relative to
the proposed model at 100 epochs of training, which was not
enough for these models to converge, but far enough to see
their relative performance differences. The results of the ab-
lation study are shown in Table 4. We can see that all the design
choices we proposed help to improve the MOS ranking. The
MOS value drops significantly after removing the sliding win-
dow, Whereas the absence of dilation and relative position bias
shows a slight but noticeable degradation.

S. CONCLUSION

In this work, we extend prior works on text and image, demon-
strating that self-attention-based models can also operate effec-
tively on raw waveform generation. Our model achieves com-
parable audio quality against convolution-based counterparts.
Qualitative results show that our model is very lightweight, and
very fast at inference time. We hope that our generator can be a
new replacement to parameter-heavy alternatives in other audio-
related tasks. Future work would focus on integrating some
Transformer-based acoustic models [23], to build an end-to-end
Transformer-based TTS model.
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