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Abstract
We propose a methodology for information aggregation from
the various transformer layer outputs of a generic speech En-
coder (e.g. WavLM, HuBERT) for the downstream task of
Speech Emotion Recognition (SER). The proposed methodol-
ogy significantly reduces the dependency of model predictions
on linguistic content, while leading to competitive performance
without requiring costly Encoder re-training. The proposed
paradigm is evaluated via Accuracy, Positive Pointwise Mutual
Information, and visualization of the learned attention weights.
This methodology generalizes well to a multi-language SER
setting in addition to single-language SER, suggesting existing
cultural commonalities in the paralinguistic domain between
different languages. Experimental results demonstrate this abil-
ity by testing our model on unseen languages in a zero-shot
fashion, suggesting our proposed method is inclusive in the con-
text of speech and language, thus, making it applicable to a wide
audience of speakers.
Index Terms: Deep Learning, Speech Emotion Recognition,
Paralinguistics

1. Introduction
In general, SER focuses on recognition of the emotional state of
the speakers conveyed through speech signals. The three most
important factors for SER are understanding of: (a) “What was
said?”, i.e. the linguistic content of speech (or lexical features),
(b) “How was it said?”, i.e. paralinguistic content of speech (or
acoustic features), and (c) “What was the context?”, i.e. the ex-
tralinguistic content of speech, including the speaker identity,
habitual aspects of the speaker’s voice quality, pitch range and
loudness. More specifically, evaluating human emotions using
Deep Learning and Signal Processing techniques have led to
marked performance improvements as researchers work to un-
derstand the underlying information channels used to convey
emotions through text, speech and vision [1] [2] [3]. One limi-
tation is that while many models have been proposed, they often
do not make an explicit attempt to restrict or measure the incor-
poration of linguistic information in their model predictions and
focus explicitly on paralinguistic information [4].

The motivation behind this work is that, in general, there
are various use cases (when it comes to downstream tasks)
that are associated with three distinct categories of speech
representation extraction during the preprocessing stage: (a)
paralinguistic-only speech representations, (b) linguistic-only
speech representations, and (c) speech representations mixing
both linguistic and paralinguistic information. The ultimate
goal of this work is to eventually develop a methodology that
would extract latent representations that contain only paralin-
guistic information, but do not contain lexical information, in

order to address specific use cases that would benefit from it.
An example of such a use case is that paralinguistic-only

speech representations can potentially be extracted by train-
ing a downstream task (e.g., SER) in one natural language
(e.g., English) and then, the same model (without any further
re-training) can be used during inference for the exact same
downstream task, but in another language (e.g., Spanish), while
speech representation extraction uses paralinguistic information
only. More generally, this use case of transfer learning can be
extended to domains outside language. For instance, it can ex-
tend to formality style [5] (i.e. formal vs informal tone) or type
of Conversational Information Seeking [6] (i.e. Conversational
Search vs Conversational Recommendation vs Conversational
Question Answering). However, extracting paralinguistic-only
speech representations, while preserving high predictive perfor-
mance, while also transferring from one domain (e.g., language)
to another is a particularly challenging task.

Traditional SER methodologies typically do not make use
of end-to-end downstream tasks, but this leads to several limi-
tations [7], including: (a) error propagation, i.e. when models
are not trained end-to-end, errors made by one component of
the system can propagate to subsequent components, leading to
compounding errors that can result in poor performance, and
(b) suboptimal solutions, i.e. when models are trained sepa-
rately, each component may be optimized to perform well on
its individual task, but the overall system may not be optimized
for the end goal. This can result in suboptimal solutions that
do not perform well in real-world scenarios. Therefore, extrac-
tion of informative paralinguistic-only speech representations
for SER is especially important since these representations: (a)
negate the need to employ either automatic speech recognition
(ASR) [8] [9] [10] or any other intermediate step as part of the
(pipeline) downstream task, and (b) can generalize better across
domains (e.g., formality style, languages, etc.), while also being
inclusive the context of speech and language.

Traditional disentanglement techniques in the literature of-
ten involve a specifically-designed loss function in order to
learn latent representations (in speech [11] or other modalities).
This explicitly enforces an arbitrarily-chosen disentanglement
metric applied to some or all Encoder layers. Instead, the ap-
proach of this work is to implicitly train learnable parameters
(of an additional module) that: (a) are included in the prepro-
cessing stage, and (b) are intentionally guided by an appropriate
downstream task (e.g., SER), thus, avoiding the limitations of
(i) finding the most appropriate metric and (ii) the costly step of
training the Encoder layers.

To address the above limitations in SER and speech rep-
resentation extraction, we propose a novel approach based on
efficient utilization of information obtained from the (interme-
diate) layers of a generic speech Encoder, as an attempt towards
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bridging the gap of paralinguistic-only speech representations.
Briefly, our results lead to the following main contributions:
• We extract the input embeddings from the intermediate layers

of the Encoder, which was pre-trained using Self-Supervised
Learning (SSL) and its model weights are kept frozen.

• We introduce a multi-head self-attention [12] [13] mecha-
nism as a module inside the preprocessing stage (Figure 1),
which converts the input embeddings into highly informa-
tive paralinguistic-only speech representations using learn-
able parameters in order to be used as input to the down-
stream SER task.

• We train the Decoder Classifier on phonetically different data
(i.e. linguistically different) to identify and aggregate layer
feature maps and paralinguistic features in these maps that
are most informative for the downstream SER task.

2. Related work
Encoders of pre-trained models (PTMs) trained using SSL ap-
proaches (e.g., Wav2vec [14], HuBERT [15], and WavLM [16])
can generate speech representations (mixing both linguistic and
paralinguistic information) informative enough to be used as in-
put to a wide range of downstream tasks (listed in SUPERB
benchmark [17]) including SER. Typically, the Decoder of the
downstream task is a relatively simple network that performs
either: (a) mean temporal pooling on the representations of the
last Encoder layer [18], or (b) mean temporal pooling on the
representations of all Encoder layers and weighted averaging
of the representations of each layer [17], followed by fully-
connected layers. While the model weights of the Encoder are
kept frozen, such low-complexity Decoder networks can be in-
dependently trained (for a variety of downstream tasks) in a su-
pervised way using a dataset which is typically much smaller
than the one used for training the Encoder.

The authors in [19] draw the conclusion that SSL-based
Encoders implicitly capture linguistic information from audio
only, implying direct usage of intermediate transformer layer
features will have linguistic information, and so they find that
attempts in the literature for SER are influenced by linguistic in-
formation, which is a limitation. The author in [20] proposes a
multi-lingual, multi-task SER approach, but with a similar limi-
tation since, unlike this work, it does not introduce an additional
module (or similar) inside the preprocessing stage in order to
achieve extracting paralinguistic-only speech representations.

3. Methods
3.1. Encoder and Decoder models

We apply the proposed method on the SSL-based Encoder of
a single PTM using different depths and complexities. PTMs
used are HuBERT [15] and WavLM [16]. More specifically,
the model weights of three particular PTM implementations are
used as Encoders: (i) HuBERT-Large, (ii) HuBERT-Base and
(iii) WavLM-Large. The reader can use HuggingFace or use
the instructions in the original papers of HuBERT and WavLM
to implement and use the Encoder models used in our work.
If further clarifications are needed, readers can contact the au-
thors. Regarding large-scale datasets, Libri-light [21] has been
used for pre-training (i) and (iii). Librispeech [22] has been
used for pre-training (ii). GigaSpeech [23] and English parts of
VoxPopuli [24] have been used for pre-training (iii). Each PTM
implementation is then used as input to the Decoder Classifier
(described below), as depicted in Figure 1, which shows the

proposed SER system architecture during inference (i.e. after
training has already been performed). It should be noted that in
this work, PTMs are used as they were pre-trained, i.e. without
any further re-training during the preprocessing stage.

For each of the aforementioned PTMs, the Encoder is kept
frozen, while we train and evaluate the proposed Decoder on
the downstream task of emotion classification (with the classes
being angry, happy, sad, neutral) using focal loss. Evaluation is
performed on a variety of other languages (e.g. German, Greek
and Spanish). Training is performed in: (a) a single-language
setting (e.g., using either a Small or a Large English dataset
for training), and (b) a multi-language setting (e.g., using an
English + Mandarin dataset for training). The specific datasets
used in this work are described in detail in section 4.1.

Figure 1: Proposed SER system architecture

Each output of the respective transformer layer (of the En-
coder) is mean pooled, then all the mean pooled outputs are
concatenated, and are fed as input embeddings into the multi-
head self-attention module. These input embeddings can be
represented mathematically as X ∈ RN×d where each xi is
a d-dimensional vector and N is the total number of trans-
former layers of the Encoder (which is kept frozen). The self-
attention mechanism in the module computes a new represen-
tation C ∈ RN×d of the input sequence, where each ci is a
weighted sum of all input embeddings xi. The weights for com-
puting ci are determined by the dot product of a query vector qk,
a key vector ki and a value vector vi, which are all learnable pa-
rameters of the module. Specifically, the weights for computing
ci are computed as follows:

αij =
exp(qki · kj)∑n
t=1 exp(q

k
i · kt)

where i is the index of the query vector qk, j is the index of
the key vector ki, and αij is the weight assigned to the value
vector vi. Once the weights are computed, the context vec-
tor ci can be obtained as a weighted sum of the value vectors:
ci =

∑n
j=1 αijvj . The equation computes the context vector

ci for a single query vector qk. As shown in Figure 1, the multi-
head self-attention module computes several different context
vectors (in our case 32) using multiple sets of learnable param-
eters for the query, key, and value vectors. These context vectors
are then concatenated and passed through a linear transforma-
tion to obtain the final output of the module. Convolutional
layers are subsequently used to learn local features (i.e. speech
representations) across the generated context matrix from the
self-attention module. The 2-dimensional convolutional kernel
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achieves this over multiple context vector outputs of each trans-
former layer at each time step (whereby the time step is defined
by the stride). This allows extraction of the latent representa-
tions that best explain the different emotion classes. As a re-
sult, the contribution (for the specific downstream task of SER)
of each transformer layer can be associated with informative
paralinguistic-only speech representations.

The model parameters of the convolutional layers in the
Decoder classifiers associated with each of the three Encoders
(i.e. HuBERT-Large, WavLM-Large and HuBERT-Base) can
be found in Table 1. The embedding dimension of the self-
attention module is 1024 for the two Large trained model vari-
ants and 768 for the Base variant. All Decoder Classifier mod-
els are trained for 35 epochs, with gradient accumulation every
2 epochs. All layer weights are initialized using Xavier initial-
ization. The optimizer being used is Adam with both weight
decay and an initial learning rate of 10−4, coupled with the
focal loss. The focal loss function is defined as FL(pt) =
−(1− pt)

γ log(pt), where γ = 2.5. A batch size of 8 is used
and mixed precision training is utilized. During training and
evaluation, audio files are split to a maximum of 5 second clips.
If an audio file is longer than 5 seconds, then a new audio file
is created with the remaining audio. Each audio file is passed
through the trained Encoder model. The outputs of each trans-
former layer are extracted. Mean pooling is used along the row
axis (i.e. each transformer layer output is aggregated using the
arithmetic mean to a single row vector of size 1 × D) where
D ∈ {768, 1024}. During evaluation, no weight updates are
made to the Decoder, while the rest of the settings remain the
same as during training.

HuBERT/WavLM
Large

Decoder Classifier
(4,329,981 parameters)

HuBERT-Base
Decoder Classifier

(2,395,645
parameters)

1st CNN Block
• Kernel size: (16,16)
• Stride: 1
• Filter size: 512

• Kernel size: (8,8)
• Stride: 1
• Filter size: 512

2nd CNN Block
• Kernel size: (2,2)
• Stride: 8
• Filter size: 1

• Kernel size: (1,1)
• Stride: 8
• Filter size: 1

Table 1: Decoder Classifier model architectures

4. Results and Discussion
4.1. Datasets

This work uses the following datasets: (i) IEMOCAP [25] (5-
fold cross-validation is employed across the 5 Sessions in which
4 Sessions are used in training and 1 Session is left out for vali-
dation), (ii) ESD (the data from the 10 native Mandarin Chinese
speakers is used in training) [26], (iii) AESDD Greek data (only
used as test data) [27], (iv) EMO-DB German data (only used
as test data) [28], (v) MESD Spanish data (only used as test
data) [29] and (vi) MSP-Podcast (35% of the data is randomly
selected for use in training) [30]. Only the emotion categories
of neutral, happiness, anger and sadness are considered across
all the datasets. All datasets contain speech samples from vari-
ous speakers and genders. Datasets (iii)-(v) are used to evaluate
the non-linguistic dependency performance between the mod-
els trained on the following datasets: (1) only on IEMOCAP
(i.e. Small English dataset), (2) on IEMOCAP + MSP-Podcast
(i.e. Large English dataset) and (3) on IEMOCAP + ESD (i.e.
English + Mandarin dataset). This results in approximately the
same amount of training data for both datasets (2) and (3) in

order to have a fair comparison. The frozen Encoder of each of
the three PTM implementations (as described in section 3.1) is
used to train and evaluate a SER Decoder on datasets (1) and
(3) mentioned above. The best performing PTM in this setting
is then used as described in section 4.4. The model weights of
each Encoder are kept frozen during fine-tuning of the Decoder
Classifier (i.e. its model weights are not modified in any way).
The sampling rate of train and validation audio files is 16 kHz.

4.2. Experimental Setup

The evaluation metrics used in this work are the accuracy (ACC)
and the Positive Pointwise Mutual Information (PPMI) [31].

ACC is defined as ACC =
total correct predictions

total number of predictions
.

The PPMI is used to estimate the extent of lexical dependence
of a specific utterance, x, on a specific emotion category, y.
PPMI is defined as PPMI(x; y) = max

(
log2

p(x,y)
p(x)p(y)

, 0
)

. A
pair of outcomes, x and y belong to the discrete random vari-
ables X and Y . These outcome pairs quantify the discrepancy
between the probability of their coincidence given their joint
distribution and their individual distributions, assuming statisti-
cal independence. Positive PMI values imply the discrete vari-
ables being associated with each other are co-occurring more
frequently than expected under a statistical independence as-
sumption, whilst a PPMI value of 0, indicates perfect statistical
independence (i.e. the lower the PPMI, the better). Eight A100
NVIDIA GPUs were used for a total of approximately 30 hours.

4.3. Current benchmarks

In Table 2, we present 5-fold cross-validation accuracy (ACC)
and standard deviation (std) for models we tested on the IEMO-
CAP dataset (1) and previous state-of-the-art ACCs reported in
the literature. The proposed Attention-Guided-WavLM-Large-
v1 and v2 models trained on datasets (1) and (3) respectively
(as described in section 4.4) achieve state-of-the-art ACCs of
0.7376 and 0.7432 respectively. Evaluation in the single-
language setting demonstrates that all four proposed models
achieve state-of-the-art performance on dataset (1), when com-
pared to their corresponding methods in the literature.

Model ACC (std)
LightHuBERT-Small[32] 0.6412 (N/A)
HuBERT-Base[18] 0.6492 (N/A)
LightHuBERT-Stage-1[32] 0.6625 (N/A)
HuBERT-Large[18] 0.6762 (N/A)
WavLM-Base+[18] 0.6865 (N/A)
WavLM-Large[16] 0.7062 (N/A)
Attention-Guided-HuBERT-Base 0.6578 (0.021)
Attention-Guided-HuBERT-Large 0.7291 (0.022)
Attention-Guided-WavLM-Large-v1 0.7376 (0.019)
Attention-Guided-WavLM-Large-v2 0.7432 (0.019)

Table 2: Models’ ACC on IEMOCAP dataset

4.4. Towards paralinguistic-only representation extraction

The authors in [33], highlight that Mandarin Chinese and En-
glish are very different languages in the phonetic (i.e. linguis-
tic) domain, making it difficult to transfer from one to another.
Their numerous differences and relatively high variability (in
the linguistic domain) make them ideal for training a single SER
system, thereby enabling the learnable model parameters in the
preprocessing stage (1) to be focused on autonomously learn-
ing/extracting common paralinguistic factors in both languages.
The following general hypothesis can be stated.
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Hypothesis 1. Let U be one language, and let V be another
language. Given that we have an objective, Z , whereby (i) Z
is the prediction of emotion category from the speech signals of
U and V , and (ii) U and V have limited or no common pho-
netic (i.e. linguistic) properties, then if the common properties
of U and V in the paralinguistic domain are learned, a better
performance for Z is achieved than if they were not learned.

Test set Happy Anger Sadness Neutral PPMI
IEMOCAP (Small English dataset)

MESD 0.1904 1.0429 2.7425 0.6709 1.2812
IEMOCAP + 35% of MSP-Podcast (Large English dataset)

MESD 0.5910 3.2978 1.3846 0.3564 1.4074
IEMOCAP + ESD (English + Mandarin dataset)

MESD 0.9142 1.0429 0.5439 0.7539 0.8138
Table 3: Average PPMI model performance

Test set Happy Anger Sadness Neutral ACC
IEMOCAP (Small English dataset)

EMO-DB 0.9155 0.7953 0.1613 0.7595 0.6873
AESDD 0.8319 0.6777 0.1230 N/A 0.5414
MESD 0.8333 0.3007 0.0833 0.4406 0.4146

IEMOCAP + 35% of MSP-Podcast (Large English dataset)
EMO-DB 0.7465 0.3858 0.2419 0.9114 0.5575
AESDD 0.5546 0.3802 0.0656 N/A 0.3315
MESD 0.6875 0.0769 0.2361 0.8671 0.4669

IEMOCAP + ESD (English + Mandarin dataset)
EMO-DB 0.6761 0.9921 0.9677 0.9494 0.9115
AESDD 0.6723 0.9256 0.5657 N/A 0.7210
MESD 0.6250 0.3986 0.9028 0.7063 0.6698

Table 4: Average ACC model performance

In multi-lingual setting experiments, we demonstrate that
training on a mix of English and Mandarin data significantly
improves SER accuracy on unseen languages when compared
to English-only training. Evaluation on MESD Spanish data
reveals that training on linguistically different data reduces
the models’ lexical dependency, as mutual-information be-
tween lexical content and predicted emotions is significantly
lower than for English-only training. In other words, when
the attention-based Decoder is trained in multi-lingual settings
where languages are different in the linguistic domain, the at-
tention mechanisms aid in the extraction of paralinguistic rep-
resentations that generalize better across different/unseen lan-
guages with paralinguistic domain commonalities. In Tables
3 and 4, the average PPMI and ACC are reported for emotion
category predictions of the Attention-Guided-WavLM-Large-v2
model trained on the IEMOCAP dataset, IEMOCAP + ESD and
IEMOCAP + 35% of MSP-Podcast. The EMO-DB and AESDD
datasets are used to quantify how well the model learns multi-
word paralinguistic properties because utterances in these span
across multiple words, while MESD data only includes single
word utterances. EMO-DB and AESDD include samples of all
emotions for every lexical phrase. So evaluations of PPMI are
not applicable (and hence, not included in Table 3), since PPMI
should be 0 due to the fact that lexical content and emotional
tones are explicitly independent for these datasets via PPMI.

Augmenting English data with Mandarin Chinese data dur-
ing training consistently reduces the average PPMI indicating
reduced dependency on linguistic information. For MESD,
the average PPMI is reduced from 1.2812 to 0.8138 (Table
3), implying that multi-language training enables reduced lex-
ical correlation on a language not used in the training. Across
all datasets, the augmentation approach improved overall the

average ACC indicating that the augmented training led to a
more language-general ability to perform SER since it presum-
ably picks up shared cultural properties between languages in
the paralinguistic domain. In Table 4, the methodology pro-
posed balances a trade-off in performance between the ’happy’
and ’sadness’ categories across different languages. This is in
contrast to augmenting the Small English dataset (i.e. IEMO-
CAP) with additional English language data (i.e. 35% of MSP-
Podcast), which detriments test language performance signifi-
cantly, suggesting that a stronger linguistic dependence of the
trained Decoder models exists.

4.5. Analysis of Encoder Layer Contribution

Different downstream tasks require information from different
layers of the Encoder. Typically, higher level representations
that resemble linguistic information are found in top layers
while lower layers contain information relevant for e.g., speaker
identification task [16]. We compute average normalized atten-
tion weights (mirroring the evaluation process in [34]) on the
EMO-DB dataset in an attempt towards explainability and in-
terpretability. The Normalized Attention weights of Attention-
Guided-WavLM-Large-v1 and v2 are shown in Figure 2.

Figure 2: Layer-wise attention weights

It is evident that prior to augmenting the training data of the
model with the Mandarin Chinese dataset, there is higher con-
tribution of later layers. After training augmentation with Man-
darin, the attention weights contribution shifts to lower layers
by approximately 30%. This suggests that lower-level speech
features with augmentation are utilized more than without aug-
mentation. Hence, the model relies more on paralinguistic in-
formation rather than on linguistic information, as it is also sup-
ported by the results in Table 3.

5. Conclusion
In this work, a methodology for aggregation of information
from different transformer layer outputs of a speech Encoder for
SER is proposed. The method outperforms previous approaches
in the literature by a significant margin and is inclusive in the
context of speech and language, making it applicable to a wide
audience of speakers. This methodology (a) promotes extrac-
tion of paralinguistic-only speech representations for SER by
using training sets from two languages, which have limited (if
any) common linguistic properties, and (b) evaluates paralin-
guistic and lexical decoupling in model predictions. Results
show that the proposed methodology leads to significant im-
provements in both ACC and PPMI for various languages and
thus, suggesting the existence of cultural commonalities in the
paralinguistic domain.
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