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Abstract
Huntington’s disease (HD) is an autosomal-dominant neurode-
generative disorder that leads to the devastating loss of motor
control - including severe speech impairment. Current models
are insufficient to predict the onset or progression of manifest
symptoms and early signs of the disease remain challenging to
detect and monitor. Therefore, we propose a purely speech-
based, non-invasive approach to discriminate Huntington’s Dis-
ease patients who are exhibiting early signs of disease from
those who are not. We study various features derived from
speech and machine learning models to classify HD patients.
Our results show that Random Forest classifiers leveraging lan-
guage features perform very well with an unweighted accuracy
of 0.95. In addition, we analyze the statistical significance of
features, the importance of different questions asked to the pa-
tients, and other classification problems in Huntington’s disease
to provide a strong foundation for this field of research.
Index Terms: Huntington’s disease, dysarthria, healthcare,
biomarker

1. Introduction
Huntington’s Disease (HD) is defined by Walker [1] as “an
autosomal-dominant, progressive neurodegenerative disorder
with a distinct phenotype, including chorea and dystonia, inco-
ordination, cognitive decline, and behavioral difficulties.” HD
can be diagnosed by a genetic test; however, there is no cure for
HD. Clinical trials that target the earliest stage of the disease are
currently underway; however the ability to properly time these
disease-modifying interventions is critically dependent on the
sensitivity of early biomarkers of the disease. Finding the earli-
est and most reliable biomarkers, including changes in speech,
remains a priority. Currently, speech changes in Huntington’s
disease are recorded by an examiner using a relatively crude
scale of clinical dysarthria.

The aim of this paper is to solve the problem of relying on
clinical assessments of speech by automating the process using
machine learning models that can predict whether an HD patient
is manifesting subtle speech abnormalities, based on vocal in-
put. Progressive dysarthria results from an inability to fully con-
trol the articulatory-phonatory muscles and is one of the most
common symptoms in HD patients [2].

Using audio to detect symptoms of Huntington’s Disease
is a newly emerging field. Before detailing prior work, it is
important to understand the labels used in HD data. Patients
with genetic confirmation of Huntington’s Disease can be di-
vided into two groups: a) premanifest (Pre) group, which in-
cludes patients who are not yet exhibiting signs and symptoms
of HD, and b) manifest (MF), which includes patients who are
exhibiting these signs. HD studies also often include a healthy

control group (CT) for comparisons. These three groups allow
for different contrasts when approaching this problem as a clas-
sification task.

Perez et al. [3] attempted to discriminate the CT from the
HD group on a dataset of people reading passages and extracted
pause, filler, and goodness of pronunciation features. Using a
k-nearest neighbor algorithm, they achieved a classification ac-
curacy of 0.87. Rusz et al. [4] adopted the same dataset, but
used reading passages and monologues. They extracted features
related to vowel articulation, pitch, speech rate, and pauses and
trained a Support Vector Machine (SVM) classifier on all com-
binations of features in pairs.

In a later study, Rusz et al. [5] classified CT vs. Pre on
a dataset of sustained vowel sounds, extracting features that
identify vocal breaks, frequency perturbations, as well as
MFCCs and delta-MFCCs. They trained an SVM classifier
and reported a sensitivity of 0.91 and a specificity of 0.79. A
3-class classification between CT, Pre, and MF groups was
performed by Riad et al. [6], where the authors also used
a dataset of sustained vowels. They used the same features
as [5], along with features that capture the modulation of
the pitch amplitude, and trained a Logistic Regression model
achieving a classification accuracy of 0.56. Finally, Romana et
al. [7] tackled the problem of discriminating the Pre and MF
groups, which is closely related to the classification task in
this paper. Their dataset consisted of sustained vowel sounds
and a passage reading. They developed a feature set to capture
distortions in the vowels and trained a logistic regression model
achieving an accuracy of 0.80.

Our contribution addresses three fundamental shortcomings
identified in prior work:

1. We compare various machine learning models and features to
classify HD patients as either manifest or premanifest.

2. We compare and contrast the performance of various mod-
els based on the type of vocal training data, specifically free
speech, passage reading, and the Stroop test [8].

3. We build a model based on the clinical dysarthria scale to as-
sess the relative efficacy of identifying early speech changes.

2. Dataset
The data collection was performed at Beth Israel Deaconess
Medical Center in Boston and the speech audio was recorded in
the approved research locations within the institution. 76 sub-
jects were collected in total, including 44 patients with Hunt-
ington’s disease at various stages of the disease and 32 healthy
persons in the control group (CT). The HD and CT groups were
balanced w. r. t. sex, age, and education. All HD patients were
assessed by a neurologist using the 124-point Unified Hunt-
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ington’s Disease Rating Scale - Total Motor Score (UHDRS-
TMS) [9, 10]. The mean was 15.20 and the standard deviation
was 15.55. A subject was categorized as manifest if UHDRS-
TMS > 8, otherwise as premanifest. Using the very low cut-
off score, we categorized the patients at the early manifestation
stage as manifest. Dysarthria represented one item in UHDRS-
TMS ranging between 0 (no dysarthria) and 4 (mute). HD pa-
tients in this cohort had scores between 0 and 2, where a score
of 0 was defined to be healthy, and the rest as having dysarthria.
The number of subjects per category is shown in Table 1.

Category No. of Subjects
Control 32
Huntington’s Premanifest 21
Disease Manifest w/o Dysarthria 8

Manifest w/ Dysarthria 15
Table 1: Data distribution over categories

We developed a mobile application that prompted multi-
ple questions and the audio recordings were captured using a
tablet under the supervision of a clinician. To analyze the voice
characteristics in various types of speech, we designed three
different kinds of questions including the Stroop Color-Word
Test (SCWT) [11], reading passages, and spontaneous speech.
The SCWT is a cognitive control test composed of three tasks:
1) word reading asking to read the name of the color printed
in black ink, 2) color naming asking to name different color
patches, and 3) color-word where the participant was required
to answer the color that the word was printed in. For example, if
the word “RED” was printed in “BLUE”, the person had to say
“BLUE” while ignoring the word “RED”. For the reading test
we asked participants to read a caterpillar passage [12] known
to be phonetically balanced. For free speech, three questions are
asked: ”How are you?”, ”How to make a peanut butter and jelly
sandwich?”, and a picture description (cookie theft). Table 2
shows the audio durations per question type.

Prompts [Mean±Std] [Min, Max]
Stroop: Word-Reading 47.8 ± 1.8 [44.2, 54.5]
Stroop: Color-Naming 48.2 ± 2.2 [45.0, 60.9]
Stroop: Color-Word 48.4 ± 1.7 [45.1, 53.7]
Read 74.5 ± 18.7 [1.4, 133.0]
How-Are-You 24.7 ± 21.7 [2.3, 166.4]
Narrative (How-to) 31.4 ± 11.3 [1.8, 98.9]
Picture Description 41.9 ± 13.2 [13.9, 103.0]

Table 2: Audio duration [seconds]

3. Methods
3.1. Features

We generated various fixed-length representations of each au-
dio sample as an input representation for the subsequent classi-
fication and prediction steps, resulting in three different feature
categories: acoustic-prosodic features, language features, and
speaker embedding features. For each question prompt a fea-
ture vector was extracted and the feature vectors belonging to a
speaker were concatenated and fed into the classification model.

Acoustic-prosodic features are commonly adopted in au-
dio classification tasks and have proven effective in detecting

several types of diseases [13, 14]. Acoustic features repre-
sent statistics of frame-based signal descriptors including Mel-
Frequency Cepstral Coefficients (MFCC) [15], Perceptual Lin-
ear Prediction (PLP) coefficients [16], and pitch-related infor-
mation [17]. Prosodic features instead capture supra-segmental
aspects of the modulations of human articulatory organs dur-
ing speech, such as normalized fundamental frequency (f0) and
energy patterns [13]. We generated both acoustic and prosodic
features using the Kaldi toolkit [18].

Language features on the other side capture lexical in-
formation. Such features were previously shown to be cor-
related to the detection of Huntington’s disease [3, 19]. We
generated the language features from the transcription result
of an automatic speech recognition (ASR) system. We com-
puted syllable duration, filler (”ah”, ”hmm”, ”eh”, ”uh”, etc.)
ratio, spoken words ratio, word repetition ratio, pause dura-
tion, etc. Additionally, we derived question-specific features
for read speech and spontaneous free speech. For read speech,
we expanded upon features used in previous work [3] by in-
cluding errors such as insertions, deletions, and substitutions to
evaluate how each word is articulated. For spontaneous free
speech including How-Are-You, How-to, and picture descrip-
tion, semantic features are also added such as lexical complex-
ity (n-gram probability based on a language model generated
using the Librispeech dataset [20]), word usage (SMOG relia-
bility) score [21], word ambiguity, and familiarity score based
on linguistic research [22]. The feature vector dimensions differ
across question types and range from 20 to 53.

Speaker embedding features include i-vectors [23] and x-
vectors [24]. They were originally proposed for robust speaker
recognition [25]. I-vectors are based on factor analysis using
Gaussian Mixture Models and x-vectors are built using deep
neural networks. Given the success of x-vectors as an audio rep-
resentation for depression analysis [26, 27], we explored them
as a feature to detect Huntington’s disease.

3.2. Machine Learning Models

Using the various features described in Section 3.1, we built and
compared three different model architectures: Random Forests
(RF), Support Vector Machine (SVM), and Logistic Regression
(LR). In order to compare our results to prior work on predict-
ing Huntington’s disease from audio samples [5, 7], we trained
SVMs with a radial basis function (RBF) kernel and LRs with
L2 penalty as baseline references. We additionally investigated
RF classifier models since they had been reported to outperform
other model types, in particular logistic regression, on a number
of (typically small datasets) in the research area of bioinformat-
ics [28]. The Random Forest classifier was constructed using
the Gini impurity and the maximum number of features was de-
fined as the square root of the feature dimensions.

4. Experiments and Results
We investigated multiple tasks: Huntington’s disease vs. con-
trol group, manifest vs. premanifest, and dysarthria vs. no-
dysarthria. The three classification models (cf. Section 3.2)
were trained using the five sets of features (cf. Section 3.1). We
performed the 10-fold cross-validation where no speaker was
duplicated between folds and the label distribution in each fold
reflected the overall data distribution.

Our evaluation metrics included sensitivity (Sen) and speci-
ficity (Spe) in addition to accuracy (Acc). Sensitivity is defined
as the positive class recall and specificity as the negative class
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recall. We also reported the unweighted accuracy (UA), i. e. the
average recall, as long as the Area Under the Curve (AUC).

4.1. Manifest vs. Premanifest Classification

We examined the 15 feature-model combinations on the task of
classifying premanifest and manifest patients. The results are
shown in Table 3.

Models Features Acc UA Sen Spe AUC

RF

Acoustic 0.86 0.86 0.91 0.81 0.92
Prosodic 0.75 0.75 0.74 0.76 0.83
Language 0.95 0.95 0.96 0.95 0.97
i-vector 0.73 0.72 0.83 0.62 0.77
x-vector 0.75 0.74 0.87 0.62 0.84

LR

Acoustic 0.68 0.68 0.69 0.66 0.84
Prosodic 0.59 0.59 0.60 0.57 0.67
Language 0.75 0.75 0.65 0.86 0.85
i-vector 0.72 0.72 0.82 0.62 0.79
x-vector 0.84 0.84 0.91 0.76 0.87

SVM

Acoustic 0.52 0.51 0.83 0.19 0.51
Prosodic 0.47 0.46 0.78 0.14 0.46
Language 0.77 0.77 0.78 0.76 0.77
i-vector 0.68 0.67 0.87 0.48 0.67
x-vector 0.68 0.67 0.78 0.57 0.67

Table 3: Classification results for manifest vs. premanifest

The language features consistently performed well in ev-
ery architecture and the Random Forest (RF) classifier outper-
formed the other models across all metrics. The combination
of language features and RF classifier resulted in an absolute
UA margin of 9% over the 2nd-best model. To verify that the
RF model’s high performance was not just by chance, e. g. by
fortunate initialization of parameters, 5 different versions of the
RF model were trained and evaluated; the standard deviation for
UA is less than 0.01.

4.2. Dysarthria Classification

In this experiment, we trained classifiers to differentiate be-
tween dysarthria and non-dysarthria in the Huntington’s disease
group. Dysarthria is often observed in many HD patients [19]
and in our dataset the dysarthria class is a complete subset of
the manifest class (cf. Table 1). Following the approach with
the manifest classification task in Section 4.1, all feature-model
combinations were trained and evaluated. Again the Random
Forest Classifier performed best; hence, for brevity, Table 4 only
reports the results of the RF model.

Features Acc UA Sen Spe AUC
Acoustic 0.70 0.58 0.20 0.96 0.67
Prosodic 0.64 0.53 0.20 0.86 0.67
Language 0.82 0.78 0.67 0.89 0.86
i-vector 0.66 0.53 0.13 0.93 0.71
x-vector 0.68 0.60 0.33 0.86 0.76
Table 4: RF classification results for Dysarthria

Similar to the results of discriminating between manifest
and premanifest (cf. Section 4.1), the Random Forest classi-
fier using the language features outperformed all other model-
feature combinations. Interestingly, the dysarthria model’s per-
formance was lower than the manifest model, even though

dysarthria is defined as a speech difficulty and is a complete
subset of the manifest HD group in our data. A deeper analysis
will be presented in Section 5.3.

4.3. Huntington’s Disease Classification

There are many sub-problems in Huntington’s disease research
as seen from prior work (cf. Section 1). To efficiently compare
the Random Forest classifier using language features with prior
research, we trained our model to perform 4 different classifi-
cation tasks. First, we examined the discrimination between all
HD patients (Pre + MF) and the (healthy) control group (CT).
Second, we performed the 3-class classification manifest (MF)
vs. premanifest (Pre) vs. control group (CT). As shown in Ta-
ble 5, the performance metrics were lower than the previous
results for MF vs. Pre. This result is not surprising because
the premanifest patients do not exhibit any evident symptoms,
and actually many premanifest patients’ UHDRS-TMS was 0
in our dataset. This intuition is confirmed in the third classifica-
tion experiment between Pre vs. CT. Therefore, discriminating
the combination of the premanifest and control group vs. the
manifest group leads to results on par with the results from Sec-
tion 4.1. A detailed analysis supporting these findings is pre-
sented in Section 5.1.

Classification Acc UA Sen Spe AUC
(Pre + MF) vs. CT 0.73 0.72 0.76 0.69 0.72
MF vs. Pre vs. CT 0.60 0.59 N/A N/A N/A
Pre vs. CT 0.65 0.62 0.43 0.81 0.63
MF vs. (Pre + CT) 0.96 0.95 0.91 0.98 0.97
Table 5: RF performance for different classification tasks

5. Discussion
5.1. Feature Correlation Analysis

As the results presented in Section 4 showed that the language
features (when used with RF models) outperform the other fea-
ture types on several tasks, we conducted a statistical feature
analysis among control (CT), premanifest HD (Pre), and man-
ifest HD (MF) groups. From a total of 241 language features
across all question prompts, the three features speech rate, si-
lence ratio, and average pause length were chosen and ana-
lyzed for the passage reading, the “How are you?” question
(HowAY), and the Stroop-Word Reading (SWR) test. Not only
do these feature analyses help to understand the dataset and
tasks at hand. But these specific features are also comparable
to the ones reported in [19] so it supports the comparison of the
two datasets. First, we performed the median version of Lev-
ene’s test across the three groups where the null hypothesis is
that each group’s value distributions have equal variance. Af-
ter confirming that most features had an equal variance in the
distributions among the groups, a one-way ANOVA test was
performed between the three combinations of the groups: con-
trol vs. premanifest, control vs. manifest, and premanifest vs.
manifest. The mean and standard deviation of the feature values
are reported in Table 6.

The ANOVA test showed that all three features were signif-
icantly different in distributions between control vs. manifest
and premanifest vs. manifest except for the HowAY question.
To investigate more on this, we performed question group anal-
ysis in Section 5.2.
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Features Group Mean (Standard Deviation) Levene ANOVA p-value
Control Premanifest HD Manifest HD CT vs Pre CT vs MF Pre vs MF

speech rate SWR 2.16 (0.38) 1.98 (0.38) 1.38 (0.34) 0.834 0.120 <0.001 <0.001
%silence SWR 0.95 (0.05) 0.92 (0.08) 0.84 (0.09) 0.009 0.185 <0.001 0.005

Pause SWR 26.76 (26.84) 48.00 (73.52) 129.55 (90.77) <0.001 0.150 <0.001 0.003
speech rate Read 3.14 (0.37) 3.01 (0.40) 2.17 (0.45) 0.788 0.238 <0.001 <0.001
%silence Read 0.93 (0.04) 0.93 (0.03) 0.86 (0.12) 0.015 0.822 0.003 0.017

Pause Read 22.01 (14.98) 23.67 (12.36) 92.41 (169.0) 0.072 0.681 0.025 0.076
speech rate HowAY 2.64 (0.69) 2.36 (0.68) 2.09 (0.39) 0.044 0.149 0.001 0.130
%silence HowAY 0.90 (0.13) 0.86 (0.10) 0.83 (0.14) 0.426 0.239 0.054 0.376

Pause HowAY 65.54 (110.18) 106.98 (85.04) 112.29 (101.90) 0.630 0.157 0.122 0.856
Table 6: Statistical analysis of language features

None of the features reported showed a significant differ-
ence between the control and premanifest group, which explains
the result of Section 4.3. Huntington’s disease is a genetic dis-
order that manifests usually between the age of 30 and 50, so
it is important to detect the manifest state in a timely manner
because the current treatments for Huntington’s disease focus
on symptom control and occupational therapy. Although our
model does not detect Huntington’s disease at the premanifest
state consistently, our highly accurate manifest classification
model should prove to be very useful in the field.

5.2. Question Group Analysis

Table 6 shows that each feature had different p values based on
the question. So, we built classification models between mani-
fest and premanifest using features extracted per question group
separately. The goal of this experiment was to compare each
question group and find stronger question types if they exist.

Models Features Acc UA Sen Spe AUC

RF
Stroop 0.88 0.88 0.91 0.86 0.95
read 0.93 0.93 0.96 0.90 0.98
free 0.73 0.73 0.74 0.71 0.77

LR
Stroop 0.91 0.91 0.91 0.90 0.91
read 0.88 0.89 0.83 0.95 0.92
free 0.84 0.84 0.87 0.81 0.90

SVM
Stroop 0.87 0.86 0.92 0.81 0.86
read 0.71 0.72 0.58 0.86 0.72
free 0.64 0.63 0.65 0.62 0.64

Table 7: Results of per-question-group models using the lan-
guage features

The classification performance for each question group us-
ing the language features is shown in Table 7. No model out-
performed the best RF model using all question groups, yet the
models using Stroop test or read speech performed well com-
pared to the model using free speech. This result suggests that
the type of speech data captured has an impact on the ability
to classify between manifest and premanifest. Reading and the
Stroop test are structured because there is a script or an expected
answer, whereas free speech questions such as “How are you”
can be answered in a wide variety of ways and are potentially
impacted by other factors such as personality, culture, and na-
tive language. We conjecture that our dataset is not big enough
to capture the variations in free speech patterns. which could
potentially also be affected by the interview environment. This
is supported by the fact that the durations of free speech answers
varied the most with respect to their averages (cf. Table 2).

5.3. Dysarthria Model Error Analysis

Our dataset offers the unique opportunity to analyze dysarthria
alongside Huntington’s disease. To our knowledge, this is the
first study comparing dysarthria and Huntington’s disease per-
formance on the same dataset. In contrast to the intuition that
the voice analysis model is good at detecting dysarthria, it actu-
ally turned out that the dysarthria model’s prediction accuracy
was lower than the accuracy of the manifest classification model
(cf. Table 3 and Table 4).

We performed an error analysis on the false positive predic-
tion of the dysarthria Random Forest model. All false positives,
i. e. speakers misclassified as having dysarthria, were in the
manifest group without dysarthria. This phenomenon was ob-
served in all 5 versions of RF training experiments both using
language features and acoustic features. As shown in Table 1,
dysarthria is a subset of manifest and our model was confused
about the positive manifest label with a positive dysarthria label
consistently. We conjecture that in those cases there is some ev-
idence of dysarthria contained in the features that, however, is
not reflected in the dysarthria labels, against which the models
are evaluated. This situation could arise in the early stages of
dysarthria and was also observed in an earlier study [19].

6. Conclusion
We developed several different classification models to distin-
guish between manifest vs. premanifest for Huntington’s dis-
ease. We extracted various features from three types of ques-
tions: the Stroop test, reading, and spontaneous free speech.
The Random Forest classification model using language fea-
tures outperformed other models with an unweighted accuracy
(UA) of 0.95 and AUC of 0.97. Then, we explored using
dysarthria labels since it is a vocal disorder and a symptom of
manifest HD. The best dysarthria classification model reported
a UA of 0.78, where we observed that the model was mistaken
between manifest and dysarthria, but never between premani-
fest and dysarthria. Finally, to standardize Huntington’s disease
research, we perform a statistical analysis of features for the dif-
ferent questions asked and show that there is statistical signifi-
cance between premanifest and manifest groups. Then models
are trained per question group and show that the Stroop test and
read speech are better for detecting manifest in Huntington’s
disease compared to free speech. Encouraged by our success in
accurately classifying manifest Huntington’s disease, we plan to
extend our research to other diseases that correlate with motor
symptoms such as Parkinson’s disease.
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