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Abstract

The accuracy and reliability of many speech processing systems
may deteriorate under noisy conditions. This paper discusses
robust audio anti-spoofing countermeasure for audio in noisy
environments. Firstly, we attempt to use a pre-trained speech
enhancement model as the front-end module and build a cas-
caded system. However, the independent denoising process of
enhancement models may distort the synthesis artifacts or anti-
spoofing related information included in utterances, leading to
performance degradation. Therefore, we proposes a new frame-
work for robust audio anti-spoofing by joint training the inte-
grated speech enhancement front-end and anti-spoofing back-
end. The final results demonstrate that the joint training frame-
work is more effective than the cascaded framework. Addition-
ally, we propose a cross-joint training scheme, which allows the
single-model performance to exceed the result of score level fu-
sion, making the joint framework more effective and efficient.
Index Terms: Anti-spoofing, Speaker verification, Spoofing
Countermeasure, Speech enhancement

1. Introduction

With the development of deep learning, the performance of both
text-to-speech (TTS) and speech conversion (VC) systems has
improved significantly in recent years [1]. As a result, human
users and Automatic Speaker Verification(ASV) systems are
potentially facing increasingly severe threats and security con-
cerns [2]. The synthesized audio anti-spoofing countermeasure
system is typically used to detect synthesized spoofing audios,
thus enhancing the robustness of ASV systems[3]. The perfor-
mance of synthesized audio anti-spoofing systems has improved
dramatically due to the development of deep learning[4] and
numerous new corpora [5, 6, 7]. Most existing works explore
the generalization capability of spoof detection systems to un-
seen synthesizers [8]. In contrast, only little work focuses on
the performance of robust audio anti-spoofing systems in noisy
scenarios [9, 7, 10]. Considering that realistic applications are
usually complex, it motivates us to explore the performance of
the audio anti-spoofing system in noisy scenarios.

Background noise usually degrades speech intelligibility
and quality, leading to reduced performance of the downstream
speech processing tasks. Speech Enhancement (SE) aims to
convert the noisy audio into a clean version improving the
quality and intelligibility of the original speech. The perfor-
mance of many speech-to-text tasks, such as automatic speech
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recognition (ASR) [11, 12, 13] and keyword spotting [14], can
be improved with independent pretrained speech enhancement
front-end modules. However, some research works show that
the pre-trained SE module may distort the speaker information
for speaker verification in noisy scenarios [15, 16]. Therefore,
Gao et al. [17] use a UNet-DenseNet joint training scheme
to address this problem. Kim et al. [18] propose a struc-
ture named Extended U-Net for joint training. For noisy au-
dio anti-spoofing countermeasure, Yu et al. [19] uses traditional
speech enhancement methods to act on the downstream audio
anti-spoofing backends, and Hanilci et al. [20] explores the per-
formance variation of a audio anti-spoofing system in various
types of noise scenarios, but all of these works still uses tradi-
tional Gaussian Mixture Model (GMM)-based solutions. Ma et
al. [10] publish a new dataset containing synthesized audio with
noise and use LFCC-LCNN [6] and RawNet2 [21] as the anti-
spoofing baseline. However, the authors only use noisy data
to train the ordinary anti-spoofing network and do not perform
model-level optimization considering noisy scenarios.

In this paper, we first discuss the impact of the speech
enhancement front-end module on the performance of audio
anti-spoofing back-end systems. Moreover, we propose a new
framework for robust audio anti-spoofing with joint training of
speech enhancement front-end and audio anti-spoofing back-
end models. We use U-Net [22] as the speech enhancement
front-end, which has been widely used for speech enhancement
task [23]. For the back-end audio anti-spoofing countermeasure
module, we explore light convolutional neural network (LCNN)
[24] and ResNet [25] architectures. For noisy data, we use three
different types of noise in the MUSAN dataset [26] to gener-
ate noisy audios under different Signal-to-Noise Ratio (SNR)
levels. Our experimental results show that the proposed joint
training framework is robust against noisy data, especially for
scenarios with low SNR.

In addition, we propose a Cross-Joint Training (CJT)
scheme, which aims to combine the different back-end mod-
els’ information in the integrated model. The CJT scheme is a
two-stage training strategy. In the first stage, we train a joint
front-end and back-end framework. In the second stage, we
keep the front-end model, replace the back-end model with a
different structure, and continue training the new joint frame-
work as the final framework. The final results show that this
strategy can effectively improve the performance for robust au-
dio anti-spoofing scenarios, even exceeding the results of score
level fusion of different models. We additionally use a Voice
Activate Detection (VAD) model to trim the ASVSpoof2019
LA data and only use speech segments for training and testing
to prove the effectiveness of our system.
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Figure 1: The illustration of the joint training framework.
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2. Methods

2.1. Speech Enhancement Front-end

The U-Net architecture is widely used for speech processing,
such as speech enhancement. It is a symmetrical encoder-
decoder architecture. The encoder is composed of convolutional
layers, and the decoder is composed of transposed convolutional
layers, making the output features the same size as its input. The
fundamental idea of using U-Net as a speech enhancement mod-
ule is to predict a clean spectrogram of noisy speech. For a pair
of clean and noisy spectrograms as C'(k, ) and N (k, 1), where
k denotes index into the frequency bins, and [ is for the time
frame, U-Net takes N (k, 1) as the input and predicts N (k, 1),
the recovered spectrogram. The loss Ly, s, is designed to mini-
mize the mean squared error (MSE) between the clean spectro-
gram and the recovered spectrogram.

Lmse = ZZ HN(kvl) - C(kvl)HQ
k l

2.2. Audio Anti-spoofing Back-end

The goal of audio anti-spoofing countermeasure is to identify
synthetic audio. We use two different network structures as the
audio anti-spoofing back-ends, LCNN [24] and ResNet18 [25].
Both are commonly used for audio anti-spoofing in ASVSpoof
2021 challenge [6]. The Max-Feature-Map (MFM) operation
based on the Max-Out activation function is the essential com-
ponent in the LCNN. The Bi-LSTM layer is used for pooling to
aggregate utterance-level embeddings in LCNN. For ResNet18,
which is a light-weight version of ResNet, we use Attentive
Statistic Pooling (ASP) [14] blocks to aggregate utterance-level
embeddings. We use the binary cross-entropy loss as follows:

Lee = Z —(yilog(pi) + (1 — y:) log(1 — ps))

1

where y; € {0, 1} is class label and p; is the probability output
of the classifier.

2.3. Method 1: Fixed pre-trained SE front-end

If the speech enhancement (SE) and the audio anti-spoofing
modules were optimized independently, both the training and
testing data of the anti-spoofing model should have gone
through the speech enhancement front-end. Therefore, we pre-
train a U-Net speech enhancement model and freeze it. The
enhanced spectrogram of the fixed pre-trained U-net model is
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used as the input for training and testing the downstream audio
anti-spoofing module. This method can be seen as a cascaded
anti-spoofing system using a frozen speech enhancement front-
end.

2.4. Method 2: Joint training framework

Although using the enhanced spectrogram of the SE module
to train downstream audio anti-spoofing network as mentioned
in 2.3 may be feasible, the SE module is only designed to re-
cover the clean spectrogram. It does not consider information
related to anti-spoofing detection, such as artifacts originated
from speech synthesis systems. It may affect or destroy some
spoofing clues in the noisy audio data. In addition, channel
and environment differences in the training data of the indepen-
dently optimized modules may also cause domain mismatch. To
address these issues, we propose a new framework for robust
audio anti-spoofing using jointly training the integrated speech
enhancement front-end and audio anti-spoofing back-end. As
shown in Figure 1, the SE module (U-Net) and the audio anti-
spoofing module are combined and trained together, and the
output spectrogram of U-Net is directly used as the input to the
downstream network. We use MSE loss and CE loss together
as the combined loss function during the joint training.
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Figure 2: The illustration of the cross-joint training strategy.

2.5. Method 3: Cross-Joint Training

As shown in Figure 2, considering the cascade relationship be-
tween the front-end and back-end modules in method 2, we at-
tempt to jointly train the U-Net front-end with different back-
end modules one by one, which is the proposed Cross-Joint



Training (CJT) approach. For example, in the first stage, we
train the U-Net-LCNN joint framework until the model con-
verges. In the second stage, we retrain the U-Net-ResNet model
using the parameters of the U-Net module from the U-Net-
LCNN model in the first stage. No module is frozen during
the whole experiment.

3. Experiments Setup
3.1. Data preparation

Two datasets are used in our experiments, the FAD dataset [10]
and the ASVSpoof 2019 LA dataset [5]. For the FAD dataset,
we use the training, development and test set as officially pro-
vided in [10]. Both clean and noisy data in the training set
are used for training. For the ASVSpoof 2019 LA dataset, the
MUSAN corpus [26] is employed to generate noisy audio. We
divide the MUSAN corpus into two non-overlapping parts for
training and testing. The MUSAN corpus contains three dif-
ferent types of noisy data. For the training and development
sets of the ASVSpoof 2019 LA dataset, the noisy audio is gen-
erated using the training part of the MUSAN corpus. For the
evaluation set of the ASVSpoof 2019 LA dataset, the noisy au-
dio is generated using the testing part of the MUSAN corpus.
Signal-to-Noise Ratios (SNR) are set to 0 dB, 5 dB, 10 dB, 15
dB, and 20 dB. All noisy audio is generated offline. The Equal
Error Rate (EER) is used as the primary metric in subsequent
evaluations.

3.2. Model configurations

For the U-Net model, the total number of blocks is set as 8,
with 4 blocks in the encoder and 4 blocks in the decoder. The
number of channels for each layer in the encoder is set as 16, 32,
64, and 128. Besides, the U-Net has one convolution layer and
one transposed convolution layer. A more detailed architecture
description can be found in Table 1.

For the LCNN and ResNet18 models, the embedding size
is set to 256. Squeeze-and-Excitation block [27] is also used in
the ResNet18 model, and the dimension of the bottleneck in the
Squeeze-and-Excitation block is set to 256.

3.3. Training configurations

For feature extraction, the logarithmical Mel-spectrogram is ex-
tracted by applying 64 Mel filters on the spectrogram computed
over Hamming windows of 25ms shifted by 10ms. For joint
training, the learning rate is set as le-3 during training. For
CJT, the learning rate is set as le-3 during stage 1 while le-
4 during stage 2. We adopt the Reduceonplateau learning rate
(LR) scheduler with 0.1 initial LR. All models are trained using
the Adam optimizer.

4. Results and discussion

This section presents our experimental results and analysis. We
firstly discuss whether a fixed pre-trained SE U-Net module
can help with downstream audio anti-spoofing. And then we
demonstrate and analyze the effectiveness and robustness of the
proposed joint training framework and the CJT strategy.

4.1. Does a separate pre-trained SE module work for down-
stream audio anti-spoofing in noisy conditions?

To verify the impact of the pre-trained speech enhancement
module on the downstream audio anti-spoofing task, we con-
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Table 1: The U-Net based speech enhancement network ar-
chitecture. C(kernel, stride, channel) denotes the 2D con-
volution layer while TC(kernel, stride, channel) denotes the
2D transposed convolution layer. SE denotes the Squeeze-and-
Excitation block here. [27] EBx denotes corresponding en-
coder block x. [-] denotes the basic block.

Layer name Layer Structure  Output size
Convl C(7,1,16) (16,32,T)
[C(3,1,16)]
Encoder Block 1 C(3,1,32)| x3 (16,32,T)
SE
[C(3,2,32)]
Encoder Block2 |C(3,1,32)| x4 (32.32.%)
SE
[C(3,2,64)]
Encoder Block 3 C(3,1,64)| x 6 (64,8,%)
SE
[C(3,1,128)
Encoder Block4 | C(3,1,128) | x 3 (128.8,1)
| SE
[Concatate EB4] T
Decoder Block 1 i C(3,1,32) | (64,8,1))
[Concatate EB3] T
Decoder Block 2 | TC(2,1,64) | (32,16,5)
[Concatate EB2
Decoder Block 3 | TC(2,1,128) ] (16,32,T)
[Concatate EB1]
Decoder Block 4 | C(1,1,256) ] (16,32,T)
Transpose Conv2 TC(2X1,2X1,1) (1,32,T)

ducted experiments as follows. Initially, we pre-trained a U-Net
speech enhancement model using both the noisy and clean ver-
sion of the training and development set of the ASVSpoof 2019
LA dataset. The pre-trained U-Net model was then frozen, and
the enhanced spectrogram was used as input for the downstream
LCNN module, which was optimized independently using only
CE loss. This downstream back-end was considered as a sepa-
rate training anti-spoofing module, named U-Net(fixed)+LCNN
in Table 3. We compared the performance of this cascaded
method with training the original audio anti-spoofing back-end
using all noisy and clean audio directly as input. The results can
be shown in rows 1-5 of Table 3.

The results showed that for the OdB SNR scenario,
even the AASIST [28], which performed well on the naive
ASVSpoof2019 LA dataset [5], exhibited severe performance
degradation. Although the pre-trained U-Net was involved in
the training process of the downstream LCNN module, no sig-
nificant improvement can be observed. Furthermore, using pre-
trained U-Net as the front-end of the U-Net(fixed)+ResNet18
model led to performance degradation, indicating that the inde-
pendently optimized method may not be suitable for the noisy
audio anti-spoofing task.

4.2. Results of the joint training framework

Table 2 shows the performance improvement of our proposed
joint training framework on the ASVSpoof 2019 LA noisy eval-
uation set under different SNR scenarios. As can be seen from
the table, the joint training model brings considerable improve-
ment in different SNR scenarios compared to training the anti-



Table 2: System performance of the joint training framework and the anti-spoofing only system on the ASVSpoof2019 LA noisy

evaluation set. The metric used is EER (%).

Model noise babble music
0dB 5dB 10dB  15dB 20dB  0dB 5dB 10dB  15dB 20dB  0dB 5dB 10dB 15dB 20dB
LCNN 1562 11.21 1059 11.00 645 17.73 13.00 1233 8.68 5.69 1508 13.00 10.02 7.59 6.56
U-Net-LCNN 9.52 8.59 7.09 6.52 4.13 9.30 6.28 8.56 6.10 391 1063 824 6.79 502 4438
ResNetl8 15.07 8.85 8.42 8.02 695 1747 941 9.46 8.63 6.81 16.52 1079  7.20 6.25 4.98
U-Net-ResNetl8  9.99 5.93 7.45 5.37 4.00 1069 8.02 739 316 3.89 1041 6.02 648 359 395

Table 3: System performance on the ASVSpoof2019 LA noisy
evaluation set. The metric used is EER(%).

1D Model noise-0dB  babble-0dB  music-0dB
1 LCNN 15.62 17.73 15.08
2 ResNet18 15.07 17.47 16.52
3 AASIST 15.04 15.34 14.07
4 U-Net(fixed) + LCNN 14.60 16.33 14.83
5 U-Net(fixed)+ResNet18 14.52 18.32 15.39
6 U-Net-LCNN 9.52 9.30 10.63
7 U-Net-ResNet18 9.99 10.69 10.41
8 U-Net-LCNN(CJT) 8.07 8.71 8.49
9 U-Net-ResNet18(CJT) 7.99 7.76 7.18
10 6+7(score fuse) 8.06 8.31 9.37

Table 4: System performance of the joint training framework
and the anti-spoofing only system on the FAD test set. The
method in Baseline[10] is LFCC-LCNN.

Model noisy clean
seen unseen  seen  unseen
Baseline[10] 6.88  29.67 1.26  26.56
AASIST 2.25 2594  0.882  26.32
LCNN 148 2972 0.6l 26.76
ResNet18 1.65  28.08 0.69 24.46
U-Net-LCNN 1.27  27.11 0.67 28.74
U-Net-ResNetl8 1.06 2576 045  25.46

spoofing only system using only all noisy and clean audio. Es-
pecially for low SNR scenarios, for noise audio with 0dB SNR,
the U-Net-LCNN can reduce the EER by 50% compared to the
LCNN. The Unet-ResNet18 model is relatively more stable for
music-type noise. The performance of ordinary anti-spoofing
models for babble-type noise is relatively poor compared with
the other two types of noise. This decline may be due to the
inclusion of bonafide audio in the babble noise data, making the
anti-spoofing task more difficult.

Table 4 presents the results on the FAD official test set.
Compared with the baseline and the AASIST system, our pro-
posed joint training model performs better on the noisy test set,
regardless of whether the scenario is seen or unseen. For the
clean test set, it can be observed that our joint framework may
suffer from slight performance degradation for the unseen data.
Given the models’ superior performance on the noisy test set,
we believe it is acceptable.

4.3. Results of the cross-joint training strategy

The effectiveness of our proposed CJT strategy can be demon-
strated in rows 6-10 of Table 3. For the U-Net-ResNet18(CJT)
model, we load the U-Net model from the U-Net-LCNN model
as stage 1. As can be seen from the final results, the model
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trained with the CJT strategy even outperformes the score level
fusion approach with babble and music noises. We specu-
late that this cross-training approach can introduce information
from differently structured models, thereby improving the per-
formance of the final model. The CJT strategy makes the final
model not only perform well but also more efficient during in-
ference since there is only one back-end model.

Table 5: System performance of the joint training framework
and anti-spoofing only system on the ASVSpoof2019 LA noisy
evaluation set after VAD.

Model noise-0dB  babble-0dB  music-0dB
LCNN 25.09 21.39 21.76
ResNetl8 21.35 20.20 23.22
U-Net-LCNN 24.16 19.05 20.53
U-Net-ResNet18 19.21 19.81 19.63

4.4. Results after Voice Activate Detection (VAD)

As mentioned in [29], there is controversy over the
ASVSpoof2019 dataset containing silent segments that can aid
in spoofing audio detection. Therefore, we further use a VAD
model to trim the ASVSpoof2019 LA data and only use speech
segments for training and testing. We use a conformer-based
VAD model as used in [30]. The final results are shown in
Table 5. It can be seen that compared to the results in Table
3, the performance of the audio anti-spoofing countermeasure
system does degrade significantly when only using the speech
segments. However, our proposed joint training model remains
effective under this condition.

5. Conclusion

This paper aims to build a robust anti-spoofing countermeasure
system for audio signals in noisy environments. To achieve
this, we initially attempted to utilize a pre-trained speech en-
hancement U-Net module as the front-end to build a cascaded
framework. The results show that this approach does not neces-
sarily improve performance and even degrade the performance
in certain conditions. Therefore, we propose a novel frame-
work for robust audio anti-spoofing by jointly training an inte-
grated speech enhancement front-end and anti-spoofing back-
end model. Experimental results demonstrate that the joint
training framework is more effective than both the anti-spoofing
only system and the separate training cascaded framework. In
addition, we also propose a cross-joint training method to fur-
ther enhance performance in low signal-to-noise ratio scenarios.
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