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Abstract
In this work we present an end-to-end pipeline for building a
speech corpus and text-to-speech synthesis system for a new
language without reference to any expert-defined linguistic re-
sources. We segment and align over 85 hours of Scottish
Gaelic recordings found online and select 2- and 8-hour sub-
sets with comprehensive coverage of speech sounds based on
self-supervised discrete acoustic unit sequences. We then com-
pare FastPitch models trained on these relatively small data sets
using character, acoustic unit and phone inputs. According to
native speaker listening test judgements, characters serve well
for Gaelic given its regular orthography, even in these limited
data scenarios. We release our corpus building recipe so that
others may easily apply our work to new languages.
Index Terms: Scottish Gaelic, speech synthesis, low-resource,
speech corpus creation, found data

1. Introduction
High-quality neural text-to-speech (TTS) synthesis systems
have only been developed for a small proportion of the world’s
∼7,000 languages. There are two major issues when building
a TTS system for a new language: 1) the availability of suit-
able speech recordings with matching text transcripts, and 2)
the knowledge required to process input text and represent the
target language symbolically. The first is a problem of access
to data resources, while the second represents the difficulty of
constructing linguistic resources for a new target language.

Data requirements for neural TTS have typically been put
at some tens of hours of studio-quality speech recordings paired
with text transcripts, although recent work has reevaluated these
assumptions by switching to non-autoregressive architectures
where the burden of learning text-speech alignments alongside
acoustic feature prediction is removed [1], or by using powerful
self-supervised speech representations to help train some parts
of the system on noisier audio data [2]. Much effort has also
been directed toward using ‘found’ data not originally intended
for TTS, especially audiobook recordings. Such data generally
requires pre-processing, for example segmenting long record-
ings into individual utterances [3], or filtering to find cleaner
subsets for model training [4].

Pronunciation lexicons are one of the key linguistic re-
sources representing a significant investment when building
TTS for a new language. Lexicon development requires lin-
guistic knowledge to define phone sets and transcription con-
ventions, and to provide a core set of hand-labelled examples
from which to learn a grapheme-to-phone (G2P) model to pre-
dict pronunciations for unseen words at synthesis time. Some
attempts have been made to avoid this particular dependency
by using characters directly as input to TTS systems [3, 5], al-

though the success of this approach may vary depending on how
consistent the orthography of the target language is.

Scottish Gaelic is spoken by around 57,000 people in Scot-
land [6], and is in an interesting position as a minority language
with considerable amounts of speech and text data available [7].
This stems from large collections of archival recordings docu-
menting the language, a long history of broadcast media and
more recent language revitalisation efforts compiling material
to aid learners. There is also an online dictionary providing
pronunciations for some 35,000 words [8]. These resources
have been used to develop several language technologies for
Gaelic, including automatic speech recognition (ASR) [7]. Pre-
vious efforts in TTS for Gaelic, however, have either been based
on carefully-constructed speech databases in a legacy diphone
synthesis context [9], or are proprietary systems (albeit freely
available for use in the Scottish public sector) [10].

In this work we develop a replicable and open-source recipe
for building a speech corpus and neural TTS system for Scot-
tish Gaelic, all based on publicly-available data.1 Our work is
similar in motivation and method to [3], applied in a more re-
cent TTS framework. We begin by segmenting and aligning
over 85 hours of short speech utterances and corresponding text
transcripts from long-form audio recordings found online, using
a purely character-based acoustic model. We then select utter-
ances up to 2 or 8 hours in total duration to achieve good cover-
age of speech sounds based on discrete acoustic unit sequences
extracted from a HuBERT model pre-trained on English [11].
Finally, we train FastPitch models [12] with these corpora, com-
paring the performance of character, acoustic unit and phone
inputs. With this, we hope to prove an end-to-end process for
building a TTS system in a new language with no dependence
on linguistic knowledge beyond paired text and speech data.

2. Building a speech corpus without
linguistic resources

Our speech data comes from the Litir do Luchd-ionnsachaidh
‘Letter to Learners’ series of Gaelic recordings aimed at inter-
mediate language learners. This series broadcasts on the Gaelic-
medium radio station BBC Radio nan Gàidheal, with recordings
also available on the LearnGaelic language-learning website.2

Our corpus is based on scraped audio and text transcripts
for Letters 1–1216. Each recording is around 5 minutes long,
so we start with just over 100 hours of unsegmented Gaelic
speech. All recordings come from a single speaker, Ruairidh
MacIlleathain. Most were recorded at 44.1 kHz and encoded

1https://github.com/dan-wells/kiss-aligner/
tree/main/egs/learngaelic_litir

2https://learngaelic.scot/litir/
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using Vorbis; for consistency and compatibility with later pro-
cessing by HuBERT, we reencode all files to 16 kHz, 16-bit
mono WAV PCM. The earlier recordings (until Letter 307) ap-
pear to have used a low-quality microphone and are not suitable
for TTS acoustic model training, but all subsequent recordings
seem of usable quality. Most recordings also include a short
preamble which is not included in the text transcript, and which
is sometimes spoken by a second speaker. To prepare for TTS
model training, we align and split these long audio files and
corresponding transcripts into shorter segments, following an
iterative procedure outlined in the following sections.

2.1. Initial segmentation and acoustic model training

We first split the long recordings on silences longer than 1.5 s,
to account for the relatively slow and punctuated speaking style
used in the Letters. We lightly normalise the long text tran-
scripts to encode accented characters consistently and remove
some variation in punctuation, then split them into individual
sentences. We then calculate the cumulative relative propor-
tions of the respective length of long audio (in seconds) and
transcript (in characters) covered by each segment and calculate
DTW alignments between the two sequences. We exclude the
first audio segment for any recordings which include a pream-
ble. There tend to be more text segments than audio segments
per Letter, so when processing the DTW alignments we con-
catenate any text segments aligned to the same audio segment.

We then train an initial Gaelic acoustic model by force-
aligning these estimated text-audio pairs. We specify a
character-based HMM-GMM alignment model in Kaldi [13],
where the ‘pronunciation’ of each word is given as its con-
stituent characters, avoiding any phone-mapping or language-
specific phone set as used in [7]. We expect this to be sufficient
for Gaelic given its regular orthography and that our subsequent
segmentation process should succeed given only accurate word-
level boundaries. We also include punctuation symbols at this
stage so that we can maintain them through the following steps.
We iteratively train mono- and tied character trigram acoustic
models, using a strict beam without retrying failed intermedi-
ate alignments, in an attempt to use only data from correctly-
estimated text-audio pairs when updating model parameters.

2.2. Full audio alignment and segmentation

Following the Kaldi recipe released by [14], we use our ini-
tial acoustic model and a language model trained on the full
text transcripts to decode 60 s chunks from the Letter record-
ings. These ASR outputs are aligned against the full reference
text using the Smith-Waterman algorithm [15], and the corre-
sponding reference text sections are retrieved based on decoded
hypothesis timestamps. This approach can ignore sections in
the audio not present in the text, such as the preambles in many
of the Letters. We restrict discovered segments to be between
5–20 s in duration, with a maximum internal silence length of
1.2 s. We run a final forced-alignment step to verify that the dis-
covered text and audio segments match. This process retrieved
and aligned 31,174 segments comprising 86.7 hours of speech.3

We maintain the original punctuation in our text transcripts,
since it could be useful for downstream TTS models, and be-
cause we found it helped to discover sentence-level boundaries
during segmentation. Overall, 47.5% of discovered text seg-

3We also tested our alignment pipeline starting from a random se-
lection of 2 or 8 hours of long recordings rather than the full 100 hours,
yielding 55 minutes and 5.5 hours of aligned segments, respectively.

Table 1: Data sets sampled from 86.7 hours of segmented utter-
ances, with triphone coverage relative to the full corpus.

Data set # Utts Avg. duration Triphone coverage

2h clean 475 15.1 s 12,376 30.2%
8h clean 2,207 13.0 s 22,995 56.1%
21h noisy 7,335 10.4 s 24,510 59.8%
Validation 380 10.0 s 7,412 18.1%
Test 418 9.7 s 7,112 12.4%

ments begin with a capital letter and end with clause-final punc-
tuation (.!?;:), and 16.4% contain more than one, likely captur-
ing multiple short sentences in a single discovered utterance.

2.3. Acoustically-driven data set selection

With the aim to train TTS models from limited data, we would
like to ensure adequate phonetic coverage in small speech cor-
pora. Similar to [4], we approach this data selection problem
using purely acoustically-derived features, rather than linguis-
tic features extracted from text using a language-specific fron-
tend, as in [16]. Specifically, we extract discrete acoustic unit
sequences from segmented utterances using HuBERT and then
select utterances using a greedy algorithm based on unit trigram
coverage, replicating [17] as applied to diphone sequences.

We use a HuBERT-BASE model pre-trained on English
(namely the 960-hour LibriSpeech train partition [11]) and ex-
tract framewise hidden representations from the sixth encoder
transformer layer, since intermediate layers have been found
to most closely represent phone-level information [11]. We
then discretise the continuous hidden representations using a
k-means model with 200 clusters learned over all frames ex-
tracted from our segmented Gaelic speech data, which we be-
lieve should offer enough capacity to capture all relevant pho-
netic contrasts. While the continuous feature extractor of Hu-
BERT is pre-trained only on English, experiments with similar
models have found them to transfer well to unseen languages
[18]. Previous work has also found that learning k-means dis-
cretisation models on top of HuBERT features is robust to the
amount of training data [11], and that these discrete acoustic
units correspond closely with phonetic events [19]. These find-
ings give us confidence that this data selection approach should
generalise reasonably well across languages, although the ten-
dency to discard pitch information when discretising HuBERT
features [20] suggests it may struggle with tonal languages.

Our final set of segmented utterances covers 793 clean Let-
ters recordings. We hold out 15 of these each to provide test
and validation utterances, and take the top-ranked utterances by
acoustic unit trigram coverage from the remainder. We also ex-
tract acoustic unit sequences from 21 hours of noisier record-
ings to supplement a text-to-unit model (see Section 3.3). Table
1 summarises the resulting data sets. Note that our greedy al-
gorithm prioritises longer utterances, giving higher average du-
rations for smaller corpora. We measured triphone coverage in
the selected data sets relative to phone sequences generated for
the full 86-hour segmented corpus using a Gaelic pronuncia-
tion lexicon and G2P model (see Section 3.2). For comparison,
we also selected 2h and 8h subsets maximising triphone cover-
age directly, achieving 37.3% and 68.2% respectively. Relative
to these reference sets, our corpora appear to retrieve around
80% of the potential triphone coverage in a given amount of
audio, but we might also consider them to reflect contextual
variation in speech more directly than corpora selected based
on abstracted or perhaps errorful ‘reference’ phone sequences.
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3. Model specification
We train 7 different FastPitch [12] acoustic models using either
2 or 8 hours of speech to predict mel-scaled spectrogram fea-
tures from character, phone or discrete acoustic unit sequences,
as described in the following sections. Following [21, 1], we
replace all convolutional layers with depthwise-separable con-
volutions, reducing overall parameter counts to match our low-
data setting. Character- and phone-input models are trained
with target durations from forced alignments, while for acous-
tic unit sequences we derive target durations by run-length en-
coding repeated consecutive units. We extract target pitch val-
ues using the probabilistic YIN algorithm [22]. Each model is
trained for 100,000 steps with a batch size of 16. We extract
mel-scaled spectrograms from training audio with a frame shift
of 320 samples to match the framerate of the HuBERT feature
extraction process (50 Hz for 16 kHz audio). We also train a
HiFi-GAN (V1) vocoder [23] with matching acoustic feature
configuration to generate audio from mel spectrograms. This
model is first trained for 270,000 steps (batch size 16) on the En-
glish VCTK corpus [24], and then fine-tuned on natural speech
from our 8h Gaelic corpus for a further 30,000 steps.

3.1. Character inputs

Gaelic uses the Latin alphabet, excluding the letters 〈jkqvwxyz〉,
with long vowels marked by a grave accent (e.g. short 〈a〉 vs.
long 〈à〉). Our texts also include some non-Gaelic words (most
frequently snippets of English), which we accept as part of us-
ing found data and do not attempt to filter out. We preserve
any punctuation which might be useful for predicting pauses or
utterance-level prosody, plus 〈’〉 and 〈-〉 which can occur as part
of Gaelic words (e.g. the frequently contracted definite article
an → a’). For our FastPitch inputs, we lowercase all characters
and mark those at word boundaries with distinct symbols.

3.2. Phone inputs

Am Faclair Beag provides an online Gaelic dictionary, with pro-
nunciations specified for around 35,000 entries [8]. As in [7],
we retrieve pronunciations for individual words from this lex-
icon where possible, and train a word-level 5-gram graphone
joint-sequence Sequitur G2P model [25] to handle any out-of-
vocabulary items. After removing duplicate pronunciations, we
train on 28,000 entries and evaluate on 2,565 held-out words.
This model achieves a phone error rate (PER) of 5.7% and word
error rate (WER) of 24.1%. We predict the quite closely pho-
netic Gaelic renderings from Am Faclair Beag directly, which
represent relatively fine distinctions such as broad vs. slender
consonants and vowel nasalisation explicitly. For our model,
71% of incorrect word pronunciations had only a single phone
wrong, and mostly within these categories. While these are
phonemic distinctions and therefore important to get right, they
are also often predictable from context, e.g. with slender conso-
nants appearing between front vowels, and so we might expect
our FastPitch model to repair some G2P errors of this kind.

We train a similar model for English on 110,000 words from
the Edinburgh-accent surface form of the Unisyn lexicon [26],
which we apply only to words containing non-Gaelic charac-
ters, since we have no other way to identify non-Gaelic words.
Again, we consider this an inevitable source of errors in found
data, but note that trying to address it explicitly is both more
complicated and less satisfying than a simple character-based
approach. As for character inputs, we mark phones at word
boundaries with distinct symbols and maintain punctuation.

3.3. Acoustic unit inputs

Our training scheme for discrete acoustic unit inputs is very
similar to [27], as we train on ground-truth deduplicated unit se-
quences extracted from training utterances. At synthesis time,
we need to predict unit sequences from text, for which we train
a separate text-to-unit (T2U) model similar to [28]. We use
an encoder-decoder architecture with two transformer layers
each (hidden size 256 throughout, 1024 in transformer feed-
forward layers), joined by a general attention module, all as
implemented in the OpenNMT-py toolkit [29]. We train sepa-
rate models on utterances from our 8h and 2h data sets, all for
50,000 steps with a batch size of 64.

We train our T2U models on whole utterances rather than
isolated words, with the potential benefit of modelling phono-
logical effects across word boundaries directly, without having
to devise explicit post-lexical rules as in more traditional G2P
frontends. However, this also means that both input and out-
put sequences can be quite long, up to around 300 text char-
acters and 600 deduplicated acoustic units for our data. This
makes learning attention alignments difficult, and training with
our 2h data set fails completely – the model produces plausi-
bly Gaelic-sounding output with no correspondence to the input
text. Training with 8h of data is generally sufficient, although
the model sometimes skips words or repeats phrases, especially
at the end of utterances which are sentence fragments without
final punctuation (an artefact of our segmentation process). In
these cases, we have effectively shifted some of the ‘babbling’-
type problems often observed in attention-based TTS [30] from
the acoustic model to the linguistic frontend. Adding 21 hours
of text-unit sequences extracted from noisier recordings, which
we wouldn’t otherwise use for acoustic model training, helps
for both 2h and 8h data sets, although it doesn’t completely re-
solve these attention issues. This approach is similar to [2],
although based on much less data: up to 28 hours total (similar
to per-language T2U training sets in [28]), compared to 3,000
hours. Using a stronger alignment module would likely resolve
this problem, for example the monotonic alignment search used
in [2] for their text2vec model. Apart from these attention is-
sues, we consider this approach to be similar to using character
inputs in terms of handling potentially messy found data.

4. Listening test design
Because of the minority status of Gaelic, it is difficult to recruit
speakers for subjective evaluation. As such, we designed a lis-
tening test based on best-worst scaling (BWS) annotation [31],
where we present participants with sets of stimuli synthesised
from the same text by 4 different systems and ask them to select
the most and least natural-sounding. Each comparison thereby
reveals 5 pairwise quality judgements, making it more efficient
for gathering responses than AB preference tests which only
present a single pair of utterances at a time. It has also been
found to yield more consistent results than Likert-type rating
scales [31], as commonly used in mean opinion score (MOS)
evaluations. Similar to AB tests, we expect the forced-choice
nature of this design to enable better discrimination of any sig-
nificant differences between systems than MOS tests [32].

We were able to recruit 6 Gaelic speakers for our listening
test: 3 native speakers and 3 language learners who described
themselves as ‘confident/intermediate’ speakers. Each partici-
pant sees 15 BWS questions, each presenting a different test ut-
terance and a different combination of 4 voices. Most test sets
contain only TTS voices, but some also include natural speech
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Figure 1: Subjective ranking of all voices across listener groups from forced-choice comparisons. Each point corresponds to Plackett-
Luce model worth parameters, with quasi standard errors where non-overlapping intervals represent statistically significant differences
between any pair of voices. For reference, we also show average MOS scores per voice, marked by crosses.

or copy synthesis samples; since we expect these always to be
ranked best where they appear, we include them in a smaller
proportion of test tuples in order to focus our data collection on
more uncertain judgements between synthetic speech samples.
We also include 15 MOS questions to help place the preference
rankings in more absolute terms.

We selected 44 sentences from held-out Letters for BWS
questions (35 TTS-only test tuples, 9 including natural speech
and/or copy synthesis) and an additional 90 for MOS questions
(10 each for 9 voices, including natural speech and copy syn-
thesis). We selected only full sentences ending in phrase-final
punctuation as more natural stimuli to present to participants.
This also helped to reduce the incidence of T2U errors for our
acoustic unit-input systems. Each BWS sentence was rated by
2 different participants over all listening tests, yielding 45–50
BWS ratings for each synthetic voice and 12 for natural speech
and copy synthesis. Each MOS sentence was rated once, giving
10 MOS ratings per voice. Participants took around 20 minutes
to complete the listening test, and were paid £5 for their time.

5. Results and discussion
We analyse our BWS preference results using a Plackett-Luce
rankings model as implemented in the PlackettLuce R
package [33]. This implementation accommodates partial sub-
set rankings and ties, matching our BWS setup where each
question presents only 4/9 systems, and we have no informa-
tion about the ranking of the two systems between best and
worst. The Plackett-Luce model estimates worth parameters
for the items of interest, representing the probability that a
given item would come first in a ranking of all items. Figure
1 plots each voice according to its log worth relative to natural
speech. Also shown are quasi standard errors [34] around this
value, where non-overlapping intervals represent significant dif-
ferences in worth between any pair of voices. We note very few
apparent significant differences in these results, which we at-
tribute to the low number of participants. Figure 1 also shows
average MOS scores for each system, which are generally con-
sistent with the BWS results, increasing confidence in the ap-
parent system rankings despite the low number of responses.

With 8h of training data, character inputs perform well for
both listener groups, and even appear to be slightly preferred
over the corresponding 8h phone-input system. We attribute
this to the relative transparency of Gaelic orthography, along
with possible errors in our G2P frontend. This suggests that
character-based TTS could be a good starting point for other
languages with regular writing systems, avoiding the effort to
compile lexical resources for a new language. As for training
corpus size, it seems that 8h is generally preferred over 2h, al-
though the difference may not be as much as expected, espe-

cially for character-based systems as judged by native speakers.
There is also less of a difference for unit-based systems com-
pared to phone or character inputs, with Unit 2+21h judged al-
most as good as Unit 8+21h across listener groups. This may
be because acoustic unit sequences are a close representation of
speech to begin with, so that predicting acoustic features from
them is more like a resynthesis task [20], which we could con-
sider a simpler problem than learning an implicit pronunciation
model from characters. This in turn suggests that acoustic units
could be a good choice for TTS in more limited data scenarios,
provided they are paired with a strong T2U model.

There is a notable difference between the 2h character-
and 8h unit-input systems when we compare different listener
groups, with native speakers and language learners apparently
making opposite judgements. On reviewing the samples (one
of the authors is a fluent Gaelic speaker), we conclude that the
unit-based system tends to have better overall audio quality,
while the character-based system tends to match the linguistic
aspects of the source text more accurately (perhaps benefitting
here from T2U errors). We would expect native listeners to be
more sensitive to these linguistic aspects, such as rare word pro-
nunciation, while learners might not pick up on them as readily.

6. Conclusion
In this paper, we presented a full pipeline for developing neu-
ral TTS system for Scottish Gaelic, based on publicly-available
data and without relying on any expertly-defined linguistic re-
sources. We created a corpus comprising over 85 hours of seg-
mented speech utterances and text transcripts using a character-
based acoustic model, then selected smaller data sets with good
phonetic coverage according to sequences of self-supervised
discrete acoustic units. Subjective listening tests with Gaelic
speakers showed that a character-based FastPitch system can
achieve good performance given a language with such a con-
sistent orthography, trained on as little as 8 or even 2 hours of
found speech data. We also found some indication that using
discrete acoustic units as input symbols may be beneficial for
TTS in low data scenarios, which we hope to investigate further
in future work. We release our corpus building and model code
so that others may easily apply our work to new languages.
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