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Abstract
The information on the spatial location of speakers can be

effectively used for multi-channel speaker separation. For ex-
ample, Location-Based Training (LBT) uses the order of az-
imuth angles and distances of speakers to solve the permu-
tation ambiguity problem. This location information can be
used to improve the separation performance further. This pa-
per proposes a multitask learning approach, Multitask Speaker
Separation and Direction-of-Arrival Estimation Training (MS-
DET), jointly optimizing speaker separation and Direction-of-
Arrival (DoA) estimation. In our evaluation using SMS-WSJ
dataset, it outperforms LBT by 0.13 points in SI-SDR and 0.35
points in ESTOI.
Index Terms: speaker separation, DoA estimation, multitask
learning

1. Introduction
Speaker separation is the task of separating individual speaker
voices from a mixture of multiple speakers’ voices. It has been
extensively studied for monaural and multi-channel speech pro-
cessing [1, 2, 3]. Monaural separation uses signals recorded by
a single microphone and relies solely on their spectral infor-
mation. Multi-channel separation utilizes signals captured by a
microphone array and leverages spatial cues of sources, lead-
ing to better separation performance [4, 5, 6, 7]. Deep learn-
ing based multi-channel speech separation has been extensively
studied [4, 5, 6, 8, 9, 10, 11, 12]. Early studies have applied
the successful monaural speaker separation methods to multi-
channel cases, where they have attempted to estimate masks
to separate speakers in spectral (time and frequency) domains
[4, 5, 6, 8, 9, 10]. Recent studies directly estimate speech’s
real and imaginary frequency components from input mixture,
called complex spectral mapping [11, 12, 13, 14], which further
enhances separation performance.

In speaker-independent speech separation, assigning each
of the separator’s outputs to its corresponding speaker is nec-
essary for the model training. For this purpose, in monaural
speaker separation, deep clustering [1] attempts to learn time-
frequency embeddings with a speaker permutation invariant ob-
jective function and estimate an ideal binary mask for each
speaker by K-means clustering on the embeddings. Another
technique is permutation invariant training (PIT) [3], widely
used for monaural speech separation and adopted for multi-
channel cases. It computes separation losses between all pos-
sible pairs of outputs and ground truths and then chooses the
pair with the minimum loss. Since it has a factorial complexity,
it becomes costly as the number of speakers increases.

Recently, Location-Based Training (LBT) [13] is proposed
to solve this permutation ambiguity problem. It assigns each

output to its corresponding speaker by using the order of its
location: its azimuths and distance. It decreased the computa-
tional costs from PIT and achieved better results. While this
method is significantly effective, it utilizes spatial location in-
formation only to solve the permutation ambiguity problem. We
believe this information can be further utilized to improve the
separation performance.

Another way to use spatial location information is a multi-
task learning approach. It has been proven to be effective in the
training of multiple related tasks (e.g., facial landmark detec-
tion and head pose estimation [15]). Recently, multitask learn-
ing of speech separation and Direction-of-Arrival (DoA) esti-
mation has been proposed for extracting a single speaker from a
mixture of multiple speakers [16]. The same extraction process
must be repeated for each speaker, which is computationally ex-
pensive and may be redundant to separate all the speakers from
each other.

In this paper, we propose Multitask Speaker Separation and
Direction-of-Arrival Estimation Training (MSDET), a multi-
task learning method of speaker separation and DoA estima-
tion. It solves the permutation ambiguity problem and further
improves the separation performance using the DoA informa-
tion. Different from [16], this method can simultaneously ex-
tract each speaker in a mixture. It utilizes a multitask loss, a
weighted sum of separation loss and DoA estimation loss in the
training phase. In our evaluation using SMS-WSJ dataset, it im-
proved the separation performance over LBT by 0.13 points in
Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) and 0.35
points in the extended short-time objective intelligibility (ES-
TOI).

2. Previous Studies
2.1. Deep-learning-based Multi-channel Speaker Separa-
tion using Complex Spectral Mapping

Complex spectral mapping estimates speech’s real and imagi-
nary frequency components from an input mixture [11, 12, 13,
14]. They are both essential [17] since they are both affected by
environmental interferences.

Taherian et al. [13] employ Dense-UNet architecture pro-
posed in [18] for complex spectral mapping. Dense-UNet con-
sists of 9 densely connected convolutional blocks. The first 5
blocks (encoder) are interleaved with downsampling layers to
map the input into higher dimension features. The other four
blocks (decoder) are interleaved with upsampling layers so the
model outputs have the same resolution as the input. This model
employs skip connections that link the blocks in the encoder and
the decoder at the same level. Each dense block consists of 5
convolutional layers. The middle layer of each dense block acts
as a frequency mapping layer that models each frequency band.
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Recently, Wang et al. [12] proposed TF-GridNet architec-
ture for complex spectral mapping. TF-GridNet consists of sev-
eral blocks. Each block contains two layers of BLSTM fol-
lowed by a self-attention module. The first BLSTM is utilized
to model the full band of frequencies in each frame. The second
BLSTM models the temporal information of each frequency
band. The self-attention module learns the long context tem-
poral relationships between frames in an utterance. The output
of a block is fed to the next block, and the output of the fi-
nal block is fed to a deconvolution layer to estimate the real
and imaginary frequency components of the separated speech
signals. Full band modeling and full utterance temporal model-
ing in each frequency band lead to the strong separation perfor-
mance of TF-GridNet.

2.2. Deep-learning-based Multi-channel Speaker Separa-
tion using DoA information

Some other studies have used location information obtained by
microphone arrays in addition to the spectral cues. For example,
J. Wechsler et al. [7] perform speaker separation on pre-defined
regions, assuming each region contains one speaker. An early
study [19] uses DoA ground truth as an input for the separa-
tion model to improve the separation performance. This study
assumes that DoAs are available in inference, but usually, they
aren’t easy to obtain. C. Han et al. [20] employ a DoA estimator
model as a front end for speech separator. They first estimate
the DoAs of all speakers and use them as additional input for the
speech separation model. Its downside is that the speech sepa-
ration performance depends on the DoA estimator performance.
A previous study on unsupervised source separation [21] intro-
duces spatial loss, which uses speakers’ DoA estimated using a
DoA estimator to constrain the demixing matrix estimation.

2.3. Location Based Training (LBT)

Assigning the outputs of the speaker separation model to the
correct ground truths is crucial in training DNN-based speaker
separators. The training will fail to converge if it is not assigned
correctly. This problem is called permutation ambiguity.

For multi-channel speaker separation, a method called LBT
[13, 22] leverages the DoA and speaker-microphone distance to
solve this problem. It simply assigns each speaker to each of the
outputs using the order of the ground truth DoA and distance in
the training phase. While this method successfully reduces the
computational cost of PIT [3], it utilizes the location informa-
tion only to solve the permutation invariant problem. We be-
lieve this information can be more exhaustively used to improve
the separation performance further.

2.4. Multitask Learning

Multitask learning [23] is a technique to optimize a model on
multiple related tasks simultaneously. It enables learning a
shared representation through information introduced from di-
verse tasks, thereby enhancing the performance of each task.
Multitask learning is effective because training multiple related
tasks concurrently allows each task to gain advantages from the
training signals present in the other tasks. It has been widely
applied in many fields of study, such as natural language pro-
cessing [24], computer vision [15], speech processing [25].

Sun et al. [16] applied multitask learning to speech separa-
tion and source localization for a single target speaker. While
yielding improvement in separation performance, this method
cannot be directly utilized to separate multiple speakers. It

needs a speaker recognizer to identify the target speaker. It also
has to perform N times inference for N speakers.

3. Multitask Speaker Separation and
Direction-of-Arrival Estimation Training

(MSDET)
3.1. Architecture

We apply multitask learning by pairing each speaker with its
corresponding DoA in the output layers and form a unit to esti-
mate both the spectrum and DoA for each source. We focus on
estimating DoA, assuming different speakers’ DoAs cannot be
the same. Our method can be applied to various speaker separa-
tion methods. We implemented our multitask learning method
with two different methods in our evaluation. One is Dense-
UNet, which is used in [13], and the other is TF-GridNet [12].

Fig 1 illustrates our system when the number of speakers
is two. To further improve the separation performance, differ-
ent from [13] and [12], this method has a unit that includes a
deconvolution layer and a DoA estimator for each source. The
deconvolution layer outputs the speech spectrum and features
for DoA estimation. The DoA estimation layer consists of a
convolutional layer with a ReLU activation function followed
by a linear layer. Each DoA estimator is trained by using a
classification task. The linear layer size is the number of DoA
classes determined by (360/r), where r is the DoA resolution.
In each class, a softmax function calculates the score of DoA
output from the linear layer. The DoA class with the highest
score is chosen.

3.2. Multitask Loss

We define a multitask loss for the multitask training, a weighted
average of the speech separation loss and DoA estimation loss.
We use L1 loss between the ground truth and the generated sig-
nals in the frequency domain for the separation loss, as defined
in [13]. The DoA estimation loss is the cross-entropy loss be-
tween the output of the DoA estimator and the ground truth
DoA. The DoA ground truth is a soft target probability distribu-
tion defined in [26].

Let Lsep and LDoA be separation and DoA estimation losses,
and wDoA be the weight of DoA estimation loss. The multitask
loss can be expressed as follows:

LMultitask = (1− wDoA)Lsep + wDoALDoA. (1)

3.3. Training procedure

We train this model from scratch. First, we assign the speech
output of the first unit to one of the target speakers with the
smallest DoA difference in degrees. Then, excluding this pair
of the unit and the target speaker, We similarly assign the second
unit to its target speaker. We repeat this process until each unit
is aligned with its target speaker.

It is worth noting that the training process can also be
started by training with only DoA estimation loss and then con-
tinued with the multitask loss. The training may need extra
epochs. In this work, we conduct a straightforward approach for
training which applies the multitask loss from the beginning.
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Figure 1: Architecture of the proposed method based on Dense-UNet. DS and US blocks are downsampling and upsampling layers,
respectively.

4. Experiments
4.1. Dataset

We use SMS-WSJ [27], a simulated dataset with reverberation
for multi-channel source separation derived from the WSJ cor-
pus. The dataset contains two-speaker speech mixtures. It sim-
ulates a circular microphone array with six microphones. Its
radius is 10 cm. The room impulse responses (RIRs) are simu-
lated by using the reverberation time (RT60) ranging from [0.2,
0.5] s and the various room dimensions. The distance range be-
tween the speech sources and the array is [1,2] m. This dataset
also includes white noise, added to the mixture with the signal-
to-noise ratio sampled from the range [20, 30] dB. The dataset
consists of 33561 samples for training, 928 samples for valida-
tion, and 1332 samples for evaluation. The sampling rate is 8
kHz.

4.2. Settings

We follow [13] for the Dense-UNet model implementation. We
set the convolutional kernel size to 76. We set the DoA resolu-
tion to r = 1, thus the DoA estimation layer size is 360. We
extract short-time Fourier-Tranform (STFT) features as model
inputs from speech mixture. The analysis window is Hanning
window, with a length of 32 ms and a hop length of 8 ms. We
train all models with the same number of epochs for fair com-
parisons. The maximum number of epochs is 100. The learning
rate is 0.0001, and the optimizer is Adam. We divide each mix-
ture into 4-second chunks for training. We also use TF-GridNet
implemented on the ESPNet toolkit [28] and follow [12] for the
model and training settings. We set the learning rate to 0.001
and the number of TF-GridNet blocks to 4.

For multitask training, we assigned the weight of 0.05 and
0.01 to the DoA estimation (wDoA) loss for Dense-UNet and
TF-GridNet, respectively. According to our preliminary experi-
ments, the DoA estimator requires fewer epochs than the speech
separator to achieve convergence. Thus, we assign a smaller
weight to the DoA estimation loss.

We use the Scale-Invariant Signal-to-Distortion Ratio (SI-
SDR) [29] and the extended short-time objective intelligibil-
ity (ESTOI) [30] to evaluate speech separation performance.
Higher SI-SDR and ESTOI are better. We also evaluate the DoA
estimation performance by measuring the mean absolute error
(MAE) of degrees. Lower MAE means better DoA estimation.

Table 1: Speech separation performance on Dense-UNet

System SI-SDR
(dB)

ESTOI
(%)

Dense-UNet + PIT [13] 11.25 88.03
Dense-UNet + LBT (DoA) [13] 12.56 90.12
Dense-UNet + LBT (DoA) (ours) 13.12 89.56
Dense-UNet + LBT (DoA+distance)
[13] 13.22 90.96

Dense-UNet + Multitask (Proposed) 13.25 89.91

Table 2: Speech separation performance on TF-GridNet

System SI-SDR
(dB)

ESTOI
(%)

TF-GridNet + PIT [12] 19.90 96.60
TF-GridNet + LBT (DoA) 21.48 97.20
TF-GridNet + Multitask (Proposed) 21.57 97.20

4.3. Results and Discussion

4.3.1. Speech Separation Results on Dense-UNet

Tab. 1 shows the result. We implemented LBT [13] and ob-
tained the SI-SDR of 13.12, 0.56 points higher than the result
reported in [13], and the ESTOI of 89.56%, 0.56 points lower
than ESTOI of 89.56% in [13]. Our proposed method, MSDET,
achieved an SI-SDR of 13.25 and an ESTOI of 89.91. It is better
than LBT by 0.13 points in SI-SDR and 0.35 points in ESTOI,
which confirms its effectiveness.

We present the speech separation performance in different
DoA differences between speakers in Tab. 3. In this evalua-
tion, we first calculate the differences of DoAs between the two
speakers using their DoA labels. Then, we categorize them into
five classes according to their values. Finally, we calculate the
average SI-SDR for each class. MSDET outperforms the sepa-
ration performance of LBT (Dense-UNet + LBT (DoA)) in all
classes. The separation performance is enhanced significantly
when the DoA differences are less than 5 degrees, achieving
an SI-SDR improvement of 2.25 points. Thus, our proposed
method, MSDET, effectively separates speakers in general and
those with small DoA differences.
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Table 3: Speech separation performance (SI-SDR) in various DoA differences (d) between speakers on Dense-UNet

System SI-SDR (dB)
d < 5◦ 5◦ ≤ d < 10◦ 10◦ ≤ d < 20◦ 20◦ ≤ d < 40◦ d ≥ 40◦

Dense-UNet + LBT (DoA) (ours) 6.33 12.13 12.31 13.00 13.46
Dense-UNet + Multitask (Proposed) 8.58 12.19 12.37 13.01 13.53

Table 4: Speech separation performance (SI-SDR) in various DoA differences (d) between speakers on TF-GridNet

System SI-SDR (dB)
d < 5◦ 5◦ ≤ d < 10◦ 10◦ ≤ d < 20◦ 20◦ ≤ d < 40◦ d ≥ 40◦

TF-GridNet + LBT (DoA) 18.39 19.90 20.21 21.08 21.77
TF-GridNet + Multitask (Proposed) 18.58 19.75 20.13 21.10 21.88

Table 5: DoA estimation results on Dense-UNet

System MAE (degrees)
Dense-UNet (DoA estimation loss) 0.70
Dense-UNet + Multitask (Proposed) 0.40

Table 6: DoA estimation results on TF-GridNet

System MAE (degrees)
TF-GridNet (DoA estimation loss) 0.64
TF-GridNet + Multitask (Proposed) 0.49

4.3.2. Speech Separation Results (TF-GridNet)

We present the experiment results in Tab. 2. On TF-GridNet ar-
chitecture, we implemented LBT (TF-GridNet + LBT (DoA))
and obtained an SI-SDR of 21.48 and an ESTOI of 97.20.
Our proposed method further enhances the performance of TF-
GridNet + LBT (DoA) by achieving an SI-SDR of 21.57, which
is higher by 0.09 points. The ESTOIs are the same.

In different DoA differences between speakers (Tab. 4),
MSDET exhibits the separation performance improvement over
LBT (TF-GridNet + LBT (DoA)) in most cases. Consistent with
the experiment result on Dense-UNet (Tab. 3), it achieves the
highest SI-SDR improvement (by 0.19 points) when the DoA
differences are less than 5 degrees. The separation performance
drops when the DoA differences are between 5 and 20 degrees.
However, there are more separation improvements in other DoA
differences, leading to a better separation performance.

4.3.3. DoA Estimation Results

We also examine the effectiveness of multitask learning for es-
timating DoA. Tab. 5 and Tab. 6 show the results. For this
purpose, we trained Dense-UNet and TF-GridNet using only
DoA estimation loss (Dense-UNet (DoA estimation loss) and
TF-GridNet (DoA estimation loss)). We obtained the MAE of
0.70 degrees and 0.64 degrees, respectively. On Dense-UNet,
our proposed multitask learning method, MSDET, improves
DoA estimation by achieving the MAE of 0.40 degrees, which
is 0.30 points lower than Dense-UNet (DoA estimation loss).
On TF-GridNet, it also enhances DoA estimation by achieving
the MAE of 0.49 degrees, which is 0.15 points lower than TF-
GridNet (DoA estimation loss).

5. Conclusion
We have proposed MSDET, a multitask learning approach for
speech separation and DoA estimation. Our method fully lever-
ages the DoA information to improve the separation perfor-
mance. It outperforms LBT by 0.13 points in SI-SDR and by
0.35 points in ESTOI. Future works include improving separa-
tion performance in real recording conditions and handling the
increase in the number of speakers.
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