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Abstract
The recent advances in the technologies pose a threat to the
Automatic Speaker Verification (ASV) systems using different
spoofing attacks, such as voice conversion (VC), speech synthe-
sis (SS), and replay. To enhance the security of the ASV system,
the need raised for the development of efficient anti-spoofing al-
gorithms to detect spoof speech signals from natural signal. In
this paper, we exploit Teager energy-based features for spoof
speech detection (SSD) task. The Teager energy profiles com-
puted for natural, VC, SS, and replay signals show the changes
around the Glottal Closure Instants (GCIs). In particular, for
SS signal, the bumps are very smooth compared to the natu-
ral signal. These variations around GCI of Teager energy pro-
files helps to discriminate the spoof signal from natural coun-
terparts. The experiments are performed on ASVspoof 2015
and BTAS 2016 challenge databases. The Teager energy-based
feature set, i.e., Teager Energy Cepstral Coefficients (TECC)
performs well for S1-S9 spoofing algorithms obtaining average
EER of 0.161 % (however, not for S10, where EER is 58.14
%) whereas state-of-the-art features, namely, Cochlear Filter
Cepstral Coefficients-Instantaneous Frequency (CFCC-IF), and
Constant-Q Cepstral Coefficients (CQCC) gave an EER of 0.39
% and 0.163 %, respectively. It is interesting to note that signif-
icant negative result by proposed feature set to S10 vs. natural
speech confirms capability of TECC to represent characteris-
tics of airflow pattern during natural speech production. Fur-
thermore, the experiments performed on BTAS 2016 challenge
dataset, gave 2.25 % EER on development set. On evaluation
set, TECC feature set gave Half Total Error Rate (HTER) of 3.7
% which is the metric provided by the challenge organizers and
thus, overcoming the baseline by a noticeable difference of 3.16
%.

keywords: Spoof, Replay, Teager Energy Operator, Teager
Energy Profiles.

1. Introduction
Automatic Speaker Verification (ASV) or voice biometrics sys-
tem gives the access to the authentic user by using the voice
of the claimed speaker [1]. It reduces the risk that relates to
the authentication which requires the passwords or sharing of
sensitive data. However, ASV systems are vulnerable to var-
ious kinds of spoofing attacks, namely, speech synthesis (SS)
[2], voice conversion (VC) [3], replay [4], impersonation [5],
and twins [6]. The ASV systems can be secured by developing
independent Spoof Speech Detection (SSD) system [7, 8, 9].
Due to the recent advances in technology, synthetic, and con-
verted voices have excellent quality (including naturalness), and
resembles close to human speech. These machine-generated
speech samples generally use the techniques that concentrate on
mapping the spectral characteristics. These synthetic, and voice

converted speeches can be deliberately used to deceive the ASV
systems [10].

The task of the first ASVspoof 2015 spoofing and counter-
measures challenge was to design an independent SSD coun-
termeasure that discriminates the spoof speech from the natural
speech [7]. In ASVspoof 2015 challenge, various countermea-
sures were proposed, such as Constant-Q Cepstral Coefficients
(CQCC) [11], Linear Frequency Cepstral Coefficients (LFCC)
[12], and Cochlear Filter Cepstral Coefficients-Instantaneous
Frequency (CFCC-IF) [13]. Other countermeasures include rel-
ative phase shift and short-time Fourier transform phase-based
features [14, 15, 16, 17]. Neural network-based approaches
were also used, such as Convolutional Neural Networks (CNN),
and Recurrent Neural Network (RNN) along with front-end fea-
tures, namely, Teager Energy Operator (TEO) Critical Band Au-
tocorrelation Envelope (TEO-CB-Auto-Env), Perceptual Min-
imum Variance Distortion less Response (PMVDR), and raw
spectrograms [18]. The frame-level and sequence-level features
were extracted using Deep Neural Network (DNN) and RNN in
[19]. Bottleneck features extracted from the DNN hidden lay-
ers were also used with GMM classifier in [20]. We proposed to
use Convolutional Restricted Boltzmann Machine (ConvRBM)
for auditory filterbank learning that performed better than the
traditionally handcrafted filterbank structure used for SSD task.

Compared to the first anti-spoofing challenge, i.e.,
ASVspoof 2015 [7], which focuses on the synthetic and con-
verted speech attacks (termed as ‘Logical Access (LA)’ attacks),
the new dataset was released (BTAS 2016), and the competition
hubs on replay attacks (the first dataset focusing on replay at-
tacks) [22, 23, 24]. The BTAS 2016 competition used the pub-
licly available AVspoof database [25] which provides various
presentation attacks that are commonly referred to as replay at-
tacks. They used SS and VC as presentation attack wherein nat-
ural speech signals are replayed with intermediate devices, such
as high quality speakers, laptop speakers, and mobile phones.

Several countermeasures were approached by teams partic-
ipated in BTAS 2016 challenge. Some of these countermea-
sures used Mel Frequency Cepstral Coefficients (MFCC) [26]
fused with Inverse Mel Frequency Cepstral Coefficients (IM-
FCC) [27] using GMM [28, 29] as classifier, normalized percep-
tual linear prediction features [30] with Deep Neural Network
(DNN), and Bi-directional Long Short Term Memory (BLSTM)
as classifier, etc. The final evaluation performance is computed
using Half Total Error Rate (HTER) which is the metric pro-
vided by the challenge organizers, ensuring fair comparison
among all the participants [31].

In our recent study, we used Teager Energy Cepstral Co-
efficients (TECC) feature set [21] for classification of natural
vs. replay speech. We observed that the Teager energy profiles
are different for natural and replay speech signals. In [21], we
linked the concept of reverberation along with Teager energy
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Figure 1: Block diagram of TECC feature extraction. A: Gabor filterbank, B: Narrowband filtered signals, and C: Teager energy profiles
of each subband filtered signals. After [21].

profile to detect replay signal. These Teager energy profiles are
useful to detect and classify the differences between natural and
spoof speech signals. Hence, this paper is an extension of our
earlier work exploring TECC feature set for SSD task. In this
paper, we exploit Teager Energy-based feature set (i.e., Teager
Energy Cepstral Coefficients (TECC)) for SSD task. In partic-
ular, we analyzed the Teager energy profiles of SS, VC, and
replay speech signal. Furthermore, we compared the spectral
energy densities obtained from the Teager energy vs. traditional
spectrogram, and observed that Teager energy-based spectral
patterns is capable to discriminate more compared to the tradi-
tional spectrogram between spoof, and natural speech signals.

2. Analysis of Teager Energy Profiles
An algorithm derived by Teager uses a nonlinear energy track-
ing operator [32]. For a monocomponent discrete-time signal,
x[n], Teager Energy Operator (TEO), Ψd{·}, is defined as [32]:

En = Ψd{x[n]} = x2[n]− x[n− 1]x[n+ 1], (1)

where En gives the running estimate of signal’s energy. Con-
sidering the speech signal, the TEO cannot be applied directly
on the speech signal as it is the summation of multicomponent
signals. Hence, the speech signal is bandpass filtered to obtain
N number of narrowband filtered signal, and then the TEO is
applied on the ith narrowband filtered signal, i.e., Ψd{xi[n]}.

The block diagram of Teager Energy Cepstral Coefficients
(TECC) feature set is shown in Fig. 1. Originally, the TECC
feature set was computed by first filtering the speech signal
through a dense non-constant-Q Gammatone filterbank for ro-
bust speech recognition task [33], [34]. Here, the input speech
signal is first given to the filterbank to obtain N=40 number
of subband filtered signals [35], [36]. We have used linearly-
spaced Gabor filterbank to have almost equal bandwidth to
cover the entire frequency range [37, 38, 39]. Furthermore,
these subband filtered signals are given to the TEO block to
compute the TEO profile of each subband filtered signals. These
TEO profiles are passed through the frame blocking, and aver-
aging using a short window length of 20 ms with a shift of 10
ms followed by logarithm operation to compress the data. The
Discrete Cosine Transform (DCT) is then applied for energy
compaction, and retained first few DCT coefficients to obtain
TECC feature set, followed by their ∆ and ∆∆ feature vector
to obtain higher-dimensional static plus dynamic feature vector.

3. Analysis of Spoof Speech Signals
We observed the Power Spectral Density (PSD) of natural
(blue color), VC (pink color), and SS (red color) signal (from

ASVspoof 2015 database) in Fig. 2.

Figure 2: Power Spectral Density (PSD) for natural, and VC
(left) and for natural and SS (right).

The PSD shows the stability of energy as a function of fre-
quency, and energy (variations) are strong or they are weak at
each frequency [40]. From Fig. 2(a), we can see very less dif-
ference between natural, and VC PSD plots they approximately
overlap on each other, and have very less difference at higher
frequency regions. On the other hand, the PSD obtained for
natural and SS (as shown in Fig. 2(b)) shows very large differ-
ence almost for entire frequency regions.

Furthermore, the Teager energy profiles of the speech seg-
ment for natural (Panel I), VC (Panel II), and SS (Panel III) is
analyzed as shown in Fig. 3. It is observed that the Teager
energy traces obtained for a segment of natural speech signal
have more energy, and more bumps are observed correspond-
ing to the Glottal Closure Instant (GCI). Similar observation is
found for segment of VC signal. However, the bumps around
the GCI locations are very less compared to the Teager energy
traces of natural signal. On the other hand, for the segment of
SS signal, it can be observed that there are smooth bumps with
very less fluctuations (indicating lesser energy modulations due
to absence of natural speech production activities) in the instan-
taneous Teager energy traces compared to both natural, and VC
bumps. This observation (highlighted with black box and ar-
rows) is the key difference, and it helps to detect the VC and
SS spoof signals from natural speech. In addition, we observed
the difference in terms of spectral energies of Teager energy ob-
tained from the output of the Gabor filterbank (as shown in Fig.
4). The spectral energy obtained from Teager energy for the nat-
ural speech preserves the formants and harmonics as shown in
Fig. 4(a). Similar observation for VC signal is found with very
less difference in the Teager energy (highlighted by the ovals)
as shown in Fig. 4(b). The spectral energies obtained from Tea-
ger energy for SS signals shows the distorted and blurred energy
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Figure 3: (a) Speech segment of natural (Panel I), VC (Panel II), and SS (Panel III) along with their corresponding Teager energy
profiles in (b). Highlighted regions and arrows indicate change in Teager energy bumps (within two consecutive GCIs) for all the cases,
in particular, for Panel III, the bumps in TEO profile are very smooth.

compared to the natural spectral Teager energy as shown in Fig.
4(c). We can see that there is loss in the energy and harmonics
in the higher frequency regions (highlighted with box) in Fig.
4(c).

Figure 4: Comparison of Teager energy features for (a) natural,
(b) VC, and (c) SS speech signal. Highlighted regions shows
the difference between the natural vs. VC and SS.

Fig. 5 shows the (a) time-domain speech signal, spectral en-
ergies obtained from (b) Short-Time Fourier Transform (STFT),
and (c) Teager energy-based method for all the speech signals
(from BTAS 2016 competition dataset). The Panel I is for natu-
ral speech, and corresponding replay signals are shown in Panel
II: Played back with Laptop, and Panel III: Played back with
Laptop with high quality speaker, Panel IV and Panel V are cor-
responding synthesized, and voice converted speech signals that

are played back with laptop and high quality speaker, respec-
tively. For all the conditions in Fig. 5, it can be observed that the
spectral energy density obtained from the Teager energy-based
approach has high energy across entire frequency regions (be-
cause of linearly-spaced Gabor filterbank) as compared to the
spectral energy density obtained from the traditional spectro-
gram. For natural speech signal, the formant frequencies have
dark band color showing high energy portions of the speech sig-
nal. The shape of the dark bands shows the change from one
sound unit to other w.r.t vocal tract shape. When we compare
the energies of natural and replay speech signal, the replayed
speech obtained with the high quality speaker device (Panel III)
has similar pattern of energy and formant frequency band along
with similar time-domain signal pattern. Whereas replay speech
with normal quality device (Panel II) has distortions in the en-
ergies. For playback speech of machine-generated speech (i.e.,
Panel IV and Panel V), it can be observed that the spectral cues
are not captured with traditional spectrogram Fig. 5(b), which
is captured with the Teager energy approach and hence, helps to
detect the natural vs. spoof speech signals.

The Teager energy profiles for a speech segment of natural
(Panel I), replay laptop (Panel II), replay with HQ laptop (Panel
III), SS with HQ laptop (Panel IV), and VC with HQ laptop
(Panel V) are shown in Fig. 6. It can be observed that the Teager
energy profiles obtained from various speech signals shows dif-
ferent energy profiles. However, Panel III shows similar pattern
of Teager energy traces with natural speech segment, because
replay signal is recorded, and replayed with HQ laptop device
and hence, it is very similar to the natural counterpart and diffi-
cult to detect. It can also be observed from Table 4, the HTER
for replay is better than the replay with HQ laptop. For Teager
energy profiles of SS and VC, we can clearly observe the dif-
ferences between the natural and replay speech signals. This is
also strongly observed from our experimental results showing
the lower HTER for SS and VC using HQ laptop as reported
Table 4.
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Figure 5: (a) Time-domain speech signal, spectral energy densities using (b) STFT spectrogram, and (c) Teager energy. Panel I: Natural,
replay signals played back with Panel II: Laptop, and Panel III: Laptop HQ speaker, Panel IV: Speech Synthesis physical access HQ
speaker, Panel V: Voice conversion physical access HQ speaker. Highlighted regions indicates the discriminative regions between the
traditional spectrum and Teager energies.

.

Figure 6: (a) Time-domain speech signal, and (b) Teager energy profiles. Panel I: Natural, replay signals played back with Panel II:
Laptop, and Panel III: Laptop HQ speaker, Panel IV: Speech synthesis physical access HQ speaker, Panel V: Voice conversion physical
access HQ speaker.

4. Experimental Setup
We used Gaussian Mixture Model (GMM) as classifier for mod-
eling the classes corresponding to natural and spoofed speech
utterances. Final scores are represented in terms of Log-
Likelihood Ratio (LLR). The decision of the test speech being
natural or spoofed is based on the scores of LLR:

LLR = log
P (X|H0)

P (X|H1)
, (2)

where P (X|H0), and P (X|H1) are the likelihood scores of
natural and spoofed speech trials with hypothesis H0 and H1,
respectively. The score-level fusion is given by:

LLKfused = αLLKfeature1 + (1− α)LLKfeature2, (3)

where LLKfeature1 is a log-likelihood score of MFCC, and
LLKfeature2 is for TECC feature set. The fusion parameter
(α) lies between 0 < α < 1 to decide the weight of the scores.

The performance evaluation metrics for BTAS 2016
database are considered according to the protocol used in the
BTAS 2016 speaker anti-spoofing challenge. The results on the
development data are reported in terms of EER and on the test
data in terms of Half Total Error Rate (HTER). The evaluation
of the replay attack systems was done based on the false rejec-
tion rate (FRR) and false acceptance rate (FAR), that in turn
depends upon a threshold θ. We use the development set to
determine threshold θdev . The evaluation performance of the
system is then computed as the HTER:

θdev = arg min
θ

FARdev(θ) + FRRdev(θ)

2
, (4)

HTEReval(θ) =
FAReval(θdev) + FRReval(θdev)

2
. (5)
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5. Experimental Results
5.1. ASVspoof 2015 Database

The ASVspoof 2015 challenge database that was created for
the ASV spoofing and countermeasure challenge, and it com-
prises of natural and spoof speech data [41]. Brief details of
database are given in [7], [41]. The TECC feature set was ex-
tracted using 40 linearly-spaced Gabor filterbank with fmin=10
Hz, and fmax=8000 Hz. For each subband filtered signals, we
obtain 40-dimensional (D) static features and further appended
with their delta and double-delta coefficients resulting in 120-
D feature vector to build the SSD system with 128 number of
Gaussian mixtures in GMM classifier. We compared our re-
sults with other state-of-the-art features sets, such as Mel Fre-
quency Cepstral Coefficients (MFCC) [42], Constant Q Cep-
stral Coefficients (CQCC) [11, 43], and Cochlear Filter Cepstral
Coefficients-Instantaneous Frequency (CFCC-IF) [13].

5.1.1. Results on Development Set

The results obtained in % Equal Error Rate (EER) of TECC fea-
ture set on development and evaluation sets are shown in Table
1. From the experimental results, it can be observed that on de-
velopment set, the proposed feature set has much less % EER
of 0.38 % compared to CFCC-IF and MFCC. However, the best
performing feature set, i.e., CQCC gave lower % EER of 0.038
%. We further used score-level fusion of MFCC and TECC
feature sets to obtain possible complementary information, and
further reduce the % EER on both development and evaluation
set. However, we could not obtain the reduced % EER.

Table 1: Comparison of results in % EER
Feature Set Development Evaluation
MFCC [42] 6.14 9.15

TECC 0.38 5.95
CFCC-IF [13] 2.29 1.211

CQCC [11] 0.0381 0.255
TECC+MFCC 0.38 6.41

Figure 7: Individual DET curves of TECC and MFCC feature
set on development dataset.

The performance is also shown in Fig. 7 by the Detection
Error Trade-off (DET) curve on development set for MFCC and
TECC feature sets. It can be observed from the DET curve

that the operating points obtained from the score of MFCC have
high miss probabilities and false alarm, whereas TECC feature
set has a significantly lower false alarm and miss probabilities
in the DET curve.

5.1.2. Results on Evaluation Set

On evaluation set, the dataset is divided into two groups,
namely, known (S1-S5) and unknown attacks (S6-S10). The
unknown attacks were included during the challenge, which are
not used in the training and development datasets. These un-
known attacks are challenging to detect, in particular, the S10
attack which is developed with Unit Selection Synthesis (USS)-
based approach. The detailed % EER of MFCC, TECC, CFCC-
IF, and CQCC on both known and unknown attacks are reported
in Table 2. It can be observed that for spoofing attacks (S1 to
S9), for most of the cases, TECC feature set gave lower % EER
compared to other state-of-the-art feature sets. For known at-
tacks, the average % EER of TECC is 0.20 % and the average
% EER for unknown attacks (S6-S9) is 0.161 % which is lower
compared to other feature sets. The comparison in % EER from
S1 to S9 spoofing algorithms are shown in Fig. 8. We can ob-
serve that the CFCC-IF feature set has higher % EER (green
dotted line) compared to the CQCC and TECC feature set. For
individual spoofing attacks of S7, S8, and S9, it can be observed
that the % EER is equal to 0 % which is best performing sys-
tem than the CQCC feature set. However, the TECC feature set
fails to detect the S10 (USS) spoof speech signals resulting in
higher % EER of 58.14 % that increases % EER for entire SSD
task. This may be due to the fact that USS-based spoof contains
concatenation of natural speech sound units results in similar
bumps in TEO profile w.r.t nonlinearity in speech production
and thus, creating a larger confusion during SS vs. natural SSD
task.

Figure 8: Comparison of S1-S9 spoofing algorithms in % EER
of CFCC-IF (green line), CQCC (purple line), and TECC fea-
ture set (red line).

5.2. BTAS 2016 Database

The detailed statistics of the database is given in [44]. The orga-
nizers of the BTAS 2016 challenge provided a baseline system
that uses the simple spectrogram-based ratio as features, and
logistic regression as a classifier. In our experiments, the fea-
ture parameters used for TECC feature set is 120 - dimensional
(D) (40-static +∆+ ∆∆). The TECC feature set is extracted
from 40 linearly-scaled Gabor filterbank, and is compared with
MFCC, CQCC feature set with the feature dimension of 39 -
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Table 2: Results in % EER on Evaluation dataset for each spoofing attack. Both Known and unknown attacks. +:Score-level fusion

Feature Set Known Attacks Unknown Attacks All Avg. S1-S9 Avg.S1 S2 S3 S4 S5 Avg. S6 S7 S8 S9 S10 Avg.
MFCC 2.34 9.57 0.00 0.00 9.01 4.18 7.73 4.42 0.3 5.17 52.99 14.12 9.15 4.28
TECC 0.00 0.21 0.00 0.16 0.67 0.20 0.41 0.00 0.00 0.00 58.14 11.71 5.95 0.161

CFCC-IF 0.101 0.863 0.000 0.000 1.075 0.408 0.846 0.242 0.142 0.346 8.490 2.013 1.211 0.39
CQCC 0.005 0.106 0.000 0.000 0.130 0.048 0.098 0.064 1.033 0.053 1.065 0.462 0.255 0.163

dimensional (D) (13-static +∆+∆∆), and 90- dimensional (D)
(30 -static + ∆+ ∆∆), respectively.

The results obtained in EER of TECC feature set on devel-
opment and evaluation sets are shown in Table 3. We compared
our results with the baseline system, MFCC, and CQCC feature
set. From the experimental results, it can be observed that the
TECC feature set has much more less EER of 2.25 % and 4.51
% on dev and eval set, respectively, compared to the baseline
system, MFCC, and CQCC feature set.

Table 3: Equal Error Rate (EER) for BTAS 2016 Database
Subset Baseline MFCC CQCC TECC

Dev 5.91 3.66 3.05 2.25
Eval - 7.59 18.86 4.51

Fusion with TECC
Dev - 2.20 2.25 -
Eval - 4.43 4.50 -

We further used score-level fusion of MFCC and CQCC
with TECC feature set to obtain possible complementary infor-
mation, and reduce the % EER further on both development
and evaluation set (as shown in Table 3). The score-level fusion
reduced the % EER to 2.20 % with MFCC and TECC feature
set (with fusion factor, α= 0.8) and with CQCC feature set it
reduced to 2.31 % (with fusion factor α= 0.9). On the other
hand, on evaluation set, the score-level fusion reduced only fu-
sion of MFCC and TECC and gave % EER of 4.43 % (with
fusion factor α= 0.9) whereas with CQCC feature, the EER did
not reduce.

Table 4 shows the performance on evaluation set in %
HTER on baseline system, MFCC, CQCC, and TECC feature
set. It can be observed that TECC feature set gave lower %
HTER compared to the other feature sets. Furthermore, we an-
alyzed individual presentation attack as reported in Table 4. In
the Table 4, ‘SS’ stands for speech synthesis, ‘VC’ stands for
voice conversion, ‘RE’ stands for replay, ‘LP’ stands for lap-
top, ‘PH1’ is Samsung Galaxy s4 phone, ‘PH2’ is iphone 3gs,
‘PH3’ is iphone 6s, and ‘HQ’ stands for high quality speak-
ers were used during replay. It can be observed that for all the
attacks, we obtained lower % HTER with TECC feature set.
However, for unknown attacks (highlighted with bold font), we
obtained higher % HTER for all the feature sets which means
degradation in the overall performance.

The histogram plots of log-likelihood scores obtained from
Gaussian mixtures corresponding to (a) MFCC, (b) CQCC, and
(c) TECC are shown in Figure 9 for development (Panel I) and
evaluation set (Panel II), respectively. It can be observed that for
TECC feature sets, the LLK scores of both natural and spoof are
properly distributed resulting in less % EER as compared to the
distribution corresponding to other feature sets on development
set. Similar observation is found on evaluation set for MFCC,
and TECC feature sets. From the Figure 9, we can observe
a huge change in score distributions on development (i.e., -10

Table 4: Individual Attack Results (in % HTER ) for Eval Set
Attacks Baseline MFCC CQCC TECC

SS-LP-LP 2.87 10.82 50 2.39
SS-LP-HQ-LP 2.87 14.89 50 1.75

VC-LP-LP 3.58 4.05 50 1.43
VC-LP-HQ-LP 3.39 3.99 50 1.32

RE-LP-LP 17.02 9.40 50 1.77
RE-LP-HQ-LP 11.24 28.25 50 3.02

RE-PH1-LP 52.24 29.37 50 24.77
RE-PH2-LP 51.96 27.65 50 29.87

RE-PH2-PH3 51.56 38.85 50 50.17
RE-LPPH2-PH3 20.62 47.87 50 41.92

All together 6.87 6.89 50 3.71

to 10) and evaluation (i.e., -80 to -10) sets for CQCC feature
set. This in turn results in high % HTER for CQCC on evalua-
tion set, as HTER depends on the threshold of development set
(which is near to 0 (Figure 9 Panel I (b))).

Figure 9: Histogram plots for Panel I: Development, and Panel
II Evaluation set. (a) Score distribution of MFCC, (b) CQCC,
and (c) TECC feature set.

The performance is also shown with DET curves for all the
feature sets along with their best score-level fusion in Figure
10(a), and Figure 10(b). From Figure 10(a), it can be observed
that for MFCC, and CQCC shows high miss probability and
false alarm probability, respectively, which is not a good case
for the voice biometric system. However, the TECC feature set
along with score-level fusion of CQCC and TECC feature set
shows the reduced miss probability and false alarm probability
compared to the other feature sets. On the other hand, for evalu-
ation set, the DET curve for all the feature sets have high proba-
bility with high false alarm rate which shows that the evaluation
set is very challenging to develop a suitable countermeasure.
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Figure 10: DET curve for (a) Development, and (b) Evaluation
set.

6. Summary and Conclusions
In this paper, we investigated the significance of Teager energy
profiles for SSD task, in particular, SS, VC, and replay speech
signals. The Teager energy profiles of a narrowband filtered
speech signal discriminates the spoof speech from the natural
speech around the GCI locations. The bumps obtained around
every GCI locations shows the key discrimination for natural,
VC, SS, and replay signals. The Teager energy features have
high energy for the natural speech compared to the spoof speech
case. The results in EER with Teager energy-based feature set
performed better on ASVspoof 2015 and BTAS 2016 challenge
database than the other state-of-the-art feature sets. However,
the TECC feature fails to detect the USS-based spoofing algo-
rithm and unknown attack detection, in particular, the replay
speech recorded with laptop HQ device.

Our future work will focus on the study of USS-based spoof
detection. Furthermore, we studied the Teager energy profiles
of the natural and presentation attack signals, and observed the
changes in the Teager energy profiles. In particular, when the
replay signal is generated using HQ laptop device, the Teager
energy profiles are similar to the natural counterpart and thus,
faces difficulty to detect the replay with laptop HQ compared
to the other presentation attacks. We observed that although,
we were quite successful in detecting certain kinds of presenta-
tion attacks, however, our system fails to detect unknown attack
that are often expected in a practical scenarios. The negative
result to detect S10 may find its relevance for significance of
proposed TECC feature set for deeper analysis of speech exci-
tation source characteristics, in particular, possible application
in speaker recognition and recent efforts in Voice Privacy chal-
lenge.
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