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Abstract
Clustering-based Pseudo-Labels (PLs) are widely used to

optimize Speaker Embedding (SE) networks and train Self-
Supervised (SS) Speaker Verification (SV) systems. However,
this SS training scheme relies on highly accurate PLs. In this pa-
per, we perform a large investigative study of the effect of several
regularization techniques (mixup, label smoothing, employing
sub-centers) on the label noise robustness of SSSV systems. We
study these techniques and apply them on various recent metric
learning loss functions for better generalization of SSSV systems.
In particular, we investigate the effect of these losses and regular-
izations on the robustness of the self-supervised SV task against
label noise using the CAMSAT clustering model to generate PLs.
We provide a thorough comparative analysis of the performance
of these techniques using different numbers of clusters and show
that some of them are effective against label noise and lead to
considerable improvements in SV performance.

1. Introduction
Automatic speaker verification (ASV) consists of using the
voiceprint of a speaker to verify their identity. ASV is one of the
most convenient means of biometric recognition [1]. Based on a
speaker’s known utterances, the speaker verification (SV) task
consists of confirming that the identity of a speaker is who they
purport to be.

Typically, utterance-level fixed-dimensional embedding vec-
tors are extracted from the enrollment and test speech samples
and then fed into a scoring algorithm (e.g., cosine distance) to
measure their likelihood of being from the same speaker. Classi-
cally, the i-vector framework has been one of the most dominant
approaches for speech embedding [2, 3] thanks to its ability to
summarize the distributive patterns of speech in an unsupervised
manner and with relatively small training datasets. It generates
fixed-sized compact vectors that represent the speaker’s identity
in a speech utterance regardless of its length. Besides, in the past
years, various deep learning-based architectures and techniques
have been proposed to extract embeddings [4, 5, 6]. They have
shown great performance when large training datasets are avail-
able, particularly with a sufficient number of speakers [7]. One
widely employed architecture for this purpose is ECAPA-TDNN
[8], which has achieved state-of-the-art (SOTA) performance in
text-independent speaker recognition. The latter uses squeeze-
and-excitation (SE), employs channel- and context-dependent
statistics pooling & multi-layer aggregation and applies self-
attention pooling to obtain an utterance-level embedding vector.

Indeed, most of the deep embedding models are trained
in a fully supervised manner and require large speaker-labeled
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datasets for training. However, well-annotated datasets can be
expensive and time-consuming to prepare, which has led the
research community to explore more affordable self-supervised
learning (SSL) techniques using larger unlabeled datasets. One
common way to solve this issue for SV systems is to use clus-
tering models to generate Pseudo-Labels (PLs) [9, 5, 6], or to
employ SSL-based objectives (e.g., SimCLR, MoCo [10]) to
generate PLs and train the speaker embedding network using
these labels in a discriminative fashion [11, 12]. Despite the
impressive performance of these PL-based Self-Supervised SV
schemes, clustering performance remains a bottleneck in all
above approaches [12, 13] as downstream performance relies
greatly on accurate PLs since these are in general noisy and inac-
curate due to the discrepancy between the clustering objective(s)
and the final SV task. Besides, even with iterative clustering-
classification paradigms, the erroneous information from the
wrong PLs keeps propagating iteratively, which degrades the
final performance [12, 14]. Indeed, recent studies have shown
that label noise can remarkably impact downstream performance
[6]. Thus, the need for better-performing SV approaches that
are robust to label noise to mitigate its negative effect on gen-
eralization. In this paper, we investigate several regularization
techniques (mixup [15], label smoothing [16], employing sub-
centers [17]) to incorporate into our SV systems, jointly with
our loss functions to study their effect on the label noise robust-
ness of self-supervised SV systems. To this aim, we explore a
variety of metric learning loss functions, including maximum
margin-based softmax losses (e.g. CosFace, AdaFace), symmet-
ric losses, normalized losses, and noise-robust loss functions
such as Subcenter-ArcFace [17] or BoundaryFace [18] for the
task of SV under label noise. To generate well-performing PLs,
we employed the CAMSAT clustering model [19]. We used three
different predefined numbers of clusters {5000, 5994, 10000}
during clustering to study the generalization and behavior of
self-supervised SV systems under various types of real-world
label noise.

We propose a curated selection of loss objectives (see Table
1) that we experimentally found to be effective against label noise
and enhance the generalization of self-supervised SV systems
to out-of-set samples, beyond discrepancies in the PLs. The
contributions of this paper are as follows:

• We propose the first large-scale investigative study of
different regularization techniques, using various recent
state-of-the-art loss objectives, for the task of speaker ver-
ification (SV). Several of these losses and regularizations
we apply for the first time in the domain of SV.

• We show that maximum-margin -based softmax losses are
beneficial to mitigate the memorization effects of label
noise during training.
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• We show that the mixup regularization strategy and using
sub-centers are effective against label noise memorization
and lead to better robustness and generalization.

• To our knowledge, we are the first to generalize the regu-
larization idea of using sub-centers of classes, introduced
in subcenter-ArcFace, to other types of losses.

• We demonstrate that several recent maximum-margin soft-
max variants provide a great advantage in terms of gen-
eralization and noise-robustness over some widely-used
losses in the domain of SV, such as the angular additive
margin softmax (AAMSoftmax) [20] loss.

• Using CAMSAT-based PLs [19], our proposed selection
of loss objectives allowed us to achieve SOTA SV perfor-
mance, outperforming various benchmarks.

2. Background and Related Work
2.1. Noise-robust loss functions

We can generally group the methods to learn from noisy
data into two categories: approaches focusing on creating
noise-robust algorithms to learn directly from noisy labels
[21, 22, 23, 24, 25, 26], and label-cleansing approaches that
aim to remove or correct mislabeled data [27, 28, 29, 30]. In re-
cent years, various robust loss-based methods were proposed to
learn with noisy labels. [31] proved theoretically that symmetric
loss functions, such as Mean Absolute Error (MAE), are robust
to label noise, while other losses like commonly used Cross En-
tropy (CE) are not. Besides, [32] introduced Generalized Cross
Entropy (GCE), a generalized mixture of CE and MAE. [33] pro-
posed Symmetric Cross Entropy (SCE) which is a combination
of CE and scaled MAE. Reverse Cross Entropy (RCE) was also
suggested to learn more distinguished feature representations for
detecting adversarial examples. Additionally, [34] suggested a
state-of-the-art Active Passive Loss (APL) to create fully robust
loss functions. It showed that any loss function can be made
robust to noisy labels by a simple normalization operation that
makes loss functions symmetric. On the other hand, recently
[35] found that APL still struggles with MAE and suffers from
a problem of underfitting. For this reason, they suggested a
new class of passive loss functions that are different from MAE,
called Negative Loss Functions (NLFs), and proposed a new
class of theoretically robust passive loss functions, called Nor-
malized Negative Loss Functions (NNLFs). By replacing the
MAE in APL with NNLF, they proposed an additional Active
Negative Loss (ANL), a robust loss function framework with
stronger fitting ability. In this paper, we investigate several ro-
bust loss functions created by the APL framework and NLFs,
including the proposed normalization operation.

Moreover, in the domain of SV, [6] found that Mixup reg-
ularization is effective against label noise memorization [36],
and leads to better generalization of self-supervised SV systems
since Mixup can dilute the label noise and create synthetic sam-
ples around the borders that lead to smoothing the data manifold
and better class separation. In the same line of work, [37] also
proposed an effective noise-robust self-supervised Multi-task
learning framework based on various mixup variants to make
use of the variety of complementary information that can poten-
tially be gained through the combination of the different tasks to
improve the performance and robustness of SV systems.

2.2. Maximum margin-based softmax loss objectives

The goal of Metric Learning is to learn representation functions
that map objects into an embedded space. The aim is to simplify
the comparison function of speaker utterances all the way down
to the most simple distance function (e.g. cosine distance) by
delegating the hard task of generating speaker representations to
the trained embedding network which should ensure intra-class
compactness and inter-class separability.

To improve performance on previously unseen data and
generalize to out-of-domain speech samples, various maximum
margin-based softmax variants based on different objectives
have been proposed. Indeed, softmax suffers from several draw-
backs such as that (1) its computation of inter-class margin is
intractable [38] and (2) the learned projections are not guaran-
teed equi-spaced. Indeed, the projection vectors for majority
classes occupy more angular space compared to minority classes
[39]. To solve these problems, several alternatives to softmax
have been proposed [20, 40, 41, 42, 43]. For instance, AMSoft-
max [40] loss applies an additive margin constraint in the angular
space to the softmax loss for maximizing inter-class variance and
minimizing intra-class variance. To provide a clear geometric
interpretation of data samples and enhance the discriminative
power of deep models, AAMSoftmax (angular additive margin
softmax) [20] objective introduces an additive angular margin to
the target angle (between the given features and the target center).
Due to the exact correspondence between the angle and arc in the
normalized hypersphere, AAMSoftmax can directly optimize
the geodesic distance margin, thus its other name ArcFace.

Additionally, CosFace (large margin cosine loss) [43] refor-
mulates the softmax loss as a cosine loss by L2 normalizing both
features and weight vectors to remove radial variations, based on
which a cosine margin term is introduced to further maximize
the decision margin in the angular space. On the other hand,
OCSoftmax [41] uses one-class learning instead of multi-class
classification and does not assume the same distribution for all
classes/speakers. More recently, AdaFace [42] loss has been
proposed which emphasizes misclassified samples according to
the quality of speaker embeddings (via feature norms). As an im-
provement, SMAFace was also introduced for low-quality face
recognition images by incorporating sample mining into conven-
tional margin-based methods. At its core, SMAFace focuses on
prioritizing information-dense samples, namely hard samples or
easy samples, which present more distinctive features. To this
aim, it employs a probability-driven mining strategy, enabling
the model to adeptly navigate hard samples, thereby bolstering its
robustness and adaptability. Besides, as softmax has no unified
threshold to separate positive sample-to-class pairs from nega-
tive sample-to-class pairs, a Unified Cross Entropy (UniFace)
[44] loss for face recognition model training was designed on the
vital constraint that all the positive sample-to-class similarities
shall be larger than the negative ones. Additionally, as sample-to-
class loss-based models can not fully explore the cross-sample
relationship among large amounts of samples, UniTSFace [45]
proposed a unified threshold integrated sample-to-sample based
loss (USS), which features an explicit unified threshold for dis-
tinguishing positive from negative pairs. Furthermore, to incor-
porate additional sample-to-sample comparisons during training,
[46] proposed Variational Prototype Learning (VPL), which rep-
resents every class as a distribution instead of a point in the latent
space. Identifying the slow feature drift phenomenon, authors
directly injected memorized features into prototypes to approxi-
mate variational prototype sampling. Finally, as above methods
are susceptible to label noise, Subcenter-ArcFace [17] relaxes
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Table 1: A study of a wide variety of metric learning loss functions. Results are reported in terms of the EER (%) downstream SV
evaluation performance. We used the CAMSAT algorithm to generate PLs using different predefined numbers of clusters.

Loss function No. of clusters Loss function No. of clusters

5,000 5,994 10,000 5,000 5,994 10,000
MV-Arc-Softmax 2.842 3.006 2.884 Agent Center loss 13.34 13.393 12.508

OCSoftmax 2.964 3.134 2.969 Focal loss 13.001 13.340 12.561

Subcenter-ArcFace 2.969 3.059 2.943 Generalized Cross Entropy 13.351 13.277 13.966

ArcFace-VPL 2.996 3.059 2.996 Revserse Cross Entropy 14.252 14.687 14.555

SMAFace 3.049 3.112 3.171 Softmax 14.486 14.507 15.085

AMSoftmax 3.054 3.224 2.959 AGCE loss 14.464 14.390 14.608

AdaFace 3.059 3.112 3.059 AExp loss 14.565 14.973 14.756

AAMSoftmax 3.065 3.309 3.134 Mean Absolute Error 14.613 15.021 14.570

CosFace-VPL 3.075 3.022 2.948 AUE loss 14.666 14.947 14.772

CosFace 3.096 3.043 2.863 Normalized Cross Entropy 18.664 19.692 20.594

BoundaryFace 3.096 2.948 2.884 MagFace 8.499 8.409 3.139

Normalized Softmax loss 3.134 3.118 3.028 Normalized Focal loss 18.754 19.565 20.700

Unified Cross Entropy (UniFace) loss 3.15 3.208 3.16 Normalized Negative Focal loss 22.969 24.146 25.779

Normalized BCE loss 3.213 3.181 3.192 Hard Gumbel-Softmax 23.096 47.397 22.778

CurricularFace 3.229 3.256 3.192 Normalized Negative Cross Entropy 23.261 26.156 27.45

Cross Entropy 5.477 5.827 5.546 Soft Gumbel-Softmax 25.774 43.871 22.683

AS-Softmax 5.748 6.272 6.607 Center loss 27.126 29.173 27.625

DropMax 7.137 6.601 8.006 Unified Threshold Integrated
Sample-to-Sample (UniTSFace) loss 36.49 36.437 36.946

Symmetric Cross Entropy 12.773 13.266 13.091 Sparsemax 42.179 42.54 46.124

Table 2: A study of different regularization methods incorporated into whether our metric learning loss functions directly or our
ECAPA-TDNN model for better overall generalization of our SV system. Results are reported in terms of the EER (%) downstream SV
evaluation performance. We used the CAMSAT algorithm to generate PLs using different predefined numbers of clusters.

Loss function
Regularization method True labels No regularization Sub-centers Label Smoothing i-mix l-mix

5,994 5,000 5,994 10,000 5,000 5,994 10,000 5,000 5,994 10,000 5,000 5,994 10,000 5,000 5,994 10,000
Cross Entropy 3.489 5.477 5.827 5.546 5.795 5.97 6.177 4.369 4.412 4.592 4.73 4.883 4.798 5.095 4.883 4.989

AdaFace [42] 1.326 3.059 3.112 3.059 3.134 3.134 2.937 3.325 3.24 2.98 3.128 2.985 2.916 3.224 3.224 3.171

AAMSoftmax [20] 1.437 3.065 3.309 3.134 2.969 3.059 2.943 3.075 3.096 2.959 3.261 3.383 3.325 3.372 3.409 3.192

AMSoftmax [40] 1.522 3.054 3.224 2.959 2.996 3.049 2.996 3.128 3.33 3.017 3.213 3.425 3.372 3.409 3.499 3.224

OCSoftmax [41] 1.416 2.964 3.134 2.969 3.028 2.948 2.985 2.906 3.309 2.99 3.118 3.139 3.059 3.123 3.219 2.959

CosFace [43] 1.463 3.096 3.043 2.863 2.974 3.006 2.847 2.996 3.272 3.171 3.208 3.176 3.181 3.081 3.425 3.065

BoundaryFace [18] 1.479 3.096 2.948 2.884 3.065 3.022 2.752 3.224 3.181 2.853 3.150 3.165 3.028 3.171 3.256 3.150

Subcenter-ArcFace [17] 1.400 2.969 3.059 2.943 NA NA NA 2.906 3.091 2.9 3.006 3.134 3.139 2.959 3.118 3.033

the intra-class constraint of ArcFace by designing K sub-centers
for each class to improve the robustness to label noise. In this
case, the training sample only needs to be close to any of the K
positive sub-centers instead of the only one positive center.

Other robust losses are MV-Arc-Softmax [47] which adap-
tively concentrates on optimizing the mis-classified (hard) fea-
ture vectors, as they are more crucial to enhance feature discrim-
inability, to guide the discriminative feature learning. This loss
combines the advantages of feature margin and feature mining
into a unified loss function. Additionally, BoundaryFace [18]
which, starting from the perspective of decision boundary, em-
ploys a novel mining framework that focuses on the relationship
between a sample’s ground truth class center and its nearest
negative class center. Specifically, a noise label self-correction
module is put forward to emphasize hard sample features that are
between the ground truth class center and the nearest negative
class center. If a sample is misclassified, there is a high prob-
ability that it is distributed within the nearest negative class’s
decision boundary, and the nearest negative class is likely to be
the ground truth class of this misclassified sample. Based on
this idea, BoundaryFace employs a module that automatically
discovers misclassified samples during training and dynamically
corrects their labels.

3. Our explored regularization techniques
In order to mitigate the effect of label noise in our clustering-
based pseudo-labels, we investigate a variety of regularization
techniques to incorporate into our SV systems, jointly with our
loss functions (mixup [15], label smoothing [16], employing sub-

centers [17]) to study their effect on the label noise robustness
of self-supervised SV systems. The following list provides the
details of each of these regularization techniques that we adopt
with our best-performing loss variants:

• Mixup augmentation: We study two variants of mixup
at both the instance input-level (i-mix) [48] and the la-
tent space (l-mix) [5]. Indeed, the instance mix (i-mix)
augmentation scheme [48] performs interpolation on the
training samples and their PLs. As a result, the i-mix
strategy can be applied to self-supervised learning tasks
where no actual class labels are provided, and has shown
potential in a number of self-supervised tasks including
image classification and voice command recognition. On
the other hand, the l-mix [5] strategy that applies i-mix
on the latent space, instead of the raw data domain, may
yield more diverse synthetic samples. To apply i-mix
on the latent space of the speech, l-mix incorporates a
variational autoencoder (VAE) encoder [49] to extract
the latent variable of the given acoustic features. The
resulting mixed latent variable is then fed into the VAE
decoder to generate a new synthetic sample, with differ-
ent patterns than the standard i-mix generated samples.
As it favors the smoothness of the output distribution, the
mixup strategy has been shown in [50] to be effective in
mitigating the memorization effects of label noise, and
help to slow down the memorization of noisy labels and
learn long enough from the simple patterns available.
In our experiments, we train our maximum-margin loss-
based SV systems jointly with i-mix or l-mix augmenta-
tions to regularize the model weights.
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• Label Smoothing: Label Smoothing (LS) [16, 51] reg-
ularization uses soft labels in place of one-hot labels to
alleviate overfitting to noisy labels, and help mitigate
label noise [52, 53]. We incorporate this regularization
directly into our studied losses.

• Employing Sub-centers: [17] introduced a novel loss
function called Subcenter-ArcFace which relaxes the
intra-class constraint (force all samples close to the cor-
responding positive center) of ArcFace to improve the
robustness to label noise. More specifically, the authors
designed K sub-centers for each class and a training
sample only needs to be close to any of the K positive
sub-centers instead of only one positive center as em-
ployed in usual metric learning losses. Very importantly,
since the intra-class constraint enforces a training sample
to be close to one of the multiple positive sub-classes
but not all of them, the proposed subcenter-ArcFace en-
courages one dominant sub-class that contains the major-
ity of clean samples and non-dominant sub-classes that
include hard or noisy samples. As a consequence, the
noise is likely to form a non-dominant sub-class and will
not be enforced into the dominant sub-class. Therefore,
subcenter-ArcFace is more robust to label noise. In this
paper, we incorporate this idea directly into other losses
to improve their generalizability and study their behavior.

4. Experimental setup
As input to our CAMSAT clustering algorithm, we employ 400-
dim i-vectors. The compact i-vectors, which are unsupervised
speaker representations, allow us here to perform clustering in
a more efficient way and to avoid high dimensionality of the
MFCC acoustic features.

In order to evaluate the performance of our proposed self-
supervised approach for SV, we conducted a set of experiments
based on the VoxCeleb2 dataset [54]. To train the embedding
networks, we used the development subset of the VoxCeleb2
dataset, which consists of 1,092,009 utterances collected from
5,994 speakers. The evaluation was performed according to the
original VoxCeleb1 trials list [55], which consists of 37,720 trials
of 4,874 utterances spoken by 40 speakers.

For our ECAPA-TDNN-based SV system, the acoustic
features used in the experiments were 40-dimensional Mel-
frequency cepstral coefficients (MFCCs) extracted at every 10
ms, using a 25 ms Hamming window via Kaldi toolkit [56].
Moreover, to follow other SV works in training the ECAPA-
TDNN-based systems, we have used waveform-level data aug-
mentations including additive noise and room impulse response
(RIR) simulation [7]. In addition to the waveform-level augmen-
tations, we have also applied augmentation over the extracted
MFCCs feature, analogous to the specaugment scheme [57].

All speaker verification experiments have been run for 7
days using a single A40 GPU (or RTX2080Ti in some cases),
with a batch size of 200 MFCC samples. All margin-based losses
are run with scale factor s = 30 and angular margin m = 0.2.
Cosine similarity was used as a backend for verification scoring
between enrollment and test embeddings.

i-mix and l-mix regularization strategies are used with
α = 0.5, where λ ∼ Beta(α, α) is the mixing coefficient
from the Beta distribution to interpolate inputs or latent embed-
dings, respectively. We use a smoothing coefficient of 0.15 when
applying a weighted average between the uniform distribution
and the provided PLs during label smoothing. Finally, we use
K = 3 sub-centers wherever sub-centers are employed.

Figure 1: General process for training our clustering gener-
ated pseudo-label-based self-supervised speaker embedding net-
works.

4.1. Our clustering-based self-supervised speaker embed-
ding framework

Figure 1 depicts a schematic diagram of our general clustering-
based self-supervised SV process that we follow throughout
the paper. During our work, we explore various loss functions
and regularization methods and conduct different analyses of
their impact on the robustness of SV performance. We employ
ECAPA-TDNN as our speaker embedding network and use our
adopted loss objectives to train this system using PLs generated
by the CAMSAT clustering algorithm.

4.2. Clustering-based pseudo-label generation

For clustering, we have extracted i-vector [2, 3] embeddings
using the Kaldi toolkit [56], which is a statistical unsupervised
fixed-dimensional representation from each training utterance
and performed clustering on top of them. After training the clus-
tering CAMSAT-based model, we selected the aligned cluster for
each utterance and used the cluster-id as PL. With the clustering-
based PLs, we can train the speaker embedding network via our
metric learning loss objectives, analogous to supervised learning.

For a thorough comparison, we have set the number of clus-
ters to be in {5000, 5994, 10000} to study the influence of
the predefined number of clusters on the downstream speaker
verification performance (5994 is the ground truth number).

4.3. Clustering performance of our pseudo-labels

Table 3 shows the clustering performance of our employed
clustering-based PLs using CAMSAT to generate these PLs.
From the unsupervised accuracy and mutual information scores,
we can observe that our obtained cluster assignments are noisy
and not pure, hence the existence of discrepancies between the
PLs and the speaker-identity ground truths. As a result, in several
cases, our SV performance was degraded from overfitting this
label noise.

Table 3: The clustering performance of our CAMSAT-based
pseudo-labels using different numbers of predefined clusters.

No. of predefined
clusters

No. of discovered
clusters ACC NMI AMI

5,000 4,596 0.655 0.874 0.812

5,994 5,194 0.669 0.878 0.816

10,000 6,364 0.709 0.889 0.830
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4.4. Clustering Evaluation Metrics

Following the commonly used evaluation metrics for clustering,
we assess the quality of the generated pseudo-labels using the
following three supervised clustering metrics:

• Unsupervised Clustering Accuracy (ACC): measures
the consistency between the true labels and the generated

PLs. ACC = max
m

∑N
i=1 1{yi=m(ci)}

N
where yi is the

true label, ci is the generated PL assignment, and m is a
mapping function which ranges over all possible one-to-
one mappings between true labels and assignments. The
optimal mapping can be efficiently computed using the
Hungarian algorithm [58].

• Normalized Mutual Information (NMI) [59]:
NMI(Y,C) = I(Y,C)

1
2
[H(Y )+H(C)]

where Y and C denote

the ground-truth labels and the clustering assignments,
respectively. H is the entropy function and I denotes the
MI metric. NMI is the harmonic mean between below
homogeneity and completeness scores.

• Adjusted MI (AMI) [60]: Since the NMI measure is
not adjusted for chance, including the adjusted MI score
might be preferred for comparison in some of our cases.

4.5. CAMSAT clustering algorithm

For clustering, we adopt the same CAMSAT clustering approach
used in [19] to generate pseudo-labels. CAMSAT is based on
augmentation mix and self-augmented training. The goal is to
impose invariance to data augmentation on the output predic-
tions of deep models in an end-to-end fashion while maximiz-
ing the information-theoretic dependency between samples and
their predicted discrete representations (cluster assignments). It
provided both state-of-the-art speaker clustering and SV perfor-
mance. In this paper, we try to investigate several metric learn-
ing loss functions to enhance the generalization performance of
self-supervised speaker embedding systems and to mitigate the
negative effect of heavy noise in the generated pseudo-labels
(PLs) used to train these systems. Please refer to [19] for details
about CAMSAT architecture and training details.

5. Results and Discussion
In Table 1, we performed a large-scale study of 39 metric learn-
ing loss functions including all the above-mentioned families
of loss objectives and other widely used losses using CAMSAT-
based pseudo-labels.

Besides, in an attempt to further enhance SV performance
by improving generalization and robustness and mitigating the
memorization of label noise, in Table 2 we summarize our results
using 4 additional different regularization techniques (with dif-
ferent predefined numbers of clusters) employed to train our SV
model using the selection of our best-performing loss functions
in Table 1.

Throughout our experiments, we can observe that incor-
porating a margin can easily enhance the performance of our
metric learning loss functions, often outperforming supervised
training with cross entropy using the true labels. Results show
clearly that our selection of maximum-margin softmax variants
in Table 2 are very effective in improving the generalization of
our SV systems across all types of label noise contained in the
PLs. In particular, unlike the widely used AAMSoftmax loss in
SV, to our knowledge, our results indicate for the first time that
variants such as OCSoftmax using one-class learning instead of

multi-class classification and not assuming the same distribution
for all speakers (which is more realistic in our case), or the re-
cent AdaFace and SMAFace losses, perform consistently better
across the 3 PLs and the ground truth labels. Indeed, AAMSoft-
max is susceptible to massive label noise [20]. This is because
if a training sample is noisy (misclassified), it does not belong
to the corresponding positive class. In AAMSoftmax, this noisy
sample generates a large wrong loss value, which impairs the
model training. This partially explains the under-performance of
AAMSoftmax compared to other variants when using pseudo-
labels for training. Figure 2 also shows clearly this overfitting
phenomenon which affects the majority of loss functions, and
consequently the dramatic degradation of the downstream val-
idation EER performance over epochs due to memorization of
noisy labels. Interestingly, thanks to its design to be robust
to label noise, we can also observe the good performance of
Subcenter-ArcFace, which often outperforms all other losses
across our various studied PLs. This can be explained by using
sub-centers which make the final dominant vector centers (the
clean ones) more compact and well distant from each other. The
high-performing BoundaryFace also shows that label correction
is an important component and can often help to mitigate label
noise during training.

Besides, in our experiments on the VoxCeleb1-O test set,
sample-to-sample loss functions and other losses such as Mag-
Face, BroadFace, DropMax, Center loss, Softmax, Gumbel-
Softmax and Sparsemax performed poorly and seem to suffer
from serious problems of convergence, numerical instability,
or sensitivity to hyperparameters. On the other hand, we can
observe that the normalization operation to make our losses sym-
metric helped us to improve performance in the case of Softmax
and Binary CE (BCE). Finally, we found, as shown in Table 1,
that recently proposed NLFs and NNLFs losses both performed
poorly in our case compared to our suggested maximum-margin
softmax-based variants.

Moreover, using different predefined numbers of clusters
including the ground truth number of clusters, we can see that
the final downstream SV evaluation performance depends more
on the quality of the PLs, and that the consideration of the
predefined number of clusters is less important.

Table 4: Some recent SOTA Self-Supervised SV approaches
in EER (%) compared to our simple SV system trained with
CAMSAT-based PLs and Subcenter-BoundaryFace loss. All
models are based on ECAPA-TDNN. Results are reported on the
original VoxCeleb1 test set (Voxceleb1_O).

SSL Objective EER (%)

MoBY [10] 8.2
InfoNCE [12] 7.36

MoCo [61] 7.3
ProtoNCE [10] 7.21

PCL [10] 7.11
CA-DINO [62] 3.585

i-mix [63] 3.478
l-mix [63] 3.377

Iterative clustering [12] 3.09
CAMSAT [19] 3.065

Our approach (using Subcenter-BoundaryFace) 2.752

Finally, Table 4 shows a comparison of our approach for
Self-Supervised SV training using CAMSAT-based PLs and our
best-performing Subcenter-BoundaryFace loss using sub-center
regularization, compared to recent SOTA self-supervised SV
approaches employing diverse SSL objectives with the same
ECAPA-TDNN model encoder. The results show clearly that
our approach largely outperforms all the baselines while being
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Training accuracy/loss and validation performance over time of our speaker verification (SV) system trained under various loss
functions, using different regularization techniques. We employ ground-truth labels in (a) and CAMSAT-based PLs in the rest with (b)
No regularization (c) Sub-centers regularization (d) Label smoothing regularization (e) i-mix regularization and (f) l-mix regularization.

simple and fast, which suggests that the consideration of loss
functions is still crucial and that further gains can still be made by
simply improving the loss objectives of current self-supervised
speaker recognition systems.

5.1. Influence of regularization methods on metric learning
losses over epochs

In Figure 2, we study the evolution of the downstream evalua-
tion EER (%) performance and the training accuracy and loss
of our system trained with our selection of maximum-margin-
based loss functions under our studied regularization (we use our
5994-based CAMSAT PLs). In particular, we perform the same
experiments using the original ground-truth labels to suppress
the effect of label noise and study its impact on the generaliza-
tion and training of SV systems. First of all, despite the good
generalization of our SV systems, we can observe that these
metric learning losses still suffer from overfitting and from the
phenomenon of label noise memorization [36] when trained
with our noisy pseudo-labels. This demonstrates that producing
compact cluster assignments (compact probabilities) with more
discriminative ability does not necessarily help to mitigate mem-
orization of label-noise. Despite inducing better generalization
to out-of-set samples, maximum-margin softmax losses do not
seem to reduce sufficiently the model’s ability to accommodate
random noise during training.

Indeed, due to the memorization effects [36], deep mod-
els (in particular, overparameterized networks), tend to fit easy
(clean) patterns in the pseudo-labels first, and then overfit the
hard and complex (noisy) patterns gradually. This leads to over-
fitting the noise and corruptions in the training pseudo-labels
and eventually, the validation curve starts to drop gradually. This
highlights the importance of having highly accurate PLs for good
generalization of self-supervised SV systems. Very interestingly,
on the contrary to other losses where validation performance
starts to degrade after only the first few epochs, we can observe
in figures 2-(b) and (c) that using sub-centers is more robust to
label noise and does suffer the least from overfitting compared
to other losses. It is worth mentioning, however, that using
sub-centers remains much slower than other methods due to its
use of a much bigger matrix of sub-centers. Besides, we can
also observe that mixup regularization via both i-mix and l-mix
in Fig. 2-(e) and (f) are really beneficial to prevent overfitting
through time, with a strong regularization effect than using sub-
centers but slightly underperforming sub-center regularization
overall. As far as label smoothing is concerned, we could ob-
serve a lighter regularization effect that prevents the training
loss from overfitting strongly the PLs, which can be explained
by the model becoming less overconfident about its predictions.
However, this effect does not necessarily translate into better
generalization, except for the cross entropy loss in Figure 2-(b).

Finally, although we could observe a slight underfitting phe-
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nomenon when it comes to using our studied loss functions
(except the cross entropy loss which always overfits easily),
in particular the robustly-designed variants such as Subcenter-
ArcFace, BoundaryFace and MV-Arc-Softmax when trained
with the ground-truth labels in 2-(a). On the contrary to other
papers such as [34] that underscore this as a negative side ef-
fect, we find this behavior to remain less of an issue and more
of a feature to delay overfitting and allow the model to learn
long enough from the simple patterns available. Importantly,
this induces better generalization as this can be observed in the
same figure. Additionally, this result can be confirmed in Figure
2-(b) when using the CAMSAT-based PLs where we can observe
that, instead of overfitting the PLs, the models are converging
slowly and steadily towards 65 to 70% training accuracy, which
is around the unsupervised clustering accuracy (ACC) of our
CAMSAT PLs. This can also point to an interesting ability of
these losses to somehow assess how reliable is each PL and to
remain focused on the most relevant (accurate) ones. We believe
this is an important result that needs further investigation and
some theoretical analysis to explain.

6. Conclusion
In this work, we performed a comparative study of a wide range
of recent metric learning loss functions and 4 regularization
techniques for better generalization of Self-Supervised Speaker
Verification (SSSV) systems. In particular, we investigated the
effect of these losses on the robustness of the SSSV task against
label noise, and proposed a selection of loss functions combining
with our proposed regularization techniques against label noise
that often lead to considerable improvements in self-supervised
SV performance.
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