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Abstract
An important task in several wellness applications is detection
of emotional valence from speech. Two types of features of
speech signals are used to detect valence: acoustic features and
text features. Acoustic features are derived from short frames of
speech, while text features are derived from the text transcrip-
tion. In this paper, we investigate the effect of text on acoustic
features. Some studies show that acoustic features of phones
carry specific emotion information. We also observe that emo-
tion words and the emotional valence of the spoken sentence
need not always match (e.g. the usage of ‘not happy’). We
thus propose that acoustic features of speech segments carry-
ing emotion words must be treated differently from other seg-
ments that do not carry such words. In this paper, we propose
that all speech segments carrying emotion words are excluded
from the training set. Standard emotion words from a language,
words from Plutchik’s wheel of emotion, and their synonyms
are considered. We report performance results on the the El-
derly Emotion Sub-Challenge corpus of the Computational Par-
alinguistics Challenge 2020. We show that exclusion of emo-
tional words show significant improvements for both OpenS-
MILE (p < 0.05) and OpenXBoAW features (p < 0.01).
Index Terms: emotional valence, speech, emotion words

1. Introduction
According to the World Health Organization, “Health is a state
of complete physical, mental and social well-being and not
merely the absence of disease or infirmity”. Emotional well-
being, an important aspect of mental well-being, is the emo-
tional aspect of everyday experience [1]. Recently, several orga-
nizations and enterprises have increased attention on emotional
well-being at the workplace.

Emotions are expressed by humans through multiple
modes, such as facial expressions, speech and body language,
in general. Emotion is commonly measured using up to five di-
mensions, but nearly all models use at least two: valence and
arousal [2]. An important task in understanding an individual’s
mental state is detecting their valence and arousal. Since audio
recording is available on smartphones, detecting valence and
arousal from speech [3] is an important approach.

Emotion in speech may be detected from samples of speech
as short as exclamations or even long sentences. For training
machine learning/deep learning algorithms, emotion may be an-
notated continuously (e.g. [4]) or on larger chunks depending
on the context. For example, if a person is narrating a happy
event, all sentences in the narration can be annotated as happy.
In these situations, the typical approach is to split long signals
into many shorter segments that share the ground truth of the
source speech. This method has been followed in the Compu-
tational Paralinguistics Challenge (ComParE) 2020, for the El-
derly Emotion Sub-Challenge (ESC) [5], where each segment is
about 5 seconds long. In the ESC, each speaker narrates a story

that is classified as having Low (L), Medium (M), or High (H)
Arousal (A). Similarly, the Valence (V) is classified as low (L;
negative or sad), medium (M; neutral), or high (H; positive or
happy). The details may be found in [5].

In reality, segments of a story do not always carry the same
emotion as the overall story [6]. For example, a happy or sad
story may be interspersed with segments of neutral emotion. In
this paper we focus on detection of valence from speech. In our
previous work [7], we found that the agreement between sen-
tences and its constituent ‘utterances’ is under 70%. Another
consideration, in the consistency between the valence of a sen-
tence and that of its utterances, is the text that each utterance
carries. Intuitively, it is expected that this text has a role to play.
Inspired by these two observations, we propose a technique that
selects a subset of annotated speech samples to train a classifier
that predicts the valence of speech.

1.1. Literature Survey

Machine-learning for detecting valence from speech follows the
typical process of building classifiers on extracted features. The
ground truth associated with speech samples is provided by
human observers/experts, or is self-assessed. Some recently
used examples of acousitc features are OpenSMILE [8, 9],
OpenXBoAW [10], time-domain differences [11,12]. Deep net-
works are being used increasingly, but hand-crafted features are
still relevant [13]. End-to-end approaches use time-domain au-
dio samples or spectrograms as inputs for classification [14].

From the current state of the art, it appears that detect-
ing valence from speech alone has limitations in classification-
performance. Thus, multi-modal detection approaches have
been proposed; a thorough review is done in [15]. Specifically,
the combination of speech-features and text-features has shown
promise in valence detection [5]. This combination was used
in the winning entry [16] of two sub-challenges (atypical and
self-assessed affect) in ComParE 2018 [17].

Valence detection from speech and annotated text usually
assumes that there is emotion information in the acoustic fea-
tures, and in the text features, especially in words related to
emotion, such as happy, sad, etc. In the Emo-DB [18], neutral
sentences had to be spoken with different emotions so that text
features were unlikely to carry their own emotion. In lexical
compensation, acoustic features are compensated for the vari-
ability in words/sounds1 by synthesizing the entire speech [19].
This compensation works does not consider emotion words sep-
arately. A recent work [20, 21] challenges the view that there
is no inherent emotion information in phones. The authors
show that phonetic (acoustic) features influence valence: e.g.
words with hissing sibilants (‘sss’) feel more negative. In our
approach, the training set consists of select speech segments
without emotion words. This approach draws from an ongoing
study on two datasets [22,23]. In this paper, we study the effect

1This technique also compensates for speaker variability.
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of emotion words on valence detection using the ESC corpus.

2. Training-set based on emotion words
As explained in Section 1, all segments of a speech sample do
not carry the same valence. We consider the effect of emo-
tion words on the acoustic features of such segments. From the
work of [20, 21], it appears that irrespective of the emotion of
the overall narration, specific emotion words carry two types of
emotion. The first is in their text-meaning and the second, in
their acoustic features due to the phones in the emotion words.
One possibility is that we use the acoustic features of only such
emotion words for training a classifier. This approach leads to
much less data than the original segments (see Table 1). In ad-
dition, the context may be such that the expressed emotion is
opposite to that of the emotion word. An example from the
ESC corpus2 is:

We didn’t know how to deal with the situation,
we didn’t know how to help her, she was so with-
drawn. And it only got better when she, uh, took
help and started therapy.

In this case (and in other usage such as ‘not happy’), the
emotion of the story being narrated does not match the emo-
tion of the word ‘better’ (comparative form of ‘good’). Thus,
we hypothesize that excluding emotion words would result in
fewer contradictions such as the example above. The rest of this
section details how the emotion words and speech segments for
training are selected by excluding these words. The description
is for valence, but it can be equally applied to arousal, where
pronouns could also play a part.

2.1. Listing valence words

The choice of words that express high valence (positive) and
low valence (negative) is based on emotion words in a language.
For the ESC sub challenge, we use two websites that list stan-
dard German emotion words [24, 25]. Together, these result in
a set of 68 emotion words. We then add the translations of 32
emotion words in Plutchik’s wheel of emotions [26]. These are
given in Figure 1. This results in 92 unique emotion words.
Next, their synonyms and forms (predicative, adverbs, attribu-
tive, comparative in German) are found. The set chosen thus
consists of 364 unique emotion words, and is denoted by E .

2.2. Training-set selection

Let a long speech sample S marked as a training example, have
a valence VS , and let S be split into N segments, sn, n ∈
{1, 2, . . . , N}. Typically, but not always, sn∀n are of the same
length. By definition, the valence of sn is VS∀n. A text-
transcription for S can be obtained using manual or (semi-) au-
tomatic speech recognition. For the ESC corpus, both man-
ual and automatic transcriptions of each story are available (a
story corresponds to the speech sample S). Let there be Kn

words in Segment sn. We denote these words as w
(n)
k , k ∈

{1, 2, . . . ,Kn}. Algorithm 1 is used to obtain the selection
of training segments TS from S; TS has no emotion words
from E . The complete training set, T , consists of selections
of training segments obtained from all training speech samples:
T =

⋃ TS .

2Story st2, Speaker ID ALBI110. For this paper, German text was
translated to English at https://translate.google.co.in/

Figure 1: English words on Plutchik’s wheel of emotion and
their German translations in brackets. Recommended magnifi-
cation: ≥ 200%.

Algorithm 1 Training selection from speech with N segments.

TS ← {}
for n in {1, . . . , N} (each signal in S) do

flagSelect← True
for k in {0, 1, . . . ,Kn} (each word in sn) do

if w(n)
k ∈ E (speech signal has an emotion word) then

flagSelect← False (do not select it)
break (for-loop)

end if
end for
if flagSelect is True (no emotion words in sn) then
TS ← TS ∪ sn

end if
end for

2.3. Features used

In this paper, we consider the two most successful acoustic fea-
tures for the baseline valence prediction of the ESC [5]: OpenS-
MILE (6373 dimensional) and OpenXBoAW (dimension: 250
to 4000). To address class imbalance, we use the Synthetic Mi-
nority Over-sampling TEchnique (SMOTE) [27].

2.4. Classification

We use the Linear Support Vector Classifier (Linear SVC) fol-
lowing the methodology of the challenge baseline [5]. We also
explore the use of other classifiers from the sklearn python
package3 in order to study the effect of excluding emotion
words. The various classifiers use: Decision Trees (DT), Lo-
gistic Regression (LR), Support Vector Classifier (SVC), Gaus-
sian Naive Bayes (GNB) modeling, Random Forest (RF). In
addition, we use the One-vs-Rest (OvR) paradigm with the
Multi-layer perceptron (OvR-MLP) and the eXtreme Gradient
Boosted (XGB) classifiers. Further, for the Linear SVC, we op-
timize over the complexity values: {10−4, 10−3, 10−2}.

3Classifier parameters are left as default values if not specified. Our
implementation uses open-source python libraries.
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Figure 2: Illustration of training set construction with an exam-
ple of 1 in 3 segments selected for ExcER sets.

3. Evaluation and Results
3.1. Database

We use the ESC database to evaluate the effect of presence and
absence of emotion words in training. This database, formally
called the Ulm State-of-Mind in Speech-elderly (USoMS-e)
corpus, is described in [5]. We retain the suggested partitions
of ‘Train’ (training set) and ‘Dev’ (development set or valida-
tion set) in order to be able to compare with baseline results on
Dev. The Train, Dev, and Test partitions have 87 stories each,
but they differ in distribution. There are 33 L stories and 24 H
stories in Train, while there are 40 L stories in Dev and only 19
H stories. The evaluation criterion is the unweighted average
recall (UAR); i.e. the average of the recall for each of the three
classes L, M, and H. UAR penalizes predictions that favor any
class, and is thus stricter than accuracy in unbalanced test sets.
The lengths of the stories vary from∼ 30 seconds to∼275 sec-
onds. The non-overlapping, individual speech segments split
from a story are about 5 seconds long. Thus, the number of
speech segments per story (N ) varies.

Sixty five low-level descriptors (LLDs) are obtained from
frames of individual speech segments. The frame-size is 1 sec-
ond, and the hop-size is 40 ms. The 6373 OpenSMILE feature-
points per segment are obtained as functionals over its LLDs.
The same LLDs and their deltas (difference from one hop to the
next) are used to obtain C codebooks. For a speech segment,
the logarithmic term-frequency weighted histogram of its LLDs
and of their deltas are concatenated into the OpenXBoAW fea-
tures (2C dimensions). We observe the baseline results to
choose C = 1000 for this paper. Further details of the features
and their computation can be found in [5, 9, 10].

3.2. Analysis of selected training sets

The numbers of speech segments with and without emotion
words, as well as the total number of segments, are given per
class in Table 1. The table shows that about 1 in 8 speech seg-
ments contain emotion words. Four words (gut, glücklich, trau-
rig and freude, and their related forms) account for about half
the occurrences of emotion words. Forty four such segments
contain more than one emotion word. In our initial analysis
(i.e. does not account for stemming and root-words), we found
that the most frequently occurring words are not emotion words.
Further, the emotion words are distributed across L, M, and H
classes.

We measure the UAR for classifiers trained on the set of
speech segments with emotion words, the set without emotion
words, and on all training samples. Table 1 suggests that a clas-
sifier trained on the set without all emotion words is expected to
perform better than one trained on the set with emotion words

Table 1: Number of speech segments in the Train set

IncE: With ExcE: Without All:
Class Emotion Words Emotion Words Total

L 109 912 1021
M 73 690 763
H 110 602 712

Total 292 2204 2496

due to the size of the training set. To eliminate this effect, we
measure the performance on the following four sets, which are
illustrated in Figure 2.

1. IncE: 292 training segments with emotion words

2. ExcE-reduced (ExcER): ∼ 292 training segments by
choosing 1 in every 8 segments without emotion words,
while ensuring that (nearly) all stories are represented4.
Each choice starts at a different offset (which ranges
from 0 to 7).

3. ExcE: 2204 training segments without emotion words

4. All: 2496 training segments

For the case of ExcER, each set chosen as above is hand-pruned
to ensure that the total number of segments is 330 after applying
SMOTE (which matches 3 × 110 for IncE in Table 1). We
compare the results among two pairs; the first pair is IncE and
ExcE, and the second pair is ExcER and All.

3.3. Classification performance

Table 2 shows the UAR obtained on the Dev set for various
classifiers trained with OpenSMILE features. The training set
is selected according to the technique in Section 2. For this
measurement, the training sets considered are IncE, ExcE, and
All (Section 3.2). The UARs given in the table are averaged
over four runs.

Table 2: Dev set performance with OpenSMILE features: UAR
(%) for 10 classifiers and three types of training sets. The com-
plexity parameter is shown in brackets for Linear SVC and SVC.

Training set
Classifier IncE ExcE All

DT 32.67 35.60 34.08
GNB 39.51 44.49 45.51
LR 39.00 42.45 42.33
Linear SVC (10−4) 40.72 47.83 46.03
Linear SVC (10−3) 41.15 44.92 49.02
Linear SVC (10−2) 36.79 43.33 45.47
OvR-MLP 38.06 42.49 43.23
OvR-XGB 36.67 47.08 44.93
RF 34.76 41.38 40.28
SVC (10−4) 42.69 40.81 42.93

Table 2 cannot be used to choose between ExcE and IncE
because the sizes of these two training sets are disparate. In-
stead, we use Table 2, to choose the classifier that performs
best: Linear SVC. For this classifier, we obtain results for the
four training sets listed in Section 3.2. An average performance

4This is not possible for stories with less than 8 speech segments.
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(a) OpenSMILE features (b) OpenXBoAW features

Figure 3: Dev set performance using Linear SVC: UAR (%) for two types of training sets and two feature sets.

over multiple random sets is used for ExcER. Further, this mea-
surement is repeated for the OpenXBoAW features also. These
results are presented in Tables 3 and 4, in which the pairs
{IncE,ExcER} and {ExcE,All} are demarcated. All results in
the table are averaged over four runs. These results show that
the UAR for ExcER is mostly higher than for the IncE. Since
these two training sets are of identical size, it suggests that the
exclusion of emotion words has an effect on the UAR. To ver-
ify this conclusion, the UAR using the Linear SVC for 12 runs
(= 4 runs for 3 complexity values) per feature set are shown
in Figure 3. The figure shows that the UAR is indeed mostly
higher for the ExcER training set than for the IncE training set.
A t-test reveals that the differences are significant for OpenS-
MILE (p < 0.05) and OpenXBoAW features (p < 0.01) and
the combined results (p < 0.002).

Table 3: Dev set performance with OpenSMILE features: UAR
(%) for four types of training sets.

Training set
Classifier IncE ExcER ExcE All

Linear SVC (10−4) 40.72 40.88 47.83 46.03
Linear SVC (10−3) 41.15 42.11 43.33 49.02
Linear SVC (10−2) 36.79 41.35 44.92 45.47

Table 4: Equivalent of Table 3 for OpenXBoAW features. Dev
set performance: UAR (%) for four types of training sets

Training set
Classifier IncE ExcER ExcE All

Linear SVC (10−4) 36.38 39.16 41.28 41.99
Linear SVC (10−3) 37.62 38.95 46.87 40.24
Linear SVC (10−2) 36.16 39.01 42.28 39.93

In another experiment with OpenSMiLE features and the
Linear SVC (complexity = 10−2), the Dev set is split into four,
approximately-equal-size subsets of stories, and one of them is
left out for testing. The other three are used for training (only
those segments that do not have emotion words). These four
splits are named ExcD1 to ExcD4 depending on the subset that
is left out for testing. The UARs for these splits are given in
Table 5. Finally, a model is trained on the combined Train and
Dev sets, with speech segments that do not have emotion words.
The ESC baseline is 49.0%, which was obtained using only text

features. The UAR for this model’s predictions of valence on
the Test set, as returned by the challenge website, is 36.3%.
The value being below the baseline is not unexpected as text
features have not been used yet. Our experiments with other
features (e.g. Dynamic Mode Decomposition [28]) suggest that
text features show a very large improvement (57% on Dev Set)
even though the features themselves were not performing well.
Thus, we choose to measure the impact of acoustic features
without fusing text features. Our result of 36.3% is compara-
ble to the best UAR among the baseline results that use only
acoustic features (36.9%). Since our approach locates emotion
words, and text features also consider emotion words, fusing the
two sets requires further analysis, which is in progress.

Table 5: Dev set and test performance with OpenSMILE and
Text features fused: UAR (%) for Linear SVC (complexity =
10−2). Training segments with emotion words are excluded.

Dev Subsets of Dev Set Test
ExcE ExcD1 ExcD2 ExcD3 ExcD4 set

44.92 36.67 25.00 51.15 45.44 36.30

4. Conclusion
In this paper, we examined the effect of emotion words on the
unweighted average recall of valence for several classifiers op-
erating on acoustic features. We proposed that the training set
should be selected based on the presence of emotion words. For
equal sizes of training sets, excluding speech segments with
emotion words results in improved performance compared to
including them. In practice, the number of speech segments
with emotion words is a small fraction of the total number of
segments. Consequently, the size of the training set that ex-
cludes emotion words is only slightly smaller than the complete
training set. Thus, only a minor difference in performance is
expected between the two sets. Even so, the best UAR with
OpenXBoAW features was obtained when the training set ex-
cluded emotion words. In summary, emotion words in speech
segments affect acoustic features, and their influence on the per-
formance of valence-classification needs to be accounted for.
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