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A B S T R A C T

Smooth Projective Hash Functions (SPHFs) as a specific pattern of zero

knowledge proof system are fundamental tools to build many efficient

cryptographic schemes and protocols. As an application of SPHFs,

Password-Based Authenticated Key Exchange (PAKE) protocol is well-studied

area in the last few years. In 2009, Katz and Vaikuntanathan described the

first lattice-based PAKE using the Learning With Errors (LWE) problem.

In this work, we present a new efficient ring-based smooth projective hash

function “(Ring-SPHF)” using Lyubashevsky, Peikert, and Regev’s dual-style

cryptosystem based on the Learning With Errors over Rings (Ring-LWE)

problem. Then, using our ring-SPHF, we propose an efficient password-based

authenticated key exchange “(Ring-PAKE)” protocol over rings whose security

relies on ideal lattice assumptions.

c© 2019 ISC. All rights reserved.

1 Introduction

D uring the past few years, lattice-based cryptog-
raphy has been known for its numerous construc-

tions and cryptographic protocols beside strong secu-
rity proofs, resistance to quantum attacks, flexibility
for fully homomorphic encryption [1] and efficiency
with competitive performance among classical schemes
which are established by integer factoring problem
(IFP) and discrete logarithm problem (DLP). In par-
ticular, the learning with errors over rings (ring-LWE)
[2, 3], as a lattice problem, is used for development
of secure and efficient lattice-based primitives based
on rings. However, there still has been little work on
developing ring-based schemes and protocols in real-
word applications using ideal lattices. In addition, the
ring-LWE is the core of the security of cryptographic
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protocols on ideal lattices [1, 2, 18, 25, 36, 38]. Cramer
and Shoup introduced a primitive, called “Smooth
Projective Hash Function” (SPHF) [4], in order to
obtain hash proof systems for IND-CCA security. Gen-
naro and Lindell proposed a generalized SPHF [5]
for its many attractive properties and purposes such
as implicit designated-verifier proofs of membership
[6, 8]. On the other hand, there is a useful applica-
tion of SPHF, called “Password-Based Authenticated
Key Exchange” (PAKE) protocol. It was presented by
Katz, Ostrovsky, and Yung [9] and also Gennaro and
Lindell [5] which is known as the KOY-GL paradigm.

By a common password for the parties of a spe-
cific key exchange, a PAKE protocol is established. A
PAKE provides security against offline dictionary at-
tacks (formally, Bellare-Pointcheval-Rogaway (BPR)
model [10]), and this setting, even with low-entropy
passwords, prevents from users impersonation. More-
over, for a PAKE, a secure server equipped with
password-based authentication can provide security
against online dictionary attacks such that an attacker
tries to impersonate a user using each possible pass-
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word. PAKE protocols, as a rare cryptographic primi-
tive for real-word applications like the Internet, have
been standardized [12] and widely deployed [13].

Recent advances in PAKE protocols, especially the
improvement of password-based protocols, put them
in a superior position for researchers. A hybrid model
based on password and public keys is described in [14,
15]. A password-only model based on only a password
with heuristic security is initiated in [16]. In particular,
PAKEs with provable security in the random oracle
model and formal models are shown in [10, 17, 19, 20].
The first inefficient PAKE in the standard model is
presented in [19] and its improvement with weaker
notion of security is shown in [21] but similarly it is
impractical. The first efficient PAKE in the standard
model with provable security is proposed in [9] and
its variants are given in [22–24, 26, 27]. A Common
Reference String (CRS) is needed for these protocols
and a PAKE in the CRS model is presented in [28].

Lattice-based cryptography and its efficient proto-
cols are appealing. The use of lattice assumptions and
recognized worst-case to average-case connections be-
tween lattice problems for proof of security have put
lattices in excellent position in practice. Until recently,
constructing SPHF from lattice assumptions based
on LWE and SIS problems has remained open. The
only exception and the first PAKE using SPHFs in
the standard model based on lattices is proposed in
[29]. In this protocol, first, an approximate SPHF is
constructed, and then, a PAKE is derived from it. The
most technically effortful aspect of this protocol is
the designing of a lattice-based IND-CCA encryption
scheme with an associated approximate SPHF. How-
ever, this development has a critical downside: it only
works for a specially appointed dialect of ciphertexts.
Concretely, the corresponding decryption procedure
needs to be tweaked, now requiring q trapdoor inver-
sion attempts, where q is the modulus of theof the
underlying Learning With Errors (LWE) problem [40].
In this paper, we have investigated this issue.

As we mentioned earlier, far less consideration has
been paid to key exchange protocols for real-world
communications from ideal lattice assumptions and as
we can see almost all standards for cryptographic prim-
itives are still designed around classical mechanisms
such as RSA [30] and Diffie-Hellman [31]. However,
some recent proposals such as [38–40], are promising.
These methods are generally based on random oracles
and standard proofs. Precisely, [38, 40] are based on
standard model and [39] is based on ROM. The ran-
dom oracle model is a heuristic approach that assumes
the existence of a truly random function to which all
parties involved in a protocol, good and bad alike,
have access. Since in reality no such function exists,

random oracles are instantiated with hash functions
and one heuristically assumes that a hash function
behaves good enough to be a replacement for random
oracles. Random oracles are nice as they allow proving
security of protocols while they are still practically
efficient. Since there are theoretical results showing
that there are protocols that are secure in the ran-
dom oracle model but trivially insecure whenever the
random oracle is instantiated with any hash function,
standard model constructs, i.e., constructs that do not
rely on random oracles, are nicer from a theoretical
perspective. Standard model means that the proto-
cols only rely on standard cryptographic assumptions
(DDH, CDH, ...) in their proofs.

1.1 Our Contributions

To the best of our knowledge, by now building ring-
based SPHF and ring-based PAKE based on the ring-
LWE are open questions. Fortunately, in certain set-
tings we can generalize existing classical schemes to
lattice-based mechanisms without loss of security since
lattice-based problems have very various mathemati-
cal properties than IFP and DLP. In this work, using
ideas and modifications of [2–5, 7, 9, 11, 29], we give
efficient ideal lattice-based schemes for fundamental
asymmetric tasks such as ring-based smooth projective
hash function (ring-SPHF) and password-based au-
thenticated key exchange protocol (ring-PAKE) that
are suitable for real-word applications like the Inter-
net. Our proposals can all be proved secure (in the
standard model) based on the believed difficulty of
the ring-LWE problem.

1.2 Organization

The rest of this paper is formed as follows.

• In Section 2, we recall the necessary mathemat-
ical and cryptographic background and we give
some supporting lemmas with respect to the
ring-LWE problem.

• In Section 3, we propose the details of our new
ring-SPHF from ideal lattices for constructing
our ring-PAKE.

• In Section 4, we present and analyze our new
secure 3-round ring-PAKE using our ring-SPHF.

• Section 5 concludes the paper.

2 Preliminaries

For l ∈ Z+ ∪ {0}, we assume [l] denote the set
{0, 1, ..., l−1}. For k ∈ R, we define bke = bk+1/2c ∈
Z. For an integer q > 1, we define by Zq the quotient
ring Z/qZ, that is, the ring of cosets k + qZ with the
induced addition and multiplication operations. For
any x̄ ∈ R/Z, we assume [[x̄ ∈ R]] denote the unique
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representative x ∈ (x̄ + Z) ∩ [−1/2, 1/2). Moreover,
for x̄ ∈ Zq, we let [[x̄]] be the unique representative
x ∈ (x̄ + qZ) ∩ [−q/2, q/2). Furthermore, [[.]] can
be extended entrywise to vectors and matrices. By
rad(a), we denote the radical of a positive integer a,
i.e., it is the product of all primes dividing a. For
a vector v over R or C, the l2 norm is defined as
||v||2= (

∑
i|vi|2)1/2, and the l∞ norm is defined as

||v||∞= maxi|vi|. The largest singular value and the
smallest singular value for an n-by-n matrix M are
shown by s1(M) and sn(M), respectively. Powerful
basis, power basis, decoding basis, principal and
fractional ideal are defined in [32].

2.1 Ring-LWE

The learning with errors over rings (ring-LWE) prob-
lem and its toolkit were introduced by Lyubashevsky,
Peikert, and Regev in [2, 3], respectively as a gener-
alization of the learning with errors (LWE) problem
[32]. Here, we recall the discretized (normal) form
of the ring-LWE probability distribution and deci-
sion/search version on ideal lattices, such that all ele-
ments are from the cyclotomic ring R or Rq = R/qR,
and the discretized error distribution is used for the
secret sampling.

Definition 1 (Ring-LWE Distribution, [33]).
For an s ∈ R and a distribution χ over R, a sample
from the ring-LWE distribution As,χ over Rq ×Rq is
generated by choosing a← Rq uniformly at random,
choosing e← χ, and outputting (a, b = a.s+ e).

Definition 2 (Decisional Ring-LWE, [33]). In
the “decision” version of the ring-LWE problem (R-
DLWEq,χ) we want to distinguish independent sam-
ples between As,χ, where s ← χ is sampled once
and for all, and the same number of “uniformly ran-
dom” independent samples from Rq × Rq with non-
negligible advantage.

Theorem 1 ([2]). Let R be the mth cyclotomic ring
with dimension n = ϕ(m). Let α = α(n) <

√
logn/n,

and let q = q(n), q = 1 mod m be a Poly(n)-bounded
prime such that αq > ω(

√
logn). There is a Poly(n)-

time quantum reduction from Õ(
√
n/α)-approximate

SIVP (or SVP) on ideal lattices in R to solving R-
DLWEq,χ given only l − 1 samples, where χ = bψe
and ψ is the Gaussian distribution (m̂/g).Dζq for ζ =
α.(nl/log(nl))1/4.

Notice that, there is the search (computational)
version of the ring-LWE in order to better parameters
in applications because it is hard for the fixed error
distribution ψ = (m̂/g).Dαq, where αq > ω(

√
logn).

In the search problem we want to find the secret s
given arbitrary many ring-LWE samples [2].

In ideal lattice-based constructions, the behavior of

errors is analyzed by the notion of subgaussian random
variables [33]. For any γ > 0, a random variable X
(or its distribution) over R is said to be γ-subgaussian
with parameter r > 0, if for all y ∈ R, the (scaled)
moment-generating function satisfies:

E[exp(2πyX)] 6 exp(γ).exp(πr2y2).

For all y > 0, by Markov’s inequality, X has Gaus-
sian tails:

Pr[|X|> y] 6 2exp(γ − πy2/r2).

For E[X] = 0 and |X|6 B, B-bounded centered
random variable X, we have X as a 0-subgaussian
with parameter B

√
2π.

The concept of subgaussianity can be extended to
vectors. In particular, a random real vector X is said
to be γ-subgaussian with parameter r if for all real
unit vectors u, the random variable < u,X >∈ R is
γ-subgaussian with parameter r. In general, we can
take X and u from any real inner product space.

We now present some technical lemmas and results
with respect to the ring-LWE problem that will be used
to prove correctness, smoothness, and security of our
ring-SPHF and ring-PAKE. Notice that for a positive
integer index m, K = Q(ζm) and R = Z[ζm] ⊂ K are
themth cyclotomic number field and ring, respectively
where ζm is an abstract element with order m. (See
[2] for more details about algebraic number theory
background, special properties of cyclotomic number
fields, and Gaussians on ideal lattices and ring-LWE
problem.)
Lemma 1 (Lemma 2.8 from [3]). For any n-
dimensional lattice L and s > 0, a point sampled from
discrete Gaussian distribution DL,s has Euclidean
norm at most s

√
n, except with probability at most

2−2n.
Lemma 2 (Lemma 2.9 from [3]). There is an efficient
algorithm that samples to within negl(n) statistical
distance of DL+c,s, given c ∈ H, a basis B of L, and a

parameter s > maxj ||b̃j ||.ω(
√

logn), where B̃ = {b̃j}
is the Gram-Schmidt orthogonalization of B and the
subspaceH ⊆ Rs1×C2s2 for some numbers s1 +2s2 =
n is defined as:

H = {(x1, ..., xn) ∈ Rs1 × C2s2 :

xs1+s2+j = x̄s1+j ;∀j ∈ [s2]} ⊆ Cn.

such that H is isomorphic to Rn as an inner product
space.
Lemma 3 (Lemma 2.23 from [3]). Let p and q be pos-
itive coprime integers, and b.e be a valid discretization
to (cosets of) pR∨, where R∨ ⊂ K is the dual ideal of
the cyclotomic ring R = Z[X]/φp(X) such that pR∨ ⊆
R ⊆ R∨, with pR∨ ≈ R for pth cyclotomic polynomial
φp(X). There exists an optimal transformation that on
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input w ∈ R∨p and a pair in (a′, b′) ∈ Rq ×KR/qR
∨,

outputs a pair (a = pa′ mod qR, b) ∈ Rq ×R∨q , where
KR = K ⊗Q R is isomorphic to H, with the following
guarantees: if the input pair is uniformly distributed
then so is the output pair; and if the input pair is dis-
tributed according to the ring-LWE distribution As,ψ
for some (unknown) s ∈ R∨ and distribution ψ over
KR, then the output pair is distributed according to
As,χ, where χ = bp.ψew+pR∨ .
Lemma 4 (Lemma 2.24 from [3]). Let p and q be
positive coprime integers, b.e be a valid discretization
to (cosets of) pR∨, and w be an arbitrary element in
R∨p . If R-DLWEq,ψ is hard given some number l of
samples, then so is the variant of R-DLWEq,ψ in which
the secret is sampled from χ := bp.ψew+pR∨ , given
l − 1 samples.
Claim 1 (Claim 4.2 from [3]). The length of each
element pj of −→p in l∞ norm is ||pj ||∞= 1, and in

l2 norm is ||pj ||2=
√
ϕ(m) =

√
n, where −→p is the

powerful Z-basis of R.
Lemma5 (Lemma 6.2 from [3]). The spectral norm of
−→
d is s1(

−→
d ) =

√
rad(m)/m, where

−→
d is the decoding

Z-basis of R∨.
Lemma 6 (Lemma 6.5 from [3]). Let I = (R∨)k for

some k > 1, let a ∈ I and write a =< m̂1−k−→d ,a >
for some integral coefficient vector a, and let q > 1
be an integer. If every coefficient aj ∈ [−q/2, q/2),
then [[a mod qI]] = a. In particular, if every aj is γ-
subgaussian with parameter s, then [[a mod qI]] = a
except with probability at most 2n.exp(γ − πq2/(2s)2).
Lemma 7 (Lemma 6.6 from [3]). Let I = (R∨)k for
some k > 1, and let a ∈ I.

• Writing a =< m̂1−k−→d ,a > for some in-
tegral vector a, we have that every |aj |6
m̂k−1

√
n.||a||2.

• If a is γ-subgaussian with parameter s, and b ∈
(R∨)l for some l > 0 is arbitrary, then writing

a.b =< m̂1−k−l−→d , c > for some integral vector
c, we have that every cj is γ-subgaussian with
parameter m̂k+l−1||b||2.s.

Corollary 1 (Leftover hash lemma, Corollary 7.5
from [3]). Let R be the ring of integers in the mth cy-
clotomic number field K of degree n, and q > 2 an
integer. For positive integers k 6 l 6 Poly(n), let A =
[I[k]|Ā] ∈ (Rq)

[k]×[l], where I[k] ∈ (Rq)
[k]×[k] is the

identity matrix and Ā ∈ (Rq)
[k]×[l−k] is uniformly ran-

dom. Then, with probability 1− 2−Ω(n) over the choice

of Ā, the distribution of A−→x ∈ R[k]
q where each coordi-

nate of −→x ∈ R[l]
q is sampled from a discrete Gaussian

distribution of parameter r > 2n.q(k/l)+2/(nl) over R,
satisfies that the probability of each of the qnk possi-
ble outcomes is in the interval (1± 2−Ω(n))q−nk, and
in particular, is within statistical distance 2−Ω(n) of

uniform distribution over R
[k]
q .

We assume the distance of a vector z ∈ Rq from
the lattice L(A) is denoted by dist(z,L(A)). Lemma

8 shows that for most matrices A ∈ R
{1,...,l}
q , the

fraction of vectors z ∈ Rq that are very close to L(A)
is very small. We give outline of the proof of Lemma 8
for arbitrary lattices and using Corollary 1 this lemma
and its proof can be adapted quite well to the ring-
LWE case.
Lemma 8 (Adapted from [29]). Let n, q, and m be
integers such that m > nlogq. Let A ∈ Zm×nq , z ∈ Zmq ,
and e ← DZm,s. For all but a negligible portion of
matrices A:

Prz←Zm
q

[dist(z,L(A)) 6
√
q/4] 6 q−(m+n)/2.

Proof. Let d be a free variable that will be optimized
at the end of the proof. We want to find an upper
bound for:

PrA,z[dist(z,L(A)) 6 d]

This may be re-written as:

PrA,z [∃s ∈ Zn
q , ∃e ∈ Zm with ||e||6 d : z = A ∗ s+ e mod q].

By the union bound, this is smaller than:∑
s

∑
e

PrA,z[z = A ∗ s+ e mod q] =∑
s

∑
e

q(−m) ≈ q(n−m).dm/(
√
m)m.

In the last step, we use a bound on the number of
integer points in the ball of radius d. This is indeed
small for the d.

Moreover, for a matrix A ∈ R{1,...,l}q and a vector
z ∈ Rq, we assume the statistical distance between
the uniform distribution on Rq and the distribution
of (−→e A,−→e z) is denoted by ∆s(A, z), where −→e =
(e1, ..., el) ∈ (R∨){1,...,l}. Lemma 9 shows a converse
statement of Lemma 8. That is, if z and all its non-
zero multiples are far from the ideal lattice L(A), then
−→e A does not reveal any information about −→e z. More
generally, given −→e A, then −→e z is statistically close to
the random.
Lemma 9. Let R,n, q, k, l, and A be as in Corollary 1.
For small enough d, if z ∈ Rq is such that for all non-
zero constant polynomial a ∈ Rq, dist(az,L(A)) > d,
then ∆s(A, z) 6 negl(n).

Proof. Let B = [A|z], that is, we attach the vec-
tor z and all its multiples to the ideal lattice L(A).
By a generalization of Corollary 1, the distribution
of B−→x ∈ Rq is within statistical distance 2−Ω(n)

of uniform over Rq, where each coordinate of −→x is
drawn from a discrete Gaussian distribution of pa-
rameter s > 2n.qk/l+2/(nl) over R, then ∆s(A, z) 6
negl(n).
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2.2 Dual-Style Cryptosystem

The dual LWE encryption was first introduced in [34],
and its ring-based variant is presented in [3] which is
called dual-style cryptosystem. In these two dual sys-
tems, the public key is statistically close to uniform,
whereas ciphertexts are only pseudorandom and have
unique encryption randomness, i.e., the systems have
dual properties to LWE-based cryptosystem [32]. We
know by Claim 1 [32], the elements of R with the pow-
erful basis −→p have maximum length

√
n, so we can

use the algorithm from Lemma 2 for sampling, that
is, the discrete Gaussian distribution DR,r for some
r >
√
n.ω(
√

logn) is used in the key generation algo-
rithm. Now let l > 2 and let principal and fractional
ideal (R∨)k =< t−k >, the dual-style cryptosystem is
defined as follows.

• Gen(1l): choose a0 = −1 ∈ Rq and uniformly
random and independent a1, ..., al−1 ∈ Rq, and
independent x0, ..., xl−1 ← DR,r. Output −→a =

(a1, ..., al−1, al = −
∑
i∈[l] aixi) ∈ R

{1,...,l}
q as

the public key, and −→x = (x1, ..., xl−1, xl = 1) ∈
R{1,...,l} as the secret key.

• Enc−→a (µ∈Rp): choose independent e0, ..., el−1 ←
bp.ψepR∨ , and el ← bp.ψet−1µ+pR∨ . Let −→e =

(e1, ..., el) ∈ (R∨){1,...,l}. Output ciphertext
−→c = e0 ∗ −→a +−→e ∈ (R∨q ){1,...,l}.

• Dec−→x (−→c ): compute d = [[< −→c ,−→x >]] ∈ R∨,
and output µ = t.d mod pR.

Lemma10 (Lemma 8.1 from [3]). If r > 2n.q1/l+2/(nl),
then the dual-style cryptosystem is IND-CPA secure
assuming the hardness of R-DLWEq,ψ given l + 1
samples.

By Corollary 1, Lemma 3, and Lemma 4 the proof of
Lemma 10 is obvious. We can refer to [3] for the full
proof.
Lemma 11 (Lemma 8.2 from [3]). Suppose that
for any c ∈ R∨p , bp, ψec+pR∨ is γ-subgaussian
with parameter s for some γ = O(1/l), and q >
s
√

(r2l + 1)n.ω(
√

logn). Then decryption is correct
with probability 1 − negl(n) over all the randomness
of key generation and encryption.

The proof of Lemma 11 is obtained by Lemma 1,
Lemma 5, Lemma 6, and Lemma 7. We can refer to
[3] for the full proof.

2.3 Ring-Based Smooth Projective Hash
Functions

Cramer and Shoup introduced smooth projective hash
functions [4]; we improve and adapt the treatment
of Katz and Vaikuntanathan [29], who extended the
scheme of Gennaro and Lindell [5] based on lattices.

We assume there are sets X,L ⊂ X, and a subset

L̄ ⊆ L; approximate correctness is guaranteed for
x ∈ L̄, while smoothness is guaranteed for x ∈ X\L.
Let (Gen,Enc−→a , Dec−→x ) be a CPA-secure (labeled)
dual-style encryption system and let Rp be message
space (dictionary of passwords in our application to
ring-PAKE) that can be recognized efficiently. The
dual-style cryptosystem defines a notion of ciphertext
validity such that:

• By only pk = −→a , we can determine validity of
a ciphertext with respect to −→a .

• All honestly created ciphertexts are valid.
• There is no decryption failure.

Let (pk = −→a , sk = −→x ) be a key pair of Gen(1l)
and let C be the set of valid ciphertexts regard to −→a .
The details of sets X, {L̄µ}µ∈Rp

, and L̄ are as follows.

X = {(label,−→c , µ) : label ∈ R;−→c ∈ C;µ ∈ Rp},
L̄µ = {(label, Enc−→a (label, µ), µ) : label ∈ R} ⊂ X.

For µ ∈ Rp, L̄µ is the set of honestly created encryp-
tions of µ using any label, and L̄ =

⋃
µ∈Rp

L̄µ.

Lµ = {(label,−→c , µ) : label ∈ R;Dec−→x (label,−→c ) = µ},
and set L =

⋃
µ∈Rp

L̄µ. In addition, we have L̄µ ⊆ Lµ
for all µ, and for any ciphertext −→c and label ∈ R, we
have at most one µ ∈ Rp for which (label,−→c , µ) ∈ L.

Now we define a ring-based SPHF. A family of sets
of keyed functions {Hk : X → R∨}k∈K , as well as
a projection function α : K × (pR∨ × C) → S is
called a “ring-based approximate smooth projective
hash function” (ring-SPHF) with the following notions
of (approximate) correctness and smoothness, where
Hk(y) = (r0, r1, ..., rn−1) ∈ R∨ for y ∈ X. Notice that
based on the efficiency of ideal lattices, all operations
can be performed in time Õ(n) and the size of the
digest is Õ(n) [35]. Moreover, based on the structure
of ideal lattices, Hk’s will be collision-resistance [35].

• Approximate correctness : As in [29], we
require only approximate correctness for y =
(label,−→c , µ) ∈ L̄, then the value of Hk(y) is ap-
proximately obtained by α(k, label,−→c ) and y.
In addition, the projection function α should be
a function of label,−→c only.

• Smoothness : Given α(k, label,−→c ) and y, if
y ∈ X\L then, the value of Hk(y) is statistically
close to uniform (assume k ∈ K is sampled
uniformly).

Here, we give the formal definition of ring-based
approximate smooth projective hash function by a
sampling algorithm and given −→a .

Definition 3. We say that (K,G,H = {Hk : X →
R∨}k∈K , S, α : K × (pR∨ × C)→ S) is a ring-SPHF
such that:

• Using efficient algorithms in [2, 3]:
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(1) we can compute Hk(y) for all y ∈ X and
k ∈ K,

(2) we can sample a uniform k ∈ K, and
(3) we can compute α(k, label,−→c ) for all k ∈

K and (label,−→c ) ∈ pR∨ × C.
• For y = (label,−→c , µ) ∈ L̄ we can compute the

value ofHk(y) approximately by α(k, label,−→c ),
relative to the statistical distance. In particular,
let ∆(a, b) denote the statistical distance of two
variables a, b as vectors in R∨, then we have an
efficient algorithm H ′ that takes as input s =
(k, label,−→c ) and y′ = (label,−→c , µ, r) for which
−→c = Enc−→a (label, µ, r) and satisfies:

∆(Hk(y), H ′(y′, s)) 6 negl(n).

• For any y = (label,−→c , µ) ∈ X\L, the following
two distributions have statistical distance neg-
ligible in n:

{k ← K; s = α(k, label,−→c ) : (s,Hk(y))},

and

{k ← K; s = α(k, label,−→c ); v ← R∨ : (s, v)}.

3 Ring-SPHF Using Ideal Lattices

Now we explain our main results for constructing of a
SPH system over rings (ring-SPHF) using ring-LWE
problem on ideal lattices.

Assume a public key A = −→a = [I[k]|Ā] ∈ R{1,...,l}q

is chosen for the system such that k = 1 and Ā ∈
R
{1,...,l−1}
q . Let Rp be a dictionary. Let sets X, L̄µ,

and Lµ be as defined in Section 2.3, and let r be such
that

√
n.ω(
√

logn) 6 r.

A key for the ring-SPHF is −→x = (x1, ..., xl) ∈
R{1,...,l} where each xi ← DR,r is drawn indepen-
dently.

• We know the projection set S = Rq. The projec-
tion is α(−→x ) = α(x1, ..., xl) = al ∈ Rq for a key
−→x = (x1, ..., xl) ∈ R{1,...,l}, where al = A−→x .

• Now, the ring-SPHF H = {Hk}k∈K is defined.
We have a key −→x = (x1, ..., xl) ∈ R{1,...,l} = K
and a ciphertext y = (label,−→c , µ) as input, the
hash function is given as follows:

h = Hk(y) = [[< y,−→x >]] ∈ R∨,

where h = (a0, a1, ..., an−1) ∈ R∨ as a vector.
• On input a projected key al ∈ S, a ciphertext
y = (label,−→c , µ) and a witness e0 ∈ Rq for
the ciphertext, the hash function is executed as
follows:

h′ = H ′al(y, e0) = [[al ∗ e0 + el]] ∈ R∨,

where h′ = (b0, b1, ..., bn−1) ∈ R∨ as a vector.
Theorem 2. Let the parameters n, l, q, p, and r be
as defined in Section 2. Then, H = {Hk}k∈K is a

ring-based approximate smooth projective hash system
(ring-SPHF).

Proof. Clearly, using ring-LWE toolkit [3], the fol-
lowing processes can all be done in polynomial time:

• A uniform key for the hash function −→x =
(x1, ..., xl)← DR,r is sampled.

• The hash function H on input the key −→x =
(x1, ..., xl) and a ciphertext y is computed.

• The projected key A−→x = α(x1, ..., xl) is com-
puted.

• Using the projected key al, a ciphertext y, and
a witness e0 for the ciphertext y, the hash func-
tion is computed.

Now, approximate correctness is shown. We have any
(label,−→c , µ) ∈ L̄, where on input the message µ, the
dual-style cryptosystem gives a ciphertext −→c , i.e.,
−→c = e0 ∗ −→a + −→e ∈ R

{1,...,l}
q where according to

Lemma 1, ||xi||26 r
√
n and ||xl||2= ||1||2=

√
n.

We first show that the values h (performed using
the key) and h′ (performed using the projected key)
are close, that is, h and h′ have statistical distance
negligible in n. More precisely, we show that the val-
ues h and h′ are statistically indistinguishable from
uniform, i.e.

∆(h,U) 6 negl(n) and ∆(h′,U) 6 negl(n),

then,
∆(h, h′) 6 negl(n).

Based on Corollary 1 (leftover hash lemma) and
Lemma 10, al = A−→x is statistically indistinguish-
able from uniform, so clearly h′ = [[al ∗ e0 + el]] is
statistically close to the uniform.

On the other hand, according to Lemma 2, −→x
is statistically indistinguishable from uniform and
according to Lemma 3 and Lemma 4, −→c is statis-
tically indistinguishable from uniform, so clearly
h = [[< y,−→x >]] is close to the uniform. Therefore,
∆(Hk(y), H ′al(y, e0)) 6 negl(n). This shows approxi-
mate correctness (h = h′).

We now show smoothness. Recall each coefficient
of polynomials h and h′ is in Z, so we can show h and
h′ as vectors in Z. Consider any y = (label,−→c , µ) ∈
X\L. By definition of L, this reveals that the decryp-
tion process on input (label,−→c , µ) and any possible
secret key sk = −→x , outputs either ⊥, or a message
µ′ 6= µ. We explain the two cases:

• The decryption algorithm gives ⊥. This reflects
that for the constant polynomial a ∈ Rq, the
vector az is far from the ideal lattice L(B). So,
az must be close to the ideal lattice L(B).

• The decryption algorithm gives a message µ′ 6=
µ. This could occur only if there is an a′ ∈ Rq
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Table 1. Parallel comparison between the SPHF on arbitrary lattices and ring-SPHF on ideal lattices.

Scheme HashKey(K) ProjectedKey(S) Hashing ProjectiveHashing

s = α(e1, ..., ek) Hk = bi =

{
0 if zi < 0

1 if zi > 0
, H′ = bi =

{
0 if uTi s < 0

1 if uTi s > 0
,

k = (e1, ..., ek) = (u1, ..., uk), i = 1, ..., k i = 1, ..., k

SPHF[29] ∈ (Zm
q )k, ui = BT ei, zi = eTi [y − U.

(
1

m

)
] (u1, ..., uk) ∈ S,

ei ← DZm,r A = [B|U ] ∈ Zq , witness s ∈ Zn
q

c = (label, y,m)

s = α(−→x ) H′ = [[al ∗ e0 + el]]

k = −→x = (x1, ..., xl) = α(x1, ..., xl) Hk = [[< y,−→x >]] ∈ R∨,

Ring-SPHF ∈ R{1,...,l}, = al ∈ Rq , ∈ R∨, al ∈ S,

xi ← DR,r al = A−→x , y = (label,−→c , µ) witness e0 ∈ Rq

A = −→a = [I|Ā]

such that a′z′ is close to the ideal lattice L(B).
So, a′z′ must be far from the ideal lattice L(B).

Note that, according to an application of Lemma 8
and Lemma 9, az and a′z′ are uniformly random and
independent, because we utilize two honest CPA and
CCA-secure cryptosystems with meaningful decryp-
tion algorithm.

In Table 1, we summarize Katz and Vaikun-
tanathan’s SPHF [29] over arbitrary lattices based
on the LWE problem and our ring-SPHF over ideal
lattices based on the ring-LWE problem.

4 Ring-PAKE Using Ring-SPHF

In this section, a new efficient password-based authen-
ticated key exchange protocol over rings (ring-PAKE)
on ideal lattices from ring-SPHF is presented that its
structure is a modification and improvement of the
Katz and Vaikuntanathan’s framework [29] and its
security is defined based on the standard definition of
security for PAKE [19, 22, 27, 29]. Here, we describe
the details of the protocol and we show a high-level
overview of the 3-round ring-PAKE protocol as well.

The ring-based dual-style cryptosystem
∑′

with
associated ring-SPHF is used and an ideal lattice-
based CCA-secure encryption system such as [33] is
denoted by

∑
. In the ring-PAKE, there is a common

reference string (CRS) containing of public keys−→a ,
−→
a′

for
∑
,
∑′

, respectively. Moreover, as we know, the

ring-SPHF associated with
−→
a′ is shown by:

(K,G,H = {Hk : X → R∨}k∈K , S, α : K × (pR∨ × C)→ S).

For authenticating of a client instance to a server in-
stance, at first, a random string r is chosen by the client

and then it executes an encryption
−→
c′ = Enc−→

a′(w, r)

of the shared password w. Then, a random hash key
k′ ← K is sampled by the client and it selects the pro-

jected key s′ = α(k′, label′,
−→
c′ ). The client now sends

“Client‖
−→
c′ ‖s′” to the server.

After receiving the message “Client‖
−→
c′ ‖s′”, two

random hash keys k, k∗ ← K are sampled by the
server and it computes the projected keys s =

α(k, label′,
−→
c′ ) and s∗ = α(k∗, label′,

−→
c′ ). Then,

hash values Hk(
−→
c′ , w) ∈ R∨ and Hk∗(

−→
c′ , w) ∈ R∨

using the ciphertext
−→
c′ and the password w are

computed by the server. The value Hk∗(
−→
c′ , w) is

parsed as a sequence of three bit strings r∗j , ζ
∗
j , and

SK∗j where r∗j will be used as the random string
for an encryption. Here, the server sets “label =

Client‖Server‖
−→
c′ ‖s”, and encrypts the shared pass-

word w as −→c = Enc−→a (label, w, r∗j ). Then, the hash

value H(s′,−→c ) using the client’s projected key s′

is performed by the server, and it computes a tem-

porary session key tk = Hk(
−→
c′ , w) ⊕ H(s′,−→c ). In

addition, it computes ∆ = Ecc(Hk∗(
−→
c′ , w)) ⊕ tk

where Ecc : {0, 1}n → {0, 1}m, n < m is an appro-
priate error-correcting code. Finally, the message
“Server‖−→c ‖s‖s∗‖∆” is sent to the client by the server.

After receiving the message “Server‖−→c ‖s‖s∗‖∆”,

first, hash values Hk′(
−→c , w) and H(s,

−→
c′ ) using the

server’s projected key s and encryption value −→c are
computed by the client such that k′ is created in
the first round. Furthermore, the client computes

H(s∗,
−→
c′ ) using the server’s projected key s∗. Next, it

computes:

tk′ = Hk′(
−→c , w)⊕H(s,

−→
c′ ),
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Figure 1. The proposed scheme.

and
H ′ = Ecc−1(tk ⊕ tk′ ⊕∆).

Then, the client verifies the Hamming distance:

Ham(H ′, H(s∗,
−→
c′ )) 6 negl(n),

if not, the client terminates. Otherwise, it parse

H ′ to r∗i , ζ
∗
i , and SK∗i and computes

−→
c′′ =

Enc−→a (label, w, r∗i ). Next, the client verifies
−→
c′′ = −→c

such that −→c is generated in the second round, if it
is the case, the server is authenticated to the client,
and the client make a connection and sends ζ∗i to the

server, hence outputs the session key SK∗i , otherwise,
the client terminates.

After receiving the massage ζ∗i in the third round,
the server verifies ζ∗i = ζ∗j , if it is the case, the client
is authenticated to the server, and the server accepts
and outputs the session key SK∗j , otherwise, the server
terminates.

Correctness. In an honest execution of the ring-
PAKE and without adversarial interference, we show
that the client and server’s session keys are match and
common. We have:
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H ′ = Ecc−1(tk ⊕ tk′ ⊕∆)

where

tk = Hk(
−→
c′ , w)⊕H(s′,−→c ),

tk′ = Hk′(
−→c , w)⊕H(s,

−→
c′ ),

and

∆ = Ecc(Hk∗(
−→
c′ , w))⊕ tk.

Approximate correctness of the ring-SPHF (Theo-
rem 2), implies that:

Ecc−1(tk ⊕ tk′ ⊕∆) = Hk∗(
−→
c′ , w),

so it holds that r∗i = r∗j , ζ∗i = ζ∗j . Thus, the same
session key SK∗i = SK∗j is obtained for the client
and server. The security analysis of the ring-PAKE is
based on the main ideas of [22, 27, 29, 37] as follows.
Theorem 3. The Ring-PAKE provides session key
security based on the Ring-SPHF.

Proof. As we know, in the ring-PAKE protocol, we
use the dual-style cryptosystem which is associated
with the ring-SPHF, a CCA-secure cryptosystem,
and an Ecc as an appropriate error-correcting code.

For an adversary that observes interactions be-
tween the client and server (passive attack), the
shared session key is statistically indistinguishable
from uniform (pseudorandom). Clearly, this is be-
cause a CPA-secure encryptions of the password w
and the projected keys of the ring-SPHF are used for
the transcript of each interaction. For attackers that
manipulate the messages in interactions between
the client and server (active attack) such as man-in-
the-middle, assume an adversary and a client have
interactions with a password w.

• By the GK framework, if a ciphertext is sent
from the adversary to the client that does not
decrypt to the client’s password w, then ac-
cording to adversary’s view, the client’s session
key is statistically close to uniform. Therefore,
based on smoothness of the ring-SPHF (Theo-
rem 2), this condition holds.

• By a CCA-secure encryption scheme that we
use in the protocol, the probability that the at-
tacker can generate a new ciphertext that de-
crypts to the client’s password w is at most
Att./|Rp|+negl(n), where Att. is the number of
online attacks and Rp is the password dictio-
nary. Hence, based on the cyclotomic ringR and
parameter p on ideal lattices, this probability is
negligible in n.

5 Conclusion

In this work, we first presented a new efficient construc-
tion of a ring-based smooth projective hash function
(ring-SPHF) on ideal lattices using ring-LWE problem
based on ideas of Katz and Vaikuntanathan’s SPHF
on arbitrary lattices using LWE problem. Namely, we
built an improvement of the lattice-based SPHF and
analyzed its security based on ideal lattice assump-
tions.

Then, we proposed the first efficient password-based
authenticated key exchange (ring-PAKE) protocol
over rings using our ideal lattice-based ring-SPHF and
described its security.
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