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Abstract. At present, researchers have proposed many traffic flow models 

and research methods of traffic phenomena, but few of them are analyzed 

from the perspective of system stability. Therefore, this paper proposes a 

phase plane analysis method from the perspective of traffic flow stability. 

This method can describe the nonlinear traffic flow phenomenon on the road 

from the perspective of system global stability. The nonlinear system of the 

model is obtained by traveling wave substitution and Taylor expansion, and 

the equilibrium point of the model is solved by specifying the model 

parameters. According to the qualitative theory of differential equation, the 

model is further analyzed to judge the type and stability of equilibrium point. 

Finally, the simulation diagram is used for numerical verification. 
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1 Introduction 

The macroscopic model of traffic flow [1] [2] adopts Euler's point of view, which regards 

traffic flow as a compressible continuous fluid medium composed of many vehicles and uses 

macroscopic quantities such as vehicle density and flow rate to describe traffic flow laws. In 

numerical simulation, because the macroscopic model focuses on the lumped nature of 

vehicle flow, the simulation efficiency only depends on the selected numerical format, so it 

usually has high computational efficiency [3]. The macroscopic continuum model of traffic 

flow started from the LWR model of Lethilland and Whitham [4] [5], and Richard [6]. The model 

describes the traffic flow in terms of the average density 𝜌, the average velocity 𝑣 and the 

flow rate q.  

In 1995, Bando [7] proposed a classical microscopic model, the optimal velocity model: 

𝑑𝑣𝑛(𝑡)

𝑑𝑡
= 𝑎[𝑣(∆𝑥𝑛(𝑡)) − 𝑣𝑛(𝑡)]                    (1) 
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The letter 𝑎  represents the sensitivity coefficient. Later, Heling and Tile [8] et al 

improved the Bando model for defects such as large acceleration and unreasonable 

deceleration. On this basis, Liu [9] and others added the expected effect to study the impact of 

the driver's expected effect on the whole macro traffic flow and established the macroscopic 

hydrodynamic model: 

𝜕𝑣

𝜕𝑡
+ [𝑣 + 𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆]

𝜕𝑣

𝜕𝑥
= 𝑎[𝑉𝑒(𝜌) − 𝑣] − 𝑎𝑇𝜌2𝑉𝑒′(𝜌)

∆2

2
𝑣𝑋𝑋           (2) 

Based on the theory of phase plane analysis, this paper further studies the type and 

stability of the equilibrium point of the model considering the driver's expected response. 

The phase plane analysis is based on the traveling wave solution of the high-order traffic flow 

model proposed in the Lagrangian coordinate system, which is used to analyze and determine 

the type and stability of the equilibrium solution.  

The rest of this article is organized as follows. In the second section, we discussed the 

model and its derivation in detail. In the third section, we deduced the balance point type and 

stability of the model and discussed the classification and stability of the model balance point. 

In the fourth section, the numerical simulation of specified parameters is performed. The fifth 

section summarizes the full text. 

2 Model and its derivation 

We take the driver's expected response model established by Liu [9] to improve bando model 

as an example to analyze the complex traffic flow phenomenon. The model not only solves 

the problem of backward propagation in many high-order continuous models, but also can 

reproduce many complex traffic phenomena observed on the road. The model is composed 

of the following two equations, a local vehicle number conservation equation and an equation 

of motion: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑣)

𝜕𝑥
= 0                              (3) 

𝜕𝑣

𝜕𝑡
+ [𝑣 + 𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆]

𝜕𝑣

𝜕𝑥
= 𝑎[𝑉𝑒(𝜌) − 𝑣] − 𝑎𝑇𝜌2𝑉𝑒′(𝜌)

∆2

2
𝑣𝑋𝑋           (4) 

In the equation: 𝑉𝑒[𝜌(𝑥, 𝑡)]——The velocity function is optimized. 

Suppose that there are traveling wave solutions )(z and )(v z in the model, where 
ctx z is the traveling wave velocity 0c  . by using the above results and substituting 

them into equations (3) and (4), we can get the following results: 

−𝑐𝜌𝑧 + 𝑞𝑧 = 0                                    (5) 

−𝑐𝑣𝑧 + (𝑣 + 𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆)𝑣𝑧 = 𝑎(𝑉𝑒 − 𝑣) + (−𝑎𝑇𝜌2𝑉𝑒′(𝜌)
∆2

2
)𝑣𝑧𝑧        (6) 

From formula (5):  

𝑣𝑧 =
𝑐𝜌𝑧

𝜌
−

𝑞𝜌𝑧

𝜌2                               (7) 

Substitute (7) into equation (6) above, we can get the flowing equation: 

2
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−
𝜌𝑧

𝜌3 𝑞2 + [
(2𝑐+(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆))

𝜌2 𝜌𝑧 +
𝑎

𝜌
+

−𝑎𝑇𝜌2𝑉𝑒′(𝜌)
∆2

2

𝜌2 𝜌𝑧𝑧] 𝑞 =
(𝑐2+𝑐(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆))𝜌𝑧

𝜌
+

𝑎 𝑉𝑒(𝜌) +
𝑐(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)

∆2

2
)

𝜌
𝜌𝑧𝑧                               (8) 

In the formula (5), integrate with respect to z: 

−𝑐𝜌 + 𝑞 = 𝑐𝑜𝑛𝑠𝑡 = 𝑞∗                          (9) 

  𝑞 = 𝑞∗ + 𝑐𝜌                              (10) 

Then substituting (10) into (8), we can get: 

[
(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)

∆2

2
)

𝜌
(𝑞∗ + 𝑐𝑝) − 𝑐 (−𝑎𝑇𝜌2𝑉𝑒′(𝜌)

∆2

2
)] − 𝜌𝑧𝑧 − [

(𝑞∗+𝑐𝑝)2

𝜌2 −

(2𝑐+(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆))(𝑞∗+𝑐𝜌)

𝜌
+ (𝑐2 + 𝑐(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆))] 𝜌𝑧 + 𝑎(𝑞∗ + 𝑐𝜌) − 𝑎𝜌𝑉𝑒(𝜌) =

0  (11) 

Simplify the second order ordinary differential equation about 𝜌(𝑧): 

𝜌𝑧𝑧 − 𝐺(𝜌, 𝑞∗)𝜌𝑧 − 𝐹(𝜌, 𝑐, 𝑞∗) = 0                      (12) 

Among them: 

𝐺(𝜌, 𝑞∗) =
1

(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)
∆2

2
)

(
𝑞∗

𝜌
− (−𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆))                 (13) 

𝐹(𝜌, 𝑐, 𝑞∗) =
𝑎𝜌

(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)
∆2

2
)𝑞∗

[𝑞∗ + 𝑐𝜌 − 𝜌𝑉𝑒(𝜌)]                  (14) 

Let 
dz

d
y


 , equation (12) can be transformed into a system of first-order ordinary 

differential equations (or called nonlinear dynamic system): 

{

𝑑𝜌

𝑑𝑧
= 𝑦                                        

𝑑𝑦

𝑑𝑧
= 𝐺(𝜌, 𝑞∗)𝑦 + 𝐹(𝜌, 𝑐, 𝑞∗)

                     (15) 

3 The balance point type and stability of the model 

This section mainly discusses the equilibrium point of the model and its stability. If the right 

end of equation group (15) is zero, y = 0 and F = 0 can be obtained. Thus, the equilibrium 

point is determined (ρ𝑖 , 0). The linear system obtained by Taylor expansion of equation (15) 

at the equilibrium point is shown in equation (16). 

{
    ρ′ = 𝑦                                                                

𝑦′ = 𝐺(ρ𝑖 , 𝑞∗)𝑦 + 𝐹′(ρ𝑖 , 𝑐, 𝑞∗)(ρ − ρ𝑖)
                       (16) 

Therefore, the Jacobian matrix of the system at the equilibrium point can be obtained as: 
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𝐿 = [
0 1
𝐹𝑖

′  𝐺𝑖
]                                                                          (17) 

Accordingly, the Jacobian characteristic equation is: 


2 − 𝐺𝑖 − 𝐹𝑖

′ = 0                 (18) 

Where 𝐺𝑖 = 𝐺(ρ𝑖 , 𝑞∗) and 𝐹𝑖
′ = 𝐹′(ρ𝑖, 𝑐, 𝑞∗) . From (13) and (14) forms, we can get: 

𝐹𝑖
′ =

ρ𝑖

(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)
∆2

2
)𝑞∗

[𝑐 − ρ𝑖𝑉𝑒
′(ρ𝑖) − 𝑉𝑒(ρ𝑖)]                      (19) 

𝐺𝑖 =
𝑎

(−𝑎𝑇𝜌2𝑉𝑒′(𝜌)
∆2

2
)

[
𝑞∗

𝜌𝑖
− (−𝑎𝑇𝜌2𝑉𝑒′(𝜌)∆)]                       (20) 

According to the qualitative theory of differential equations, the balance point type of 

linear system (16) can be determined as follows: (a) When 𝐹𝑖
′ > 0, the balance point is a 

saddle point; (b) When𝐺𝑖
2 + 4𝐹𝑖

′ > 0and𝐹𝑖
′ < 0, the balance point It is a node; (c) When 

𝐺𝑖
2 + 4𝐹𝑖

′ < 0and 𝐺𝑖 ≠ 0, the balance point is the focus; (d) When 𝐹𝑖
′ < 0 and 𝐹𝑖

′ < 0, the 

balance point is the center. When z→ ±∞, the stability of the linear system at the saddle point 

is unstable; when  𝐺𝑖 < 0(𝐺𝑖 > 0) , the stability at the node and focal point, for z →
+∞(z → −∞) is stable. 

From the Hartman-Gorban linearization theorem, we know that the nonlinear system (15) 

and the linear system (16) have the same equilibrium point. Given any set of traveling wave 

velocity c  and traveling wave parameter 𝑞 , the equilibrium points ρ𝑖(𝑖 = 1,2) of the 

linear system (16) can be solved. Select the balance velocity function proposed in [10]: 

𝑉𝑒(ρ) = 𝑉𝑓 {[1 + 𝑒𝑥𝑝 (
ρ/ρ𝑚−0.25

0.06
)]

−1

− 3.72 × 10−6}                  (21) 

In the model, the parameter values are as follows:𝑉𝑓 = 30𝑚/𝑠, ρ𝑚=0.2veh/m, a=0.1𝑠−1, 

∆= 100m , 𝑇 = 0.5𝑠 . When ρ = 0, this is a trivial balance point and has no practical 

meaning, so this article only needs to discuss other balance points. From the above discussion 

and (19)-(20), the type and stability of the equilibrium point can be judged, as shown in Table 

1. 

Table 1. Types of equilibrium points and their stability when model parameters are given, ∆𝑖=𝐺𝑖
2 +

4𝐹𝑖
′, 𝑖 = 1,2. 

 
1  2  

 0.0938
 

0.1447
 

(c,𝑞∗) = (−1.371,0.2)
 0i , 0iG , spiral point  

Stable for z   

Unstable for z
 

0' iF
, saddle point 

Unstable for z  

 0.0223 0.0594 

(c,𝑞∗) = (−1.38,0.64)
 0' iF

, saddle point 

Unstable for z
 

0i , 0iG , spiral point  

Stable for z   

Unstable for z  
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4 Numerical simulation 

The two sets of parameters in Table 1 are selected to simulate the stability of the nonlinear 

system (15) at the equilibrium point. The phase plane near the equilibrium point is shown in 

Figure 1. (a)and Figure 1. (b)The balance point is (ρ𝑖,0), and i =1,2, ρ1 < ρ2.  

 

(a)                                   (b) 

Fig. 1. Phase plane y-  trajectory diagram, (a) where traveling wave velocity 371.1c , 

traveling wave parameter 𝑞∗ = 0.2.(b) where traveling wave velocity 38.1c , traveling wave 

parameter 𝑞∗ = 0.64 

Figure 1. (a) corresponds to the first case in Table 1. When z→ ±∞, the system is at the 

equilibrium point (ρ2, 0) is unstable, and the nearby tracks are far away from this point. 

When z→ +∞, several trajectories tend to focus (ρ1, 0) ; When z→ −∞, these trajectories 

are far away from the focus and eventually tend to infinity. It shows that when z→ ±∞, the 

system is stable at (ρ1, 0); when z→ −∞, the system is unstable at (ρ1, 0), the trajectory 

can be regarded as the system focus-saddle point solution. Figure 1. (b) corresponds to the 

first situation in Table 1. The system is unstable at the equilibrium point (ρ1, 0). When z→
+∞, the spiral line tends to focus (ρ2, 0), the system is stable at this point; When z→ −∞, 

away from the focus (ρ2, 0), the system is unstable at this point. The numerical results of 

phase planes in Figure 1(a) and Figure 1(b) are consistent with the theoretical analysis. 

5 Conclusion 

In this paper, traveling wave substitution is used to study the type and stability of equilibrium 

solutions of the improved Bando macro model. This paper selects two groups of parameters 

to describe the global distribution structure of the trajectory near the equilibrium point on the 

phase plane. Then, the stability of these equilibrium points is analyzed and described in detail. 

Finally, the results of the analysis are verified in the numerical simulation part, and the results 

are consistent with the theoretical derivation analysis. 
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