分析化学1

責任者・コーディネーター		分析化学分野 菔	泰本 康之 准教授		
担当講座·学科(分野)		分析化学分野			
対象学年	2				
期間	前期		区分・時間数	講義	16.5 時間
単位数		1 単位			

· 学習方針 (講義概要等)

医薬品や生体成分、環境物質を、その性質に基づいて分析するために必要な基礎的事項を原理から 学ぶ。分析科学入門で扱った水溶液中での物質の各種の化学平衡(酸塩基平衡、酸化還元平衡、キレート平衡)を基礎知識とし、試料中に存在する物質の定性・定量法を含む各種の滴定手法を学び理解 する。

・教育成果(アウトカム)

分析法のバリデーションを学び、個々のパラメーターが理解できるようになる。水溶液中の各種の化学平衡の知識を基盤とし、試料中に存在する物質を定量するための各種の滴定手法(中和滴定、非水滴定、酸化還元滴定、キレート滴定、沈殿滴定)を学ぶことを通して、原理と応用法が理解できるようになる。分配やイオン交換、無機イオンの定性反応を学び、化学物質の物理的・化学的性質の理解が深まる。 (ディプロマ・ポリシー: 2,7)

·到達目標(SBO)

- 1. 医薬品分析法のバリデーションについて説明できる。
- 2. 中和滴定の原理、操作法および応用例を説明できる。
- 3. 非水滴定の原理、操作法および応用例を説明できる。
- 4. 酸化還元滴定の原理、操作法および応用例を説明できる。
- 5. キレート滴定の原理、操作法および応用例を説明できる。
- 6. 沈殿滴定の原理、操作法および応用例を説明できる。
- 7. 分配平衡、イオン交換について説明できる。
- 8. 代表的な無機イオンの定性反応を説明できる。
- 9. 電気滴定について説明できる(☆)。

・講義日程

(矢) 東 102 1-B 講義室

月日	曜日	時限	講座(学科)	担当教員	講義内容/到達目標	
4/5	木	1	分析化学分野	藤本 康之 准教授	分析化学の基礎 1. 分析化学の概要について説明で きる。	

4/12	木	1	分析化学分野	藤本 康之 准教授	キレート滴定 1. キレート滴定の原理、操作法お よび応用例を説明できる。
4/19	木	1	分析化学分野	前田 正知 非常勤講師	酸・塩基と中和滴定 1. 中和滴定の原理、操作法および 応用例を説明できる。
4/19	木	3	分析化学分野	前田 正知 非常勤講師	非水滴定 1. 非水滴定の原理、操作法および 応用例を説明できる。
4/20	金	1	分析化学分野	前田 正知 非常勤講師	問題演習 1. 問題演習によって講義内容の理 解を促す。
4/26	木	1	分析化学分野	藤本 康之 准教授	酸化還元滴定 1. 酸化還元滴定の原理、操作法お よび応用例を説明できる。
5/10	木	1	分析化学分野	藤本 康之 准教授	沈殿滴定 1. 沈殿滴定の原理、操作法および 応用例を説明できる。
5/24	木	1	分析化学分野	藤本 康之 准教授	問題演習 1. 問題演習によって講義内容の理 解を深めることができる。
5/31	木	1	分析化学分野	藤本 康之 准教授	分配とイオン交換 1. 分配平衡、イオン交換について 説明できる。
6/21	木	1	分析化学分野	藤本 康之 准教授	無機イオンの定性反応 1. 代表的な無機イオンの定性反応 を説明できる。
6/28	木	1	分析化学分野	藤本 康之 准教授	電気滴定 1. 電気滴定について説明できる。

·教科書·参考書等(教:教科書 参:参考書 推:推薦図書)

	書籍名		著者名	発行所	発行年
教	コンパス分析化学	安井	裕之編	南江堂	2013
教	分析化学プラクティス(第2版)	安井	裕之、吉川豊編	京都広川書店	2011
参	スタンダード薬学シリーズ 2 物理系薬学 化学物質の分析	安井	裕之 編	南江堂	2015

·成績評価方法

定期試験(100%)によって評価する。

・特記事項・その他

- ・授業に対する事前学修として、教科書の該当箇所に目を通しておくこと。予習の時間は 30 分程度を目安とする。
- ・1年次の「分析科学入門」で扱った関連領域を復習しておく。
- ・毎回配布する講義資料の「確認問題」や最後に示す「本日のまとめ」をもとに復習を行なう。復習には予習以上に十分な時間と努力を要する(内容が理解できるまで取り組むこと)。
- ・毎回配布する講義資料の「練習問題」に取組み、全体の内容の理解を深める。
- ・確認問題、練習問題等については、可能な範囲で講義時に解説し、残りは解答を開示している (講義資料の末尾等に記載、または掲示)。
- ・内容への理解を促す目的で、講義の進行に応じて「問題演習」を 2 コマ分設定しており、問題演習 への取組、問題解法の解説を行う他、講義内容への疑問点等についてフィードバックを行う。

・授業に使用する機器・器具と使用目的

使用区分	機器・器具の名称	台数	使用目的
講義	書画カメラ・DVD プレーヤーセット(エルモ、 東芝、他))	1	講義資料の提示
講義	ノート型パソコン	1	資料作成、講義プレゼン用