病理学〈分子診断病理学分野〉

担当指導医師

●本学

教授: 菅井 有講師: 上杉 憲幸

助 教:鈴木 正通、小西 康弘、無江 良晴

基本方針:

分子生物学の進歩は、病理診断の領域にも大きな影響を与えている。病理診断は、今や分子病理診断の時代に入ったとも言われている。しかしながら、従来からの病理標本の肉眼及び組織診断の重要性は減少するものではない。病理診断はあくまで肉眼・組織標本の観察が主であり、分子生物学的手技を適当に組み合わせることにより、効果的になるものと思われる。そこで当科における臨床実習は以下の様に行うことにする。

実習内容:

1. 病理解剖

病理解剖は全身を観察し得る唯一の機会である。真摯な気持ちで執刀医と共に実際に 病理解剖を行う。病理解剖の診断レポートの作成を自ら行い、症例のまとめ方を学習す る。又、感染防御対策の実際を学ぶ。

2. 生検、外科材料の診断

外科病理の中心は生検診断にあり、病理医の日常業務の中心である。指導医(病理専門医)と共に実際に病理診断を行い、病理診断のマナーを学習する。即ち病理診断が単に組織診断のみではなく、患者の臨床情報や提出された標本の肉眼観察、各補助診断等、総合的に行われることを理解する。

3. 外科材料の切り出し

指導医とともに外科材料の切り出しを行い、病理診断における切り出しの重要性を理解する。また、切り出しを通じて、材料の基本的な取り扱い方(新鮮材料の扱い方、ホルマリン固定の仕方など)を学ぶ。

- 4. 病理診断の補助診断
 - (1) 免疫組織化学
 - (2) 電顕
 - (3) 遺伝子解析
 - (4) フローサイトメーターの手技や原理を理解し、外科病理への応用を学ぶ。機会があれば実際に機器を使用してみる。
- 5. 細胞診

細胞診の重要性は増す一方である。指導医や細胞検査士とともに実際に業務を行う。

6. カンファランス

当科と診療科との間で行われているカンファレンスに参加し、症例検討の意義を学ぶ。

7. Telepathology

岩手医大の関連病院と telepathology を行っているので、その機会があれば実際の運用等を学ぶ。

8. 医局行事 (医局会、抄読会 etc.)

医局会に参加し、実際に論文の読み方を学習する。更に機会があれば、実際に症例報告を論文にまとめる。

以上、診断病理は基礎病理学ではなく、臨床医学の一分野であることを理解して欲しい。

9. 備考

- (1) 実習に使用する機器
 - 1) PC 一式 (d330 SF/CT) : 高次臨床実習における講義資料作成に使用する。
 - 2) デジタル顕微鏡 (ライカ DMD108) : 高次臨床実習における病理標本の検鏡、 症例のディスカッションとに使用する。
 - 3) 卓上試薬棚(LQA-1500Ⅱ):臨床実習
 - 4) パソコン (MacBookPro MB991J/A) : 臨床実習と症例解析
 - 5) パソコン (iMac MB417.J/A) : 臨床実習と症例解析
 - 6) マイクロプレートミキサー (SI-0405) : 臨床実習及び DNA 解析の実習
 - 7) PyroMark Q24 システム(9001514): 臨床実習及び DNA 解析の実習
 - 8) ノートパソコン (MC813J/A) : 臨床実習における講義資料作成