ゲノムサイエンス

責任者・コーディネーター		機能生化学分野	中西 真弓 教授		
担当講座·学科(分野)		機能生化学分野			
対象学年		2			
期間		後期	区分・時間数	講義	12 時間
単位数		1 単位			

· 学習方針(講義概要等)

ゲノムは、生命体を形成し生命現象を営むために必要な設計図であり、その本体は DNA すなわち核酸である。核酸の構造、機能および代謝に関する基本的知識やセントラルドグマを背景に、遺伝子の構造と複製、発現制御について学ぶ。また、遺伝子や核酸代謝と関わりの深い医薬品について理解を深める。

・教育成果(アウトカム)

生命情報を担う遺伝子の構造、複製や発現制御について分子レベルで学修することにより、ゲノムに関わる疾患や、核酸関連の医薬品の作用機構を理解できるようになる。また、新たな医薬品の開発などに欠かせない知識基盤が確立する。 (ディプロマ・ポリシー: 2,7)

·到達目標(SBO)

- 1. DNA、遺伝子、染色体、ゲノムとは何か説明できる。
- 2. 遺伝情報の保存と発現の流れを概説できる。
- 3. 染色体や遺伝子の構造を説明できる。
- 4. DNA の複製の過程について説明できる。
- 5. 遺伝子の転写と翻訳の過程について説明できる。
- 6. エピジェネチックな、あるいは転写因子による転写制御について説明できる。
- 7. RNA の種類とプロセシングについて説明できる。
- 8. DNA の変異と修復について説明できる。
- 9. 遺伝子関連の疾患や、核酸に関わりの深い医薬品について例をあげて説明できる。 (☆)
- 10. 遺伝子増幅 (PCR) の仕組を説明できる。 (☆)

・講義日程

(矢) 東 103 1-C 講義室

月日	曜日	時限	講座・分野	担当教員	講義内容/到達目標
9/4	火	3	機能生化学分野	後藤 奈緒美 助教	ゲノムと遺伝子、遺伝情報 1. DNA、遺伝子、染色体、ゲノム を説明できる。 2. 染色体や遺伝子の構造を説明で きる。

9/11	火	3	機能生化学分野	後藤 奈緒美 助教	遺伝子の複製 1. 遺伝情報の保存と発現の流れを概説できる。 2. DNA の複製の過程について説明できる。 3. 遺伝子増幅(PCR)の仕組みを説明できる。
9/14	金	3	機能生化学分野	後藤 奈緒美 助教	遺伝子の変異・修復 1. DNA の変異と修復について説明 できる。
9/28	金	1	機能生化学分野	中西 真弓 教授	遺伝子の転写 1. 遺伝子の転写の過程について説 明できる。
10/5	金	3	機能生化学分野	中西 真弓 教授	RNA の種類とプロセシング 1. RNA の種類とプロセシングにつ いて説明できる。
10/22	月	3	機能生化学分野	中西 真弓 教授	転写の制御機構 1. 転写制御について説明できる。
10/26	金	3	機能生化学分野	中西 真弓 教授	タンパク質への翻訳 1. 遺伝子の転写の後、タンパク質 への翻訳の過程について説明でき る。
11/7	水	1	機能生化学分野	中西 真弓 教授	遺伝子や核酸に関連する疾患と医薬品 1. ゲノム関連の疾患や、核酸に関わりの深い医薬品について例をあげて説明できる。

· 教科書· 参考書等(教: 教科書 参: 参考書 推: 推薦図書)

	書籍名	著者名	発行所	発行年
教	コンパス生化学	前田 正知、浅野 真司 編	南江堂	2015
教	コンパス分子生物学: 創薬・ テーラーメイド医療に向けて (改訂第 2 版)	荒牧 弘範、大戸 茂広 編	南江堂	2015
参	スタンダード薬学シリーズ 4 生物系薬学 生命現象の基 礎	日本薬学会編	東京化学同人	2015

·成績評価方法

課題への取組み(10%)及び定期試験(90%)にて総合的に判断する。

・特記事項・その他

講義で配布したプリントを見直し、適宜、教科書や参考書を用いて理解を深めること。また、毎回の到達目標が達成されていることを確認すること。授業に対する事前学修 (予習・復習)の時間は最低30分を要する。課題として出される確認シートには、教員へのレスポンス記載欄があり、質問や要望を書くことができる。

・授業に使用する機器・器具と使用目的

使用区分	機器・器具の名称	台数	使用目的
講義	ノート型パソコン	1	資料作成、講義プレゼン用