
J. Sens. Sens. Syst., 5, 301–312, 2016
www.j-sens-sens-syst.net/5/301/2016/
doi:10.5194/jsss-5-301-2016
© Author(s) 2016. CC Attribution 3.0 License.

  

Comparing mobile and static assessment of biomass in
heterogeneous grassland with a multi-sensor system

Hanieh Safari, Thomas Fricke, Björn Reddersen, Thomas Möckel, and Michael Wachendorf
Department of Grassland Science and Renewable Plant Resources, University of Kassel, Steinstraße 19,

37213 Witzenhausen, Germany

Correspondence to: Hanieh Safari (safari.hanieh@gmail.com) and Michael Wachendorf (gnr@uni-kassel.de)

Received: 18 May 2016 – Revised: 13 July 2016 – Accepted: 16 July 2016 – Published: 2 August 2016

Abstract. The present study aimed to test a mobile device equipped with ultrasonic and spectral sensors for the
assessment of biomass from diverse pastures and to compare its prediction accuracy to that from static measure-
ments. Prediction of biomass by mobile application of sensors explained > 63 % of the variation in manually
determined reference plots representing the biomass range of each paddock. Accuracy of biomass prediction
improved with increasing grazing intensity. A slight overestimation of the true values was observed at low levels
of biomass, whereas an underestimation occurred at high values, irrespective of stocking rate and years. Predic-
tion accuracy with a mobile application of sensors was always lower than when sensors were applied statically.
Differences between mobile and static measurements may be caused by position errors, which accounted for
8.5 cm on average. Beside GPS errors (±1–2 cm horizontal accuracy and twice that vertically), position inac-
curacy predominantly originated from undirected vehicle movements due to heaps and hollows on the ground
surface. However, the mobile sensor system in connection with biomass prediction models may provide accept-
able prediction accuracies for practical application, such as mapping. The findings also show the limits even
sophisticated sensor combinations have in the assessment of biomass of extremely heterogeneous grasslands,
which is typical for very leniently stocked pastures. Thus, further research is needed to develop improved sensor
systems for supporting practical grassland farming.

1 Introduction

Pasture biomass and its quality are a matter of primary con-
cern in continuous grazing systems (Silvia Cid et al., 1998;
Kristensen et al., 2005; Oudshoorn et al., 2013). On-site and
on-time information on biomass and its spatial distribution in
pastures is needed for site-specific pasture management and
can help livestock managers in making critical decisions in
terms of planning grazing time, grazing period, grazing in-
terval, stocking rate and inputs such as fertilizers (Suzuki
et al., 2012). However, conventional plant sampling tech-
niques are costly, destructive and time-consuming, thereby
limiting the number of measured samples and being imprac-
tical for characterizing spatial variability in sward character-
istics within fields (Fava et al., 2009). In contrast, real-time
mobile sensors, which allow the collection of geographically
referenced data, have proven to be useful for in-field mon-
itoring of vegetation characteristics with high spatial reso-

lution (Lan et al., 2009; Muñoz-Huerta et al., 2013; Coz-
zolino et al., 2015). Mobile automated sensor measurements
can provide high sampling density at a relatively low cost to
generate maps representing both spatial and temporal vari-
ations (Adamchuk et al., 2004). Farooque et al. (2013) de-
veloped an integrated automated system comprising an ul-
trasonic sensor, a digital color camera, a slope sensor and
a global positioning system (GPS) to measure plant height,
fruit yield, slope and elevation in wild blueberry fields and
concluded the developed system was accurate, reliable and
efficient to map such characteristics in real-time kinemat-
ics (RTK). Pittman et al. (2015) examined several types of
ground-based mobile-sensing strategies (ultrasonic, laser and
spectral sensors) to estimate biomass and canopy height in
Bermuda grass, alfalfa and wheat. They suggested that us-
ing mobile-sensor-based biomass estimation methods could
be an effective alternative to the traditional clipping method
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for a rapid and accurate in-field biomass estimation. Dif-
ferent types of sensors both in static and mobile applica-
tion have been used in recent grassland studies (Numata et
al., 2008; Biewer et al., 2009a, b; Himstedt et al., 2009;
Kawamura et al., 2009; Fricke et al., 2011; Pullanagari et
al., 2012; Duan et al., 2014; Rahman et al., 2014; Reddersen
et al., 2014). Particularly hyperspectral sensors, which mea-
sure reflectance signals over a wide range of wavelengths in
discrete bands of 1–15 nm width, have raised considerable
interest for the prediction of biomass and quality parame-
ters. However, pastures are highly heterogeneous ecosystems
due to variations in canopy architecture, botanical compo-
sition and phenological stage of plants. Hence, the appli-
cation of sensors in grazed pastures is more difficult than
in cut grassland, and there are limitations for each specific
sensor technique used for the prediction of sward charac-
teristics (Schellberg et al., 2008; Pullanagari et al., 2012).
An effective method for in-field estimation of biomass must
reach an accuracy comparable to the accepted standard of de-
structive procedure (clipping and weighing) (Pittman et al.,
2015). Using a data combination of conceptually different
sensing methods holds promise for providing more accurate
property estimates (Adamchuk et al., 2004). A sensor fusion
approach has been proposed that combines measured sward
height with an ultrasonic distance sensor and vegetation in-
dices (VIs) derived from spectral-radiometric reflections to
estimate biomass in grasslands with acceptable prediction
accuracies (Fricke and Wachendorf, 2013; Reddersen et al.,
2014; Safari et al., 2015). The guiding idea in this approach
is that canopy reflectance provides complementary informa-
tion to canopy height sensing when estimating biomass. In all
studies best prediction accuracies were achieved by a combi-
nation of ultrasonic sward height (USH) and sward-specific
band selection using the normalized spectral vegetation in-
dex (NDSI, which uses two spectral bands best suited for
estimating biomass according to normalized difference veg-
etation index (NDVI) formula) with R2 values of 0.63 to
0.90. The selection of two narrow or broad bands from hy-
perspectral data has an advantage for practical implementa-
tion at field scale, as multispectral measurements are less ex-
pensive than hyperspectral ones. Likewise, ultrasonic sensors
are simple and cost-effective equipment but nevertheless may
provide accurate and real-time information needed by farm-
ers to make on-farm decisions. However, no knowledge ex-
ists on how accurately such sensors work when applied on
mobile devices and which position accuracy can be achieved
under real field conditions.

The overall aim of the present study was to develop and
test a mobile sensor system equipped with ultrasonic and
spectral sensors and a high-precision GPS to assess data
in experimental pastures with a large variation of spatial
and phenological structures. The following specific research
questions were addressed in this study: (i) which overall
prediction accuracy for grassland biomass can be achieved?
(ii) Is there a reduction in prediction accuracy between static

Figure 1. Images with digitally classified grazed and ungrazed ar-
eas in grassland paddocks of different stocking rate: (a) moderate,
(b) lenient and (c) very lenient. Black boxes indicate the location of
30× 50 m study plots. Photos were taken in April 2013.

and mobile application of sensors? (iii) Does the perfor-
mance of the sensor system depend on the grazing intensity?
(iv) What are possible position errors associated with mobile
sensor measurements?

2 Material and methods

2.1 Experimental site and setup

The study was conducted in a long-term pasture experi-
ment (established in 2002) at the experimental farm Rel-
liehausen (51◦46′55′′ N, 9◦42′13′′ E, 180–230 m above mean
sea level) in Solling Uplands on moderately species rich
grasslands, vegetation type Lolio-Cynosuretum. Three tar-
get paddocks of 1 ha each with different continuous stocking
treatments were selected from the experiment. Treatments
were (a) moderate stocking, with an average of 3.4 standard
livestock units (SLUs, i.e., 500 kg live weight) ha−1; (b) le-
nient stocking, with an average 1.8 SLU ha−1; and (c) very
lenient stocking, with an average 1.3 SLU ha−1 (Wrage et al.,
2012). In each paddock one study plot of 30×50 m size was
established, to represent spatial variability in pastures un-
der different grazing intensities during 2-year measurements.
The location of the study plots was determined prior to field
sampling in a geographic information system (GIS) environ-
ment (ArcGIS 9.2). In a first step aerial photographs of each
paddock were obtained in April 2013 using a remotely con-
trolled Hexacopter carrying a small, lightweight camera. The
photos were georeferenced along GPS-levelled boundaries
of each paddock, and the area of each paddock was classi-
fied into grazed and ungrazed areas using a visually adapted
green–yellow threshold (Fig. 1). The portion of both areas
was then calculated for each paddock (63, 47 and 38 % clas-
sified as grazed areas in moderate, lenient and very lenient
paddocks, respectively). Rectangles of 30× 50 m, represent-
ing the study plots, were moved in the paddock area using
GIS until they contained identical portions of grazed and
ungrazed areas as in the surrounding paddock. Each study
plot was accurately located in the field by differential GPS
(DGPS) and marked with corner poles. Field measurements
for static and mobile calibration of the sensor system were
conducted in 2013 on 3–5 June and 2014 on 20–22 May.
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Figure 2. Remotely steered sensor vehicle with hyperspectral re-
flectance, ultrasonic sensors and mounted GPS antenna.

2.2 Mobile measurements on the study plots

The multi-sensor system consisted of ultrasonic distance
and hyperspectral reflectance sensors. The ultrasonic sen-
sor holds a one-headed system (Pepperl and Fuchs, type
UC 2000-30GM-IUR2-V15) operating with a transducer fre-
quency of 180 Hz (Pepperl and Fuchs, 2010). Distances were
measured in a range from 80 to 2000 mm within a sound
cone formed by an opening angle of about 25◦. Ultrasonic
sward height (mm) was calculated by subtracting the ultra-
sonic distance measurement value in millimeters from the
sensor mount height using Eq. (1):

USH (cm)=mount height (cm) (1)
− ultrasonic distance (cm).

A HandySpec Field portable spectrometer (tec5 AG,
Oberursel, Germany) was used to measure canopy spectral
reflectance. The measuring head of the device had two chan-
nels measuring incoming and reflected radiation simulta-
neously between 305 and 1700 nm in 1 nm steps. Spectral
calibrations were performed using a grey standard (Zenith
Polymer® Diffuse Reflectance Standard 25 %) at fixed inter-
vals. Both sensor systems provided the same opening angle
with a field of view (FOV) of 25◦. While the spectral sensor
measures an integrated value of reflection intensity within the
measurement cone, the ultrasonic sensor measure the highest
object, creating a reliable reflection within the sound cone.

Mobile measurements were conducted using an electri-
cally driven cycle-based four-wheel-vehicle with a track
gauge of 180 cm (Fig. 2). Both sensors were mounted at the
front-end center of the vehicle on a frame, allowing measure-
ments along the central track during the vehicle movements.
Two more ultrasonic sensors were mounted with 60 cm dis-
tance on either side of the central sensor to allow a higher
measurement density for future mapping activities. GPS po-

sitions of all sensor readings were acquired in 0.1 s intervals
using a Leica SR530 dual-frequency geodetic RTK receiver.
A GPS AT 502 dual-frequency antenna was mounted on top
of a pole close to the sensors. Its geometric position in rela-
tion to both the ground and the sensors was recorded and con-
sidered in subsequent sensor position calculations including
a correction of topographically induced antenna pole skew-
ness. The DGPS correction signals were received from an
on-field reference station at a maximum distance of 500 m
by a radio modem. Both the reference station and rover were
equipped with components of identical technical specifica-
tions, providing a horizontal positional accuracy of 1–2 and
2–3 cm vertical accuracy. For mobile measurements the vehi-
cle was remotely steered along 50 m longitudinal lanes in the
study plots at a speed of approximately 0.1–0.3 m s−1. Ultra-
sonic measurements were triggered at a 0.3 s interval, result-
ing in a measured point distance of 10± 6 cm (mean of all
plots). Spectral reflections were continuously assessed; how-
ever with a variable data integration time of the spectrometer
between 1 and 5 s, measurements were logged discontinu-
ously, corresponding to a measured distance of 43± 20 cm
between spectral measurement points in each plot (mean of
all plots).

2.3 Static measurements on reference plots

Subsequent to the mobile measurement, 18 reference plots
(each 50× 50 cm) were established within each of the three
study plots by positioning them along the central axis be-
tween the vehicle tracks to represent the occurring range of
available biomass levels and sward structures. Static sensor
measurements were conducted on these reference plots using
the same sensors as in the mobile measurement and follow-
ing the methodology as described by Fricke et al. (2011).
The total aboveground biomass from each reference plot was
clipped at ground surface level after sensor measurements
were taken. In the present study grassland biomass is ex-
pressed as the amount of fresh matter (FM) in grams per
square meter (g m−2). To avoid repeated sampling at the
same position across time, the location of reference plots was
determined using DGPS.

2.4 Data integration and analysis

Spectral calibration models were developed for each year
separately in order to reach the maximum prediction accu-
racy using biomass data from reference plots. In an attempt
to create prediction models with maximum accuracy by us-
ing the depth of information of hyperspectral data, narrow-
band NDSIs according to Inoue et al. (2008) were applied
over the range of 1nm spectral bandwidths using all possible
combinations of two-band reflectance ratios based on NDVI
formula according to Eq. (2):

NDSI (b1,b2)= (b1− b2)/(b1+ b2), (2)
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Table 1. Summary statistics of static and mobile measurements
of ultrasonic sward height (USH) (cm) and normalized difference
spectral index (NDSI) on reference plots of pastures with different
stocking rates in 2013 and 2014.

Static measurements Mobile measurements

2013 2014 2013 2014

USH NDSI USH NDSI USH NDSI USH NDSI

Moderate (n= 18 in each year)

Min 3.1 0.031 9.0 −0.030 4.7 0.032 12.0 −0.032
Mean 21.9 0.046 26.8 −0.017 22.1 0.048 30.0 −0.020
Max 50.6 0.065 64.0 −0.008 60.9 0.063 67.4 −0.015
SD 14.5 0.011 13.6 0.005 14.8 0.010 14.2 0.004

Lenient (n= 18 in each year)

Min 24.8 0.027 16.4 −0.021 22.9 0.030 19.2 −0.020
Mean 44.3 0.038 32.5 −0.015 46.1 0.040 37.3 −0.013
Max 64.0 0.049 55.4 −0.008 75.6 0.057 61.2 −0.007
SD 12.3 0.006 10.6 0.004 16.2 0.008 12.7 0.004

Very lenient (n= 18 in each year)

Min 10.0 0.032 7.2 −0.020 8.7 0.029 11.6 −0.032
Mean 43.1 0.047 29.8 −0.011 48.9 0.048 36.9 −0.011
Max 64.6 0.065 58 −0.007 75.2 0.070 66.5 −0.005
SD 16.0 0.011 15.8 0.00 19.5 0.009 17.1 0.007

All pastures (n= 54 in each year)

Min 3.1 0.027 7.2 −0.030 4.7 0.029 11.6 −0.032
Mean 36.4 0.044 29.7 −0.014 39.0 0.046 34.7 −0.015
Max 64.6 0.065 64.0 −0.007 75.6 0.070 67.4 −0.005
SD 17.5 0.010 13.5 0.005 20.2 0.010 14.9 0.006

where b1 and b2 are specific narrowband (1 nm) reflection
signals with wavelength b1>wavelength b2.

All possible two-pair 1 nm band combinations in the
hyperspectral range from 360 to 1340 nm and 1500 to
1650 nm were tested. Ordinary least-squares regression anal-
ysis (Ryan, 1997) was performed using a linear model proce-
dure in R (version 3.0.2) (R Development Core Team, 2013)
with biomass as the dependent variable and NDSI together
with USH as independent variables including interactions
and quadratic terms according to Eq. (3):

B = USH + NDSI + USH · NDSI + USH2
+ USH2 (3)

· NDSI + NDSI2
+ USH · NDSI2

+ USH2
· NDSI2,

where B is biomass (g FM m−2) and USH is in centimeters.
NDSI wavebands were considered adequate when R2 of

the model was maximum. According to the rules of hierarchy
and marginality (Nelder, 1994) non-significant effects were
excluded from the models but were retained if the same vari-
able appeared as part of a significant interaction at α level of
5 %. Calibration models were validated by a fourfold cross-
validation method (Diaconis and Efron, 1983).

2.5 Assessment of position accuracy

With the aim of establishing a plausibility control for position
accuracy of mobile measurements, an additional experiment

was set up. Wooden planks of known position and dimension
at each end of the vehicle tracks were measured in spring,
before the vegetation started to grow. Thus, higher targets
could be clearly distinguished from lower swards. Vehicle
measurement were conducted in the same mode as described
above. Here, only USH data were used due to their high point
density. Measured values were compared to expected values
and classified as error if a discrepancy was observed. The
distance of an erroneous measurement to the closest apparent
target edge (considering target dimensions and sensor prop-
erties) was assigned to the respective measurement and used
for subsequent spatial analysis. Further information on the
methodology is provided in the Appendix.

3 Results and discussion

3.1 Relationship between static and mobile sward
measurements for use of exclusive sensors

Statically measured USH ranged from 3.1 to 64.6 cm and
from 7.2 to 64.0 cm in 2013 and 2014, respectively (Table 1).
Compared to static measurements higher values of USH were
found by mobile application ranging from 4.7 to 75.6 cm and
from 11.6 to 67.4 cm in 2013 and 2014, respectively. This
may be the effect of a crossbar which was attached to the
rear of the vehicle at a height of about 50 cm for stabilizing
purposes and may have compressed higher vegetation during
vehicle passage, and subsequent static measurements were
possibly influenced by that. Pastures with a moderate stock-
ing rate exhibited lower USH values (mean value= 21.9 and
26.8 cm in 2013 and 2014, respectively) compared to pas-
tures with a lenient stocking rate (mean value= 44.3 and
32.5 cm in 2013 and 2014, respectively) and very lenient
stocking rate (mean value= 43.1 and 29.8 cm in 2013 and
2014, respectively). Swards of the latter two stocking rates
showed similar USH levels in both years, although pastures
were managed and monitored by the use of a compressed
sward height meter (CSH; according Castle, 1976), main-
taining levels at 6 cm (moderate), 12 cm (lenient) and 18 cm
(very lenient) (Wrage et al., 2012). This disparity may in-
dicate the influence of sward structure on the conducted
measurement methods: while CSH reflects the resistance of
biomass according to stem density and sward height (Hakl
et al., 2012), USH predominantly detects protruding objects
regardless of other sward conditions in subordinate layers
(Fricke et al., 2011). This fact indicates the limitations of
biomass predictions based on pure USH, as it may not di-
rectly reflect the biomass, particularly if swards are com-
posed by plants of varying phenology, which is common in
leniently grazed swards (Rook and Tallowin, 2003; Wrage et
al., 2011).

NDSI wavelength locations associated with maximum ac-
curacy of biomass prediction differed between years. Posi-
tive NDSI values in 2013 corresponded to the green peak of
the spectrum (at 536 and 564 nm, on the ascending slope),
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Figure 3. Relationship between mobile- and statically measured ultrasonic sward height (USH) (cm). Both measurements were conducted
on reference plots in pastures differently stocked with animals in 2013 and 2014.

while negative values in 2014 corresponded to the descend-
ing slope of the second water absorption band (at 1121 and
1133 nm). NDSI values by static measurement ranged from
0.027 to 0.065 with a mean value of 0.044 across all pastures
in 2013, which were slightly lower than the values by mobile
application (mean value= 0.046). In 2014 a smaller range of
NDSI values occurred by both static and mobile application
(−0.030 to −0.007), resulting in a mean value of −0.014
(Table 1).

USH values from mobile measurements were in good
agreement with static values, with R2

≥ 0.85 for all pastures
in both years (Fig. 3). This indicates that reliable and accu-
rate USH information could be acquired by the mobile appli-
cation of low-cost ultrasonic sensors. Moreover, it seems that
the performance of the mobile application is not affected by
the stocking rate, as R2 values differed only randomly during
the 2-year measurements on different pastures.

The relationship between NDSI values determined on the
reference plots by mobile and static application was closer
for moderate (R2

= 0.66–91) than for leniently and very le-
niently grazed pastures (R2

= 0.59–0.72) (Fig. 4). This may
be partly due to a higher proportion of senesced material in
pastures at lower grazing intensities. This is supported by re-
sults of Safari et al. (2015), which showed a lower accuracy
of spectral calibrations for grassland biomass in the second
half of the growing season, when senesced material likewise
presented greater shares of the grassland canopy. Botanical
diversity, which is well known to increase with reduced de-
foliation intensity through grazing or cutting (Blüthgen et

al., 2012; Isselstein et al., 2005), may have further allevi-
ated the relationship between grassland biomass and spectral
characteristics. For the biomass of species-poor grasslands,
spectral calibrations based on static measurements frequently
achieved higher accuracies than for less intensively grazed
swards (Biewer et al., 2009a; Reddersen et al., 2014). Com-
pared to ultrasonic measurements, accuracy of spectral cali-
brations was remarkably lower in both years and at all levels
of grazing intensity. One reason may be the lower measure-
ment point density of spectral (1.3 per plot on average) than
ultrasonic recordings (5.0 per plot on average), which can be
explained by the lower data integration time for the former
technique. In pastures with high canopy variability (lenient
and very lenient), where extremely short (intensively grazed)
and tall (lightly grazed) patches are frequently located in the
immediate vicinity of each other, a high measurement point
density is of particular benefit. This may explain why in mod-
erately grazed pastures the accuracy of NDSI is only 7 %
lower than USH (averaged over both years), whereas under
very leniently grazing the accuracy of NDSI is 24 % lower.

3.2 Relationship between static and mobile sward
measurements for sensor combination

Calibrations used in the present study were developed in a re-
cent study by Safari et al. (2015) and showed cross-validation
errors for biomass of pastures of 340 and 287 g FM m−2 in
2013 and 2014, respectively (Table 2). The best-fit two-pair
wavelengths for prediction of biomass were located in the
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Figure 4. Relationship between mobile- and statically measured normalized difference spectral index (NDSI). Both measurements were
conducted on reference plots in pastures differently stocked with animals in 2013 and 2014.

Table 2. Regression and cross-validation statistics of prediction models for biomass (B) (g FM m−2) from USH (cm) and narrowband NDSI
during mobile application. Models were derived from static measurements on reference plots according Eqs. (1) and (2) (see above) (n= 54).

Year b1 b2 R2 SE R2
CV RMSECV Equation

(g FM m−2) (g FM m−2)

2013 536 564 0.82 344.2 0.75 340.0 B = 1664.26− 22 748.47 NDSI+ 56.82 USH−
991.32 NDSI×USH

2014 1121 1133 0.87 227.0 0.68 287.0 B =−271− 146 000 NDSI− 9 330 000 NDSI2
− 29.5 USH+

1.89 USH2
− 7010 NDSI×USH+ 361 NDSI×USH2

+

11 100 NDSI2
×USH2

b1, b2 = spectral bands. SE= standard error. RMSECV = random mean square error of cross validation.

visible (2013) and near-infrared (NIR) (2014) regions of the
spectrum. Several studies have indicated the importance of
the visible–near-infrared range to create models for estimat-
ing biomass using narrowband ratios (Numata et al., 2008;
Psomas et al., 2011; Fricke and Wachendorf, 2013). The 536
and 564 nm bands from the visible region (2013) can be cor-
related with chlorophyll content of vegetation (Psomas et al.,
2011), while the 1121 and 1133 nm bands from NIR (2014)
are related to plant leaf water content (Raymond, 1991).

Biomass in the reference plots as measured by manual
clipping and weighing ranged from 107.2 to 3207.2 and
from 360.8 to 2832.0 g FM m−2 in 2013 and 2014, respec-
tively (Table 3). In 2013 the leniently stocked pasture showed
the highest biomass (mean value= 1727.6 g FM m−2) com-
pared to the other pastures, while in 2014 reference
plots in moderate pasture had the highest biomass (mean
value= 1335.8 g FM m−2), followed by leniently grazed pas-

ture (mean value= 1271.6 g FM m−2). While biomass pre-
dicted by static application differed only slightly (< 1 %)
from manual clipping (mean of all pastures), values predicted
by mobile application were somewhat lower with 3.7 and
7.1 % in 2013 and 2014, respectively.

Biomass prediction by mobile sensors was significantly
associated with static sensor predictions and reference data
(Fig. 5). With R2 values of 0.77 and 0.84 for biomass of all
pastures in 2013 and 2014, respectively, the relationship be-
tween mobile and static predictions was quite close. Mobile
prediction of biomass explained 63 and 76 % of the varia-
tion in manually determined reference data of all pastures in
2013 and 2014, respectively. When looking more closely into
the data, it becomes apparent that the accuracy of biomass
prediction improved with increasing grazing intensity, with
R2 values of 0.52, 0.68 and 0.73 (average of both years) for
very leniently, leniently and moderately grazed pastures, re-
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Figure 5. Relationship between mobile- and statically measured biomass (g FM m−2; based on combined sensor data USH and NDSI) and
values measured by clipping. All measurements were conducted on reference plots in pastures differently stocked with animals in 2013 and
2014.

spectively. Though sensor combinations proved a higher pre-
diction accuracy for grassland yield and quality compared to
exclusive ultrasonic or spectral sensors (Safari et al., 2015,
2016), the findings of the present study likewise show the
limits even sensor combinations have in the mobile assess-
ment of biomass of extremely heterogeneous grasslands.

Regression lines in Fig. 5, describing the relationship be-
tween actual and mobile-predicted biomass, generally ex-
hibit a slope < 1, which indicates an overestimation of the
true values at low levels of biomass and an underestimation
at high values, irrespective of stocking rate and years. The
reason for an overestimation at low levels of biomass may be
that the sensor system was not capable of grasping extremely

high bulk densities accurately, which obviously occur when
low swards exhibit high yields.

In such situations bulk density of upper canopy layers is
frequently much less than in lower canopy layers, a reason
why both sensors may face limitations: on the one side the ul-
trasonic sensor detects signals reflected predominantly from
upper canopy layers (Fricke et al., 2013) largely independent
of the actual density of the sward. On the other side the re-
duction in the amount of radiation penetrating to a greater
depth in the canopy can limit reflectance sensors especially
in grass-dominated canopies, which have their maximum leaf
area index close to the soil surface (Goel, 1988).
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Table 3. Summary statistics of measured and predicted biomass
(g FM m−2) based on predictions by static and mobile application
for pastures with different stocking rates in 2013 and 2014.

2013 2014

Measured Predicted Measured Predicted

Static Mobile Static Mobile

Moderate (n= 18 in each year)

Min 107.2 170.4 206.4 645.6 523.6 430.4
Mean 942.8 968.7 831.6 1335.8 1279.5 1252.7
Max 2152.0 2199.6 2028.8 2797.6 2602.7 2615.4

Lenient (n= 18 in each year)

Min 611.2 797.4 354.4 610.4 728.7 686.7
Mean 1727.6 1658.7 1643.2 1271.6 1272.6 1111.1
Max 3207.2 2892.6 3076.0 2832.0 2433.0 2237.2

Very lenient (n= 18 in each year)

Min 250.4 220.9 60.8 360.8 441.6 426.9
Mean 1050.2 1093.1 1112.5 834.1 882.8 779.7
Max 2624.0 2587.0 3109.9 1567.2 1798.4 1349.7

All pastures (n= 54 in each year)

Min 107.2 170.4 60.8 360.8 441.6 426.9
Mean 1240.2 1240.2 1194.7 1147.2 1145.0 1062.5
Max 3207.2 2892.6 3109.9 2832.0 2602.7 2615.4

3.3 Assessment of position accuracy

Though equal sensor calibrations were used, variation oc-
curred between static and mobile measurements (Figs. 3
and. 4). Differences may be brought about by vehicle config-
uration and movement, resulting in sensor displacement and
confused geographical location. To evaluate these effects on
the position of measuring points, which in this study is im-
portant to ensure correct placement of sensor measurements
inside the reference plots during vehicle passage, a separate
experimental setup was used (see also Appendix). Briefly,
position accuracy was analyzed by comparing measured and
expected USH values of vehicle measurements in the close
surrounding of wooden marks with known dimension and
position. Erroneous measurements, classified with respect to
target and sensor properties, were assigned to their spatial
distance from the target edges. The position error is here ex-
pressed as the relative frequency of erroneous measurements
within a distance class related to apparent target edges, where
a USH change between low and high was expected (Fig. 6).

Error frequency declined with increasing distance from
apparent target edges, and the trend indicates a negligible risk
of erroneous measurements when the distance between two
objects was more than 25 cm. Altogether the average posi-
tion error was 8.5± 5.8 cm. Beside GPS errors of 1–2 cm,
positioning inaccuracy observed in this study predominantly
originated from undirected vehicle movements due to heaps
and hollows of the ground surface. These errors could be
compensated for by a gyroscope, which can level out unbal-
anced sensor movements caused by the vehicle (Nagasaka
et al., 2004). Further, measurement signal processing delays

Figure 6. Frequency of erroneous USH measurements (% of all
measurements within a distance class) at different distance from ap-
parent target edges (considering target dimensions and sensor prop-
erties).

caused position offsets, which have in part been addressed
in other studies but are very specific to the respective ve-
hicle construction. These position offsets could be compen-
sated for by appropriate mathematical models or coefficients
in sensor position calculations (Zhao et al., 2010; Gottfried
et al., 2012). Hence, although position errors were rather
low, there are prospects for a further reduction. Regarding
the precision of mobile measurements in the reference sam-
pling plots, about 17 % of the measurements (mean position
error of 8.5 cm divided by sampling plot width of 50 cm) can
be expected to lie outside the sampling plot area, which may
have contributed to the resulting discrepancy between static
and mobile measurements (Figs. 3 and 4). However, the spa-
tial accuracy achieved with the current configuration of the
mobile sensor system can be considered adequate and may
provide a solid basis for the creation of high-resolution maps.

4 Conclusions

The results from the present study suggest that mobile multi-
sensor systems, including ultrasonic and optical sensors, to-
gether with a precise GPS can produce acceptable accuracies
for biomass assessment in extremely heterogeneous grass-
land. Such systems may, for example, facilitate mapping of
larger grassland areas at high spatial position accuracy, al-
lowing the identification of nested structures within the veg-
etation. However, our findings also show the limits even ad-
vanced sensor systems have in the assessment of biomass of
extremely heterogeneous grasslands, which is e.g. typical for
very leniently stocked pastures. Thus, it is necessary that fur-
ther research be carried out to develop improved sensor sys-
tems for supporting practical grassland farming.

5 Data availability

The data presented in this paper are available on request from
the corresponding author.
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Appendix A: Abbreviations

FM fresh matter
FOV field of view
GIS geographic information system
GPS global positioning system
USH ultrasonic sward height
NDSI normalized spectral vegetation index
NIR near infrared
SLU standard livestock unit
NDVI normalized difference vegetation index
VI vegetation index

Appendix B: Assessment of position accuracy –
detailed information

To evaluate the position accuracy during mobile mea-
surements within study plots (50× 30 m), wooden planks
were placed at the end of each vehicle lane at the outer
edge of the plot border (Fig. A1). With 120× 40× 11 cm
(depth×width× height) targets had defined dimensions and
allowed an unimpaired passage of the vehicle.

Position accuracy was assessed by identifying erroneous
measurements with respect to apparent target edges. For this
purpose the mounted ultrasonic sensors were used as they
provide both high measurement densities along the lanes and
sensitive reactions of the measurement signal at target detec-
tion. Depending on the field of view and the mount height
of the sensor, targets were expected to be hit by the sound
cone already at a distance of 12.5 cm on both sides of the
target edges during passage, resulting in a total target detec-
tion range (apparent target area) of 36 cm width including the
target depth of 11 cm (Fig. A2).

A data set was generated using USH measurements within
a 25 cm distance around the apparent target edges (Fig. A3).
Recordings were performed in the moderately grazed study
plot in April 2014 before vegetation started to grow. The
low canopy height at this time of the year ensured a suffi-
cient discrimination between grassland canopy and targets.
USH measurements at locations within the investigated dis-
tance (n= 920) were attributed with their specific distance
to the apparent edge of the targets. Though targets had a de-
fined height of 40 cm, measured height values varied due to
surface roughness and vehicle movements. This required the
determination of the actual target height from the total data
set of USH values and distinguishing this from the sward
heights. For this purpose the data set was separated by us-
ing the inflection point of a height-sorted USH histogram to
group and classify readings into low grassland (mean= 8.7,
SD=±5.6) and target (mean= 42.0, SD=±4.3) members.
Figure A3 presents an example of the classified readings and
their respective locations, illustrating point density and com-
pliance with target values.

Figure B1. Display of reference targets (wooden planks) at the
front ends of the study plot. Targets of defined dimensions and po-
sitions allowed the passage of the sensor vehicle moving lane-by-
lane.

Figure B2. Display of a reference target, as used for assessing po-
sition accuracy and measured by ultrasonic sensors during passage
of the vehicle. The two featured sensor positions show the distance
range of expected target detection (apparent target area) indepen-
dent of moving direction. These positions are used as reference lines
for distinction and classification of correct and erroneous measure-
ments.
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Figure B3. Locations of measurement points with USH readings generated by vehicle-mounted sensors during the passage of targets for
determining position accuracy. The diagram exemplarily shows a 3.4×1.7 m2 map extract of the moderately stocked grassland paddock (see
Fig. 1).
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