
Implementing application-specific

Object-Oriented theories in HOL

Kenro Yatake1, Toshiaki Aoki1,2, and Takuya Katayama1

1 Japan Advanced Institute of Science and Technology,
1-1 Asahidai Nomi Ishikawa 923-1292, Japan

{k-yatake, toshiaki, katayama}@jaist.ac.jp
2 PRESTO JST

Abstract. This paper presents a theory of Object-Oriented concepts
embedded shallowly in HOL for the verification of OO analysis models.
The theory is application-specific in the sense that it is automatically
constructed depending on the type information of the application. This
allows objects to have attributes of arbitrary types, making it possible to
verify models using not only basic types but also highly abstracted types
specific to the target domain. The theory is constructed by definitional
extension based on the operational semantics of a heap memory model,
which guarantees the soundness of the theory. This paper mainly focuses
on the implementation details of the theory.

1 Introduction

The Object-Oriented developing method is becoming the mainstream of the soft-
ware development. In the upstream phase of the development, analysis models
are constructed with a language such as UML (Unified Modeling Language [1]).
To ensure the correctness of the models, formal semantics must be given to them
and verification method such as theorem proving must be applied.

A lot of OO semantics have been implemented in theorem provers of higher-
order logic and most of them are for the verification of OO languages such
as Java [5][6][7]. In these theories, available types are limited to the primitive
ones such as integers and boolean sufficient for the program verification. But
for the verification of analysis models, this type restriction is disadvantage as
the models are constructed with highly abstracted types specific to the target
domain, e.g. tree, stack, date, money. Therefore, an OO semantics which can
accommodate various types are required. So, we defined a theory in the HOL
system [2] as a semantics of OO concepts in which arbitrary concrete types can
be incorporated in the types of object attributes. In general, an object is a data
which holds multiple attributes of arbitrary types and even allows referencing
and subtyping. This concept is too complex to implement as a general type in
the simple first-order type system of HOL. To cope with this problem, we take
the approach of automatically constructing the theory depending on the class
model of the application which defines the type information of the system.

The theory is constructed by definitional extension. This is a standard method
to construct sound theories in HOL, where new theories are derived from exist-
ing sound theories by only allowing introduction of definition and derivation by
sound inference rules. Specifically, the theory is derived from the operational
semantics of a heap memory model. If a class model is given in advance, objects
and their referencing and subtyping are realized by a linked-tuple structure in
the heap memory and the resulting theory becomes quite simple.

In this paper, we present the definition of the theory and its implementation
details in HOL. As a verification example, we prove that a UML collaboration di-
agram satisfies an invariant written in OCL (Object Constraint Language [3]). In
this paper, we call the theory ASOOT (for Application-Specific Object-Oriented
Theory).

This paper is organized as follows. In section 2 and 3, we explain the definition
of the class model and the definition of the theory corresponding to the class
model. In section 4, we explain the implementation details. In section 5, we
show the example verification. In section 6, we cite related works and section 7
is conclusion and future work.

2 Class models

The theory depends on the class model of each system which defines the static
structure of the system like UML class diagrams. The class model is defined as
a six tuple:

CM = (C,A,Mattr,Minher, T ,V)

The sets C and A are class names and attribute names which appear in the
system, respectively. The mapping Mattr : C → Pow(A) relates a class to the
attributes defined in the class. The mapping Minher : C → Pow(C) relates a
class to its direct subclasses. We assume single inheritance. The mapping T :
C ×A → Type relates an attribute to its type. The set Type is a set of arbitrary
concrete types in HOL. We assume C ⊂ Type and define the type of an object
to be the name of the class it belongs to. The mapping V : C × A → V alue
relates an attribute to its default value. The set V alue is a set of values of
all types in Type. By a symbol �, we denote the super-sub relationship. The
expression c1 � c2 means c2 is a direct subclass of c1, which is equivalent to
c2 ∈ Minher(c1). In addition, c1 �+ c2 means c2 is a descendant class of c1 and
c1 �∗ c2 means c1 = c2 or c1 �+ c2. By attr(c), we denote the attributes and
inherited attributes of the class c, i.e. attr(c) = {a|a ∈ Mattr(d), d �∗ c}.

In the following, we visualize the class models like Fig.1. The class fig is a
class of figures which has two attributes x and y as its coordinate position. The
class rect is a class of rectangles which has two attributes w and h as its width
and height. The class crect is a class of colored-rectangle which has an attribute
c as its color. The type color is an enumeration type which has several colors
as its elements.

fig
x:int,y:int

rect
h:num,w:num c:color

crect

Fig. 1. A class model example

3 Definition of ASOOT

The theory is defined in HOL by mapping the class model elements to types
and constants in the theory and introducing axioms on them. As the embedding
policy, we chose a shallow embedding because our verification target is individual
applications of the class model (the comparison of a shallow embedding and a
deep embedding is found in [4]). We first explain the overview of the theory with
the example, and then give the formal definition.

3.1 Overview

In order to implement object referencing, the concept store is introduced in the
theory. The store is an environment which holds the attribute values of all alive
objects in the system and defined as a type store. Objects are references to their
data in the store and defined as types of their belonging class name. For example,
the type of objects of the class fig is fig. Types of objects are ”apparent” types
and their type can be transformed to other types by casting.

rect
h:num
w:num

fig
x:int
y:int

fig_ex : fig -> store -> bool
fig_new : store -> fig # store

fig_get_x : fig -> store -> int
fig_set_x : fig -> int -> store -> store
fig_cast_rect : fig -> store -> rect
rect_cast_fig : rect -> store -> fig
fig_is_rect : fig -> store -> bool

[A1]|- !s. let (f,s1) = fig_new s in fig_ex f s1
[A2]|- !f v s. fig_ex f s ==> (fig_get_x f (fig_set_x f v s) = v)
[A3]|- !r s. rect_is_rect r s ==> fig_is_rect (rect_cast_fig r s) s

rect_is_rect : rect -> store -> bool

Fig. 2. The mapping from the class model to the theory

Several kinds of constants are introduced in the theory by mapping from the
elements in the class model as shown in Fig.2. For example, corresponding to
the class fig, two constants fig_new and fig_ex are introduced. The function
fig_new creates a new fig instance in the store. It takes a store as an argument
and returns a pair of a newly created object and the store after the creation.
The predicate fig_ex tests if a fig object exists in the store. It takes a fig
object and a store as arguments and return the result as a boolean value. The
first axiom is a property about these operators saying ”The newly created object
is alive in the store after the creation.”

Corresponding to the attribute x of the class fig, read and write operators
fig_get_x and fig_set_x are introduced. The function fig_get_x takes a fig
object and a store as arguments and returns the current value of the attribute
x. The function fig_set_x takes a fig object, a new integer value and a store
as arguments and returns the store after updating the attribute x to the new
value. The second axiom says ”If the fig object is alive in the store, the value
of the attribute x of the object obtained just after updating it to v equals to v.”

Corresponding to the inheritance relationship between the two classes fig
and rect, type casting operators and instance-of operators are introduced. The
function fig_cast_rect takes a fig object as an argument and casts it down-
ward from fig to rect. The function rect_cast_fig takes a rect object and
casts it upward from rect to fig. The predicate fig_is_rect tests if a fig
object is an instance of the class rect. After an object is created, its appar-
ent type can be changed by casting operators, but instance-of operators play
a role of remembering the actual type of the object. For example, by applying
rect_cast_fig to the rect instance which is created by rect_new, its appar-
ent type is changed to fig, but as fig_is_rect holds for the fig object, it is
identified as an instance of the class rect. The third axiom state this.

3.2 Types and constants

The store is represented by a type store. It has a constant Emp as its initial
value which represents the empty store. Objects of the class c are represented as
a type c. Each type c has a constant Nullc : c which represents the null object.

Following operators are defined on the store:

Exc : c → store → bool (c ∈ C)
Getca : c → store → T (c, a) (c ∈ C, a ∈ attr(c))
Setca : c → T (c, a) → store → store (c ∈ C, a ∈ attr(c))
Castcd : c → store → d (c, d ∈ C, c �+ d or d �+ c)
Newc : store → c ∗ store (c ∈ C)
Isc

d : c → store → bool (c, d ∈ C, c �∗ d)

The predicate Exc tests if the class c object is alive in the store. The function
Getca reads the attribute a of the class c object. If it is applied to an object
not alive in the store, the constant Unknownc

a : T (c, a) which represents the
undefined value is returned. The function Setca updates the attribute a of the
class c object. The function Castcd transforms the object types from c to d. The
function Newc creates a new instance of the class c in the store. The predicate
Isc

d tests if the class c object is an instance of the class d.

3.3 Axioms

Here, we introduce axioms for the operators defined above. There are 36 axioms
altogether, but we show only main ones because of space limitations.

1. ∀o s. Exc o s = Isc
d1

o s ∨ ... ∨ Isc
dn

o s ({d1, ..., dn} = {d | c �∗ d})
The c object o alive in the store is an instance of either the class c or one of
the descendant-classes of c.

2. ∀o s. Isc
d o s ⇒ ¬(Isc

e o s) (d �= e)
If the c object o is an instance of the class d, it is not an instance of the class
e different from d, i.e. is-operators are exclusive.

3. ∀o s. Isd
e o s ⇒ Isc

e (Castdc o s) s (c �+ d)
If the d object o is an instance of the class e, the object cast to the superclass
c is also the instance of e, i.e. the actual type is invariable by casting.

4. ∀o s. Isc
c o (Snd (Newc s)) = (o = Fst (Newc s)) ∨ Isc

c o s
The c object o is an instance of the class c in the store after creating a new
instance of the class c iff o is either the newly created object or the object
which was already an instance of c before the creation.

5. ∀o s. ¬(Exc (Fst (Newc s)) s)
The newly created object does not exist in the previous store. This axiom
implies that the new object is distinct from all previous objects.

6. ∀o1 o2 s. Exd o1 s ∧ Exd o2 s ⇒
¬(o1 = o2) ⇒ ¬(Castdc o1 s = Castdc o2 s) (c �+ d)

If two c objects o1 and o2 are different objects, the two object obtained by
casting to the superclass c are also different objects, i.e. cast-operators are
injective.

7. ∀o s. Isc
e o s ⇒ (Castdc (Castcd o s) s = o) (c �+ d, d �+ e)

If the c object o is an instance of the class e which is a descendant class of
d, the object obtained by down-casting to d and then up-casting to c equals
to o itself.

8. ∀o s. Getda o s = Getca (Castdc o s) s (c �+ d and a ∈ Mattr(c))
When an attribute a is defined in the class c, getting a of the object o of the
descendant-class d is the same as getting a by casting o to c.

9. ∀o s. Exc o s ⇒ (Getca o (Setca o x s) = x)
If the object o is alive in the store, the attribute a of o obtained just after
updating it to x equals to x.

10. ∀o1 o2 s. ¬(o1 = o2) ⇒ (Getca o1 (Setca o2 x s) = Getca o1 s)
If the two objects o1 and o2 are different, getting the attribute a of o1 is not
affected by the updating of the same attribute of o2.

11. ∀o1 o2 s. Getca o1 (Setdb o2 x s) = Getca o1 s ((c ��∗ d and d ��∗ c) or a �= b)
If the two classes c and d are not in inheritance relationship or the attribute
name a and b are different, getting the attribute is not affected by the up-
dating.

3.4 Modeling OO concepts in the theory

Basic OO concepts such as methods, inheritance, overriding and dynamic binding
are expressible in the theory. We show a typical way to model these concepts
using examples. In HOL, we denote the operators Exc, Newc, Getca, Setca, Castcd
and Isc

d as c_ex, c_new, c_get_a, c_set_a, c_cast_d and c_is_d, respectively.

Methods are defined using Get, Set, New, Cast and functions provided in
HOL. Let us consider that the class fig has a method move which changes its
position by dx and dy. This method is defined as follows.

fig_move : fig -> int -> int -> store -> store

fig_move f dx dy s =

let (x,y) = (fig_get_x f s, fig_get_y f s) in

fig_set_y f (y+dy) (fig_set_x f (x+dx) s)

Method inheritance is modeled by calling the superclass method from the
subclass method, i.e. by casting the object to the superclass type and apply-
ing the superclass method. If the class rect inherits the method move of the
superclass fig, this method is defined as follows.

rect_move : rect -> int -> int -> store -> store

rect_move r dx dy s = fig_move (rect_cast_fig r s) dx dy s

Method overriding is modeled in the same manner as method inheritance. If
the class crect overrides the superclass method move to change the color to red
after changing the position, this method is defined as follows.

crect_move : crect -> int -> int -> store -> store

crect_move c dx dy s =

let s1 = rect_move (crect_cast_rect c s) dx dy s in

crect_set_color c red s1

Dynamic binding is a mechanism to dynamically switch method bodies ac-
cording to which class the applied object is instance of. This is modeled by
defining a virtual method which selects the method body using Is. The virtual
method v_fig_move corresponding to the method fig_move is defined as follows.

v_fig_move : fig -> int -> int -> store -> store

v_fig_move f dx dy s =

if fig_is_fig f s then fig_move f dx dy s

else if fig_is_rect f s then rect_move (fig_cast_rect f s) dx dy s

else if fig_is_crect f s then crect_move (fig_cast_crect f s) dx dy s

else s

4 Implementing ASOOT in HOL

We implemented a tool called ASOOT generator which inputs a class model and
outputs the theory specific to the model. As mentioned in the introduction, the
theory is constructed by definitional extension and thus sound. It implements the
operational semantics of a heap memory using primitive theories such as natural
numbers, lists and pairs and derives the theory from the operational semantics.
We first explain the overview of the implementation using the example, and
then, explain it formally.

4.1 Overview

The store is represented as a heap memory to store object attributes. Fig.3
shows a snapshot of the heap memory for the example model. The heap memory
consists of three sub-heaps which are introduced corresponding to the three
classes fig, rect and crect. Each sub-heap is represented by a list and the
whole heap is represented by a tuple of them.

(2,3,r0)
f0
f1
f2
f3
f4
f5

(-4,5,r1)
(1,-2,r2)
(10,0,r3)
(0,0,r4)

(10,8,f2,c0)
r0
r1
r2
r3
r4

(6,12,f3,c1)
(4,10,f4,c0)
(5,8,f5,c2)

(red,r2)
c0
c1
c2 (blue,r4)

fig rect crect

Fig. 3. Representation of the store

Object references are represented by indices of the memory. In the case of
the fig memory, the reference f1, f2,... of type fig is represented by a natural
number 1,2, ... The reference f0 is used as a null reference fig_null. Object
instances are represented by a tuple or several tuples in the sub-heaps. For
example, the tuple in f_1 represents a fig instance whose attribute are x=2 and
y=3. Two tuples in f2 and r1 together represent a rect instance whose attribute
are x=-4, y=5, w=10, and h=8. Three tuples in f3, r2, and c1 together represent
a crect instance whose attribute are x=1, y=-2, w=6, h=12, and c=red. Multiple
tuples which compose an instance are linked to each other by storing object
references. The two tuples in f2 and r1 which compose a rect instance link
to each other by storing the references r1 and f2, respectively. If there are no
tuples for a tuple to link, the null references are stored. As the tuple in f1 does
not link to any rect tuples, it stores the null reference r0. Object subtyping is
modeled by this linked-tuple structure. For example, three references f3, r2 and
c1 all point at the same crect instance. This means crect instance can have
three apparent types fig, rect, and crect.

Now, we explain how the operators on the store are implemented in the heap
memory. The New operator rect_new is implemented as a function to add new
tuples in the sub-heaps for fig and rect and connects them to each other. The
Ex operator fig_ex is implemented as a predicate to test if the fig reference
is not null and not out of bounds of the sub-heap for fig . The Cast operator
fig_cast_rect is implemented as a function to read the rect reference stored in
the tuple pointed by the fig reference. The Get and Set operator fig_get_x and
fig_set_x are implemented as functions to read and update the first element
in the tuple pointed by the fig reference. The Is operator fig_is_rect is
implemented as a predicate to test if the tuple pointed by the fig reference is
linked with a tuple in the sub-heap for rect.

4.2 Representation of the store: a heap memory model

A sub-heap is defined independent of the class model and is represented generally
as ′a list. Addresses of data is represented by list indices, or natural numbers 0,
1, 2... The initial value of a sub-heap is defined as [null] which is a list with a
dummy constant null : ′a in the address 0. Four operators add, valid, read and
write are defined on the sub-heap as follows.

add x l = (Length l, Append l [x])
valid n l = (0 < n) ∧ (n < length l)
read n l = if valid n l then read1 n l else unknown

(read1 0 l = Hd l) ∧ (read1 (Suc n) l = read1 n (T l l))
write n x l = if valid n l then write1 n x l else l

(write1 0 x l = x :: (T l l)) ∧ (write1 (Suc n) x l = (Hd l) :: (write1 n x (T l l)))

The function add adds the new data x at the tail of the list and returns the new
address and the list after the operation. The predicate valid tests if a data is
stored in the address n. The address is valid if it is in the range greater than 0
and less than the current list length. The function read reads the data in the
address n. If the address is not valid, the constant unknown which represents
undefined data is returned. The function write updates the data in the address
n by the data x. If the address is not valid, the list is left unchanged.

Sub-heaps are introduced corresponding to each class and each of them stores
different types of tuples depending on the class. The type of tuples stored in the
sub-heap for the class c is defined as:

tuplec ≡ T (c, a1) ∗ ... ∗ T (c, an) ∗ d ∗ e1 ∗ ... ∗ em (ai ∈ Mattr(c), d � c, c � ej)

The first n elements are the attributes defined in c. The next element is a refer-
ence of a superclass object. The last m elements are references of subclass objects.
The type of the sub-heap storing these tuples is defined as heapc ≡ tuplec list.

The type of object references of the class c is obtained by defining bijections
between the type c and natural numbers as follows.

HOL datatype c = AbsObjc of num, RepObjc (AbsObjc n) ≡ n

The function AbsObjc maps a natural number to a c object reference. The func-
tion RepObjc maps a c object reference to a natural number. The null object is
represented by 0, i.e. Nullc ≡ AbsObjc 0.

The whole heap memory is obtained by gathering sub-heaps into a tuple.
The type of the heap memory is defined as:

Heap ≡ heapc1 ∗ ... ∗ heapcn (ci ∈ C)

The four operators on the sub-heap add, valid, read and write are extended
to operate on the whole heap as follows.

Addc : tuplec → Heap → c ∗ Heap, V alidc : c → Heap → bool

Readc
u : c → Heap → T, Writec

u : c → T → Heap → Heap

The function Addc adds a new tuple in the sub-heap of the class c. The predicate
V alidc tests if the c object is valid in the sub-heap of the class c. The function
Readc

u reads the element u in the tuple referenced by the c object. The element
u is either one of ai for attributes, d for the superclass object, or ej for the
subclass object. In the case u = ai, T = T (c, a) and for other case, T = u. The
function Writec

u writes at the same location in the heap as Readc
u reads. These

operators are easily defined using pair functions Fst and Snd and the bijections
AbsObjc and RepObjc.

4.3 Representation of ASOOT constants

We define constants EmpRep, ExRepc, CastRepc
d, GetRepc

a, SetRepc
a, NewRepc

and IsRepc
d using the operators defined on the heap memory. They are the heap

representations of the ASOOT constants Emp, Exc, Castcd, Getca, Setca, Newc

and Isc
d, respectively.

The constant EmpRep is defined as:

EmpRep ≡ ([null : tuplec1], ..., [null : tuplecn]) (ci ∈ C)

The empty store is represented by a tuple of the initial values of the sub-heaps.
The predicate ExRepc is defined as:

ExRepc o H ≡ V alidc o H

The existence of an object in the store is represented by the validity of the object
reference in the heap memory.

The function CastRepc
d is defined as:

CastRepc
d o H ≡{

if ExRepc o H then Readc
d o H else Nulld (c � d or d � c)

CastRepe
d (CastRepc

e o H) H ((c � e, e �+ d) or (d �+ e, e � c))

In the case that the two classes c and d are in the direct super-sub relationship,
the casting is represented by reading the d object in the tuple referenced by the
c object. If the c object does not exists, it is cast to the null object Nulld. In
the case that c and d are in the ancestor-descendant relationship but not in the
direct super-sub relationship, the casting is applied transitively, i.e. first the c
object is cast to the direct superclass e and then the e object is cast to the class
d.

The functions GetRepc
a is defined as:

GetRepc
a o H ≡{

if ExRepc o H then Readc
a o H else Unknownc

a (a ∈ Mattr(c))
GetRepd

a (CastRepc
d o H) H (d � c, a ∈ attr(d))

In the case that the attribute a is defined in the class c, getting a of a c object is
represented by reading the element a in the tuple referenced by the c object. If the

c object does not exists, a constant Unknownc
a which represents the undefined

value is returned. In the case that the attribute a is defined in the ancestor-class,
the c object is cast to the superclass d and then GetRepd

a is applied.
The function Setca is defined in the same way as Readc

a:

SetRepc
a o x H ≡{

if ExRepc o H then Writec
a o x H else H (a ∈ Mattr(c))

SetRepd
a (CastRepc

d o H) x H (d � c, a ∈ attr(d))

If the c object does not exists, the heap is left unchanged.
The function NewRepc is defined as:

NewRepc H ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Addc defaultc H (c is the root class)
let (o1, H1) = NewRepd H in

let (o2, H2) = Addc defaultc H1 in

let H3 = Linkd
c o1 o2 H2 in (o2, H3) (d � c)

where

Linkd
c o1 o2 H ≡ Writec

d o2 o1 (Writed
c o1 o2 H)

defaultc ≡ (V(c, a1), ...,V(c, an), Nulld, Nulle1, ..., Nullem)
(ai ∈ Mattr(c), d � c, c � ej)

This function creates a linked-tuple structure recursively on the inheritance
chain. As a base step, where the class c is the root class of the inheritance
tree, the c instance is created by simply adding a new tuple to the sub-heap
for c. As induction steps, first, the instance of the superclass d is created by
NewRepd and then, a new tuple is added to the sub-heap for c, and finally, the
newly obtained object o1 and o2 is linked by Linkd

c . The tuple value defaultc
added to the sub-heap for c contains default values for attributes and null objects
for the superclass and subclass objects.

The predicate IsRepc
d is defined as:

IsRepc
d o H ≡

{
ExRepc o H ∧

∧
j ¬ExRepej (CastRepc

ej
o H) H (c = d, c � ej)

ExRepc o H ∧ IsRepd
e (CastRepc

d o H) H (c � e, e �∗ d)

This predicate tests that the c object is the instance of the class d. This is tested
by examining if the links are traversed from the c object reference up to a tuple
in the sub-heap of d. Link traversing is realized by cast operators. If c = d, the
c object is the very c instance, so there must not exist any links to any of the
subclasses e1, ..., em. If c is the ancestor-class of d, the c object is cast to the
subclass e and the e object must be an instance of d. In both cases, the c object
must exist in the store.

4.4 Abstracting ASOOT from the heap memory

Finally, we abstract ASOOT from the heap representation by creating the type
store, defining ASOOT constants and deriving axioms.

The type store is created from a subset of the type Heap. In HOL, it takes
the following steps to create a new type t1 from an existing type t2.

1. Define the predicate p : t2 → bool which determines the subset of t2.
2. Prove the theorem � ∃x. p x, i.e. the subset is not an empty set.
3. Assert that there are bijections between t1 and the subset of t2 determined

by p.

The predicate which determines the subset of Heap is defined as IsStoreRep
as follows 1.

IsStoreRep H ≡ ∀P. IsInv P ⇒ P H

where

IsInv P ≡ P EmpRep ∧∧
c,a

(∀o x H. P H ⇒ SetRepc
a o x H) ∧

∧
c

(∀H. P H ⇒ Snd (NewRepc H))

The elements of the subset represented by IsStoreRep are those which sat-
isfy the predicate P which is an invariant proved by the following induction:
as a base step, prove that EmpRep satisfies P , and as induction steps, as-
sume that P holds for a heap and prove that the heaps obtained by apply-
ing SetRepc

a and NewRepc maintain P . The existence of an element is proved
as a theorem th ≡ � IsStoreRep EmpRep. The existence of bijections be-
tween store and the subset is asserted automatically by calling the ML function
new type definition(store, th). Let us say the bijections are RepStore : store →
Heap and AbsStore : Heap → store.

ASOOT constants are defined by taking a map with their heap representa-
tions as follows.

Emp ≡ AbsStore EmpRep, Exc o s ≡ ExRepc o (RepStore s)
Getca o s ≡ GetRepc

a o (RepStore s)
Setca o x s ≡ AbsStore (SetRepc

a o x (RepStore s))
Castcd o s ≡ CastRepc

d o (RepStore s), Isc
d o s ≡ IsRepc

d o (RepStore s)
Newc s ≡ let (o,H) = NewRepc (RepStore s) in (o,AbsStore H)

All the ASOOT axioms are derived from the definition we presented so far.
The axioms are divided into two groups according to how they are derived. One
is those which are derived simply by expanding the definitions. The axioms 2,
4, 5, 8, 9, 10 and 11 are in this group. The other is those which are proved as
invariants on the store. The axioms 1, 3, 6 and 7 are in this group. Invariants are
proved by the induction given in IsInv. Let us consider the proof of the axiom
1 defined as Inv as follows.

Inv s ≡ ∀o. Exc o s = Isc
d1

o s ∨ ... ∨ Isc
dn

o s (di ∈ {d | c �∗ d})
1 There is a logically equivalent implementation of the theory where the number of

steps of the induction in IsInv becomes only 1 + 2c.

First, we define the heap representation of the axiom as follows.

InvRep H ≡ ∀o. ExRepc o H = IsRepc
d1

o H ∨ ... ∨ IsRepc
dn

o H

Then, we prove the theorem � IsInv InvRep based on the structural induc-
tion. If this holds, the theorem � ∀H. IsStoreRep H ⇒ InvRep H is de-
rived from the definition of IsStoreRep. And as IsStoreRep (RepStore s)
holds (from the bijection theorem not presented here), we obtain the theorem
� ∀s. InvRep (RepStore s). From this theorem and the definitions of Exc and
Isc

d, we obtain � ∀s. Inv s.

5 A verification example

In this section, we show an example verification using ASOOT, where a UML
collaboration diagram is verified to satisfy an invariant written in OCL.

The UML class diagram and collaboration diagram of the library system are
shown in Fig.4. The system consists of four classes. The class library is the main
class of the system and has the methods for operations such as item lending and
customer registration. It has association with the classes customer and item
which represent the customers and items registered in the library, respectively.
There are two kinds of items: books and CDs. They are represented as subclasses
book and cd. The class lend keeps the lending information between a customer
and an item. In the class model, an association is defined as an attribute whose
type is a list of objects, e.g. the association for library with customer is defined
as an attribute customerlist of type customer list.

The lending operation is defined as a method lend of the class library
and its collaboration proceeds as follows. First, the method is applied to an
library object lib with two inputs: a customer ID (cid) and an item ID (iid).
Then, it checks if the customer is qualified to lend the item (1.1). The conditions
to check are: if the IDs are valid, if the customer currently keeps at most the
maximum number of items specified by the library (max) and if the item is
available. If the check is passed, the customer object (cst) and the item object
(itm) corresponding to the IDs are obtained (1.2, 1.3) and the maximum number
of days for the lent specified by the library (days) is obtained (1.4). Then, a new
lend object (lnd) is created by the creation method new_lend (1.5). In this
method, the lend object is set the remaining days for the lent (1.5.1) and linked
to the customer object and the item object (1.5.2-1.5.5). Finally, the lend object
is linked to the library object (1.6).

One of the invariants which must be met by the systems is: ”The total number
of items lent by all the customers is equal to the number of items unavailable.”
The OCL expression of this invariant is written as follows.

library

customer.lend->size = item->select(lend->size>0)->size

The method and the invariant are translated into a function library_lend
and a predicate Inv1, respectively, as shown in Fig.5. We have not defined the
formal translation, but it is our future work.

book
isbn:num

iid:num
title:string

item

days:int
lend

cid:num
name:string

customer

max:num
days:num
nextcid:num
nextiid:num

library

cd

Max number of items
a customer can keep
at a time
Max number of days
a customer can
keep an item

Next customer ID
and item ID to be issued

Customer ID

Item ID

Remaining days of the lent

:library

:customer :item:lend
<<new>>

1.1:[lib.check_lend(cid,iid)]
1.2:cst:=lib.get_customer(cid)
1.3:itm:=lib.get_item(iid)
1.4:d:=lib.get_days()
1.6:lib.add_lend(lnd)

1:lib.lend(cid,iid)

1.5:lnd:=new_lend(d,cst,itm)

1.5.4:cst.add_lend(lnd) 1.5.5:itm.add_lend(lnd)
1.5.1:lnd.set_days(d)
1.5.2:lnd.add_customer(cst)
1.5.3:lnd.add_item(itm)

Fig. 4. The class diagram and the lending collaboration

library_lend : library -> num -> num -> store -> string # store
library_lend lib cid iid s = (* 1 *)
 if library_check_lend lib cid iid s then (* 1.1 *)
 let cst = library_get_customer lib cid s in (* 1.2 *)
 let itm = library_get_item lib iid s in (* 1.3 *)
 let d = library_get_days lib s in (* 1.4 *)
 let (lnd,s1) = new_lend d cst itm s in (* 1.5 *)
 library_add_lend lib lnd s1 (* 1.6 *)
 else s

new_lend : num -> customer -> item -> store -> lend # store
new_lend d cst itm s =
 let (lnd,s1) = lend_new s in
 let s2 = lend_set_days lnd d s1 in (* 1.5.1 *)
 let s3 = lend_add_customer lnd cst s2 in (* 1.5.2 *)
 let s4 = lend_add_item lnd itm s3 in (* 1.5.3 *)
 let s5 = customer_add_lend cst lnd s4 in (* 1.5.4 *)
 let s6 = item_add_lend itm lnd s5 in (* 1.5.5 *)
 (lnd,s6)

library_get_customer : library -> num -> store -> customer
library_get_customer lib cid s =
 let l = library_get_customerlist lib s in
 HD (FILTER (\x. customer_get_cid x s = cid) l)

lend_add_customer : lend -> customer -> store -> store
lend_add_customer lnd cst s =
 let l = lend_get_customerlist lnd s in
 lend_set_customerlist lnd (cst::l) s

Inv1 : library -> store -> bool
Inv1 lib s = library_ex lib s ==>
 (library_get_customer_lendsum lib s = library_get_item_lendsum lib s)

library_get_customer_lendsum lib s =
 let l = library_get_customerlist lib s in
 LENGTH (FLATTEN (MAP (\x. customer_get_lendlist x s) l))

library_get_item_lendsum lib s =
 let l = library_get_itemlist lib s in
 LENGTH (FILTER (\x. 0 < LENGTH (item_get_lendlist x s)) l)

Collaboration

Invariant

Fig. 5. Definitions of the collaboration (partially) and the invariant in HOL

The methods in the collaboration is defined as HOL functions and the whole
collaboration is represented as their application sequence. This is a merit of
ASOOT compared to the UML/OCL verification based on B [13][14] where
methods are defined only as as pre- and post-conditions. ASOOT enables to
define even the internal operation of the methods using HOL functions. For ex-
ample, the method call at 1.2 is defined as a function library_get_customer.
This method returns a customer object which has the ID equals to cid and
is defined making use of the list function FILTER. The method call at 1.5 is
defined as a function new_lend and the collaboration proceeds to the next
depth. The method call at 1.5.2 is defined as a function lend_add_customer.
This function adds the object cst to the attribute customerlist using the Get
and Set operators. As for the invariant, the left-hand-side is defined as a func-
tion library_get_customer_lendsum. The navigation customer.lend is repre-
sented by getting the lendlist of all the customer object using MAP, and then,
flattening the nested list using FLATTEN. The set operation size is represented
by LENGTH. The predicate Inv1 takes the library object as its first argument.
This represents the context object.

The fact that the invariant is maintained by application of the collaboration
is proved as the following theorem.

|- !lib cid iid s.

Inv1 lib s /\ Inv2 lib s ==> Inv1 lib (library_lend lib cid iid s)

The predicate Inv2 is another invariant required as lemma which we omit to
explain the details. The whole proof proceeds on the abstract level of ASOOT
(without expanding the definition of ASOOT constants).

6 Related work

J. Berg et al. [9] and Claude Marché et al. [10] define memory models for reason-
ing Java programs annotated with JML specifications. The first work defines the
memory with untyped blocks, so that it can store arbitrary Java objects. The
second work introduces multiple heap memories for different types in order to
statically tell the types of each memory contents. Our memory model differs from
them in that it can store values of arbitrary types not limited to the primitive
ones in Java. This is important when it comes to the verification on the analysis
level as the models are abstracted with high-level types such as list, set, and
tree. We made this possible by constructing the memory depending on the type
information of the application. Moreover, we can take advantage of the plenti-
ful mathematical libraries and the powerful type definition package provided by
HOL to define high-level types. Actually, those types can be implemented using
Java classes with primitive types, but it will take additional proof steps to derive
type properties from those class implementations compared to use HOL types
directly.

A. Poetzsch-Heffer et al. [8] defines a Hoare-style logic for the verification of
OO programs. As a logical foundation of the logic, it defines an OO theory based

on the store model in HOL. The operators on the store are get, set, new, alive.
The last one corresponds to Ex in our theory. It does not have the operators
concerning subtyping like Cast and Is in our theory, and the axioms about
subtyping are defined on the Hoare-logic level. In our theory, we included the
axioms about subtyping on the store level by introducing the subtyping operators
Cast and Is. As a result, the store theory becomes independent of the Hoare
logic.

W. Naraschewski et al. [11] defines an object as an extensible record in Is-
abelle/HOL. This is a record in which a type variable is embedded as one of its
element. Although this record enables structural subtyping of objects, it does not
work as a reference. To allow object referencing, we defined our theory based on
the store. With the referencing mechanism, verification of object collaboration
becomes possible.

T. Aoki et al. [12] defines a semantics for the statechart-based verification
of invariants about object attributes in HOL. The semantics is constructed by
directly introducing axioms in HOL. The advantage of this axiomatic theory
construction is that the mapping between the model elements and the theory
element becomes clear, but the problem is that it may weaken the reliability
of the theory. On the other hand, the definitional construction adopted in this
paper guarantees the soundness of the theory.

7 Conclusion and future work

In this paper, we presented an OO theory for the verification of analysis models
which we implemented in HOL. In order to allow arbitrary types in object at-
tributes, the theory is automatically constructed depending on the class model
of the system. The theory is derived from the operational semantics of a heap
memory model and is guaranteed to be sound by definitional extension mech-
anism. Using the theory, a UML collaboration diagram is verified to satisfy an
OCL invariant.

Future work includes the formalization of the UML collaboration diagram
and its translation to the theory. We are considering to develop a Hoare-style
logic for the verification of collaborations and implementation of a verification
condition generator to make proof efficient. One of the future goal is to apply
the verification method to collaboration-based designs [15] [16].

References

1. OMG. Unified Modeling Language.
URL: http://www.omg.org/.

2. The HOL system.
URL: http://hol.sourceforge.net/.

3. J. Warmer and A. Kleppe. The object constraint language: precise modeling with
UML. Addison-Wesley, 1999.

4. Tobias Nipkow, David von Oheimb and Cornelia Pusch. µJava: Embedding a Pro-
gramming Language in a Theorem Prover. In Foundations of Secure Computation.
IOS Press, 2000.

5. Bart Jacobs et al. LOOP project, http://www.cs.kun.nl/ bart/LOOP/
6. David von Oheimb. Hoare Logic for Java in Isabelle/HOL. Concurrency and Com-

putation: Practice and Experience, vol.13 pp.1173-1214, 2001.
7. A. Poetzsch-Heffer and P. Muller. A programming logic for sequential Java. Pro-

gramming Languages and Systems (ESOP’99), vol.1576 LNCS Springer-Verlag,
1999.

8. A. Poetzsch-Heffer and P. Muller. Logical Foundations for Typed Object-Oriented
Languages. Programming Concepts and Methods (PROCOMET), 1998.

9. J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory
model for verification of sequential Java programs. Techn. Rep. CSI-R9924, Com-
put. Sci. Inst., Univ. of Nijmegen, 1999.

10. Claude Marché and Christine Paulin-Mohring. Reasoning on Java programs with
aliasing and frame conditions. In 18th International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs 2005), LNCS, August 2005.

11. W. Naraschewski and M. Wenzel. Object-Oriented Verification based on Record
Subtyping in Higher-Order Logic. Tecnische Universitat Munchen, 1998.

12. Toshiaki Aoki, Takaaki Tateishi, and Takuya Katayama. An Axiomatic Formal-
ization of UML Models. Practical UML-based Rigorous Development Methods,
pp.13-28 2001.

13. Using B formal specifications for analysis and verification of UML/OCL mod-
els. Marcano, R. and N. Levy. Workshop on consistency problems in UML-based
software development. 5th International Conference on the Unified Modeling Lan-
guage. Dresden, Germany, October 2002.

14. K. Lano, D. Clark and K. Androutsopoulos. UML to B: Formal Verification of
Object-Oriented Models. Integrated Formal Methods: 4th International Confer-
ence, IFM 2004, Cnaterbury, UK, April 4-7, 2004.

15. Y. Smaragdakis and D. Batory. Implementing layered designs with mixin lay-
ers. Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), 1998.

16. Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-
based software designs. In Symposium on the Foundation of Software Engineering,
2001.

