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ABSTRACT

In many real-world scenarios, we must make judgments in
the presence of computational constraints. One common
computational constraint arises when the features used to
make a judgment each have differing acquisition costs, but
there is a fixed total budget for a set of judgments. Par-
ticularly when there are a large number of classifications
that must be made in a real-time, an intelligent strategy for
optimizing accuracy versus computational costs is essential.
E-mail classification is an area where accurate and timely
results require such a trade-off. We identify two scenarios
where intelligent feature acquisition can improve classifier
performance. In granular classification we seek to clas-
sify e-mails with increasingly specific labels structured in a
hierarchy, where each level of the hierarchy requires a differ-
ent trade-off between cost and accuracy. In load-sensitive
classification, we classify a set of instances within an ar-
bitrary total budget for acquiring features. Our method,
Adaptive Classifier Cascades (ACC), designs a policy to
combine a series of base classifiers with increasing compu-
tational costs given a desired trade-off between cost and ac-
curacy. Using this method, we learn a relationship between
feature costs and label hierarchies, for granular classification
and cost budgets, for load-sensitive classification. We eval-
uate our method on real-world e-mail datasets with realistic
estimates of feature acquisition cost, and we demonstrate su-
perior results when compared to baseline classifiers that do
not have a granular, cost-sensitive feature acquisition pol-

icy.

1. INTRODUCTION

Electronic mail has become an integral part of daily com-
munication, filling needs ranging from the delivery of finan-
cial statements to personal correspondence. The huge vol-
ume, and multifarious uses of email have an impact on users,
who must dedicate time to organize and categorize the influx
of messages. The popularity of the medium also requires ser-
vice providers to operate at extremely large scale, handling
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billions of messages, totaling terabytes of data, each day.

The immense scale of e-mail provides over-sized compu-
tational challenges. For example, the vast majority of at-
tempts to send e-mail consist of unwanted marketing mes-
sages (“spam”), which providers must reject or place in a
separate folder. Moreover, webmail systems are increas-
ingly attempting to use more involved processing in an effort
to improve user experience. Examples of this functionality
include detecting meeting invitations, creating slideshows
from attached photographs, annotating metadata from so-
cial network profiles, recognizing shipment tracking infor-
mation, and predicting a message’s relevancy to a user. For
each such application, a series of specialized and potentially
expensive processing steps are necessary. Applying each set
of steps to every message is not scalable or beneficial; meet-
ing invitations generally do not contain shipment tracking
information. To apply only relevant features to each mes-
sage, providers must understand more about the type of
message being sent, for example meeting invitations.

In these scenarios, the goal of a mail system is to classify a
message with a set of increasingly specific labels, each with
their own computational constraints, a task we refer to as
granular classification. The categories occur at differing
scales with a defined structure: at a coarse scale messages
are considered undesirable (“spam”) or desirable (“ham”),
while desirable messages can be further classified at a finer
scale as “business communication” or “social network noti-
fications.” Messages containing “business communication”
may possibly be “shipment notifications” and as a result are
candidates for extracting package tracking information. We
refer to this set of labels and the relationship between them
as a label hierarchy.

In the granular classification setting, the prediction of each
label in the series may require a different trade-off between
cost and accuracy, necessitating a different feature acquisi-
tion strategy. Classifying messages as ham or spam occurs
at large-scale and minimizing the computational cost of clas-
sifying each message can be very important. Conversely, far
fewer messages can be considered business communication,
and accuracy may be paramount when deciding whether a
certain message is a receipt for a received payment or a bill
for past due expenses. We refer to the trade-off between
cost and accuracy for a given prediction within the hierar-
chy as the cost sensitivity of that classification. This cost
sensitivity may change depending on conditions, as our next
problem scenario demonstrates.

While mail systems are providing a more powerful set of
functions, a crucial requirement is high availability. Prob-



Command state Associated features
<Connect> ¢1(x) — IP address of remote host
HELO Identity of remote host
MAIL FROM ¢2(x) — Sender of message
RCPT TO Recipient of message
DATA ¢3(x) — Message incl. headers

Table 1: SMTP commands and associated features

lems such as interruptions in network connectivity, machine
failures, and attacks from malicious entities offer the po-
tential to degrade mail service and impact broader system
stability. Given such risks, conventional classification tech-
niques are ill-suited, because they rely on static feature vec-
tors that are the same for each message, potentially requiring
the full text of each message before classification begins. We
term this problem scenario load-sensitive classification,
where the classifier uses information about system load, in
the form of a classification budget, to intelligently choose a
feature set for each message while maintaining high through-
put. In this setting, during high load conditions, a mail sys-
tem adapts to system load by decreasing the average feature
cost for each instance and potentially suffering a reduction
in classification accuracy.

Fortunately, e-mail messages also adhere to a protocol
that allows features to be acquired incrementally, at dif-
fering costs. During an SMTP conversation, IP information
arrives first, followed by sender and recipient information,
the mail header, and finally the message content, as illus-
trated in Table 1. In this environment, successive features
take increasingly longer to acquire and can have increasingly
diverse values making acquisition expensive. These aspects
of the feature costs provide the opportunity to build classi-
fiers that exploit the feature structure and relative costs to
help ensure system stability. During high load conditions,
classifiers can favor cheaper features to increase the through-
put of decisions. In the setting of a label hierarchy, cheap
features can be used to make coarse judgments and progres-
sively expensive features can be used for classification at a
finer level. Furthermore, the structure imposed by feature
costs and dependencies provides a compelling parallel to the
structure of message categories. Relating these two struc-
tures provides the promise of making coarse-to-fine category
judgments (Figure 1). By using cost-sensitive methods that
emphasize incremental acquisition of features on the basis of
acquisition cost, the ability to make granular classifications
becomes a more computationally tractable problem.

A popular approach used to manage classification cost is
the use of classifier cascades[12]. In such a setting, each
instance is supplied to a series of classifiers that can each
either output a result or pass the instance to the next clas-
sifier for further consideration. Generally, the initial classi-
fiers have lower costs and see many instances while the final
classifiers have higher costs and higher accuracy but see few
instances. Classifier cascades have been successfully applied
to a number of problems, such as generating optimal fea-
tures for face detection[12] or reducing the number of tests
in medical treatment[9]. A powerful aspect of this approach
is the trade-off between cost and accuracy; allowing initial
stages to classify more instances can reduce costs, but often
with a reduction in accuracy.

Our contribution is to use a variant of classifier cascades,
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Figure 1: Relationship of feature cost and class gran-
ularity

Adaptive Classifier Cascades (ACC), to classify e-mail in
two settings, minimizing a loss that is a combination of
computational cost and classifier error. In the first setting,
granular classification, the classifier makes a series of predic-
tions from a label hierarchy where the relative contribution
of computational cost varies at each level of the hierarchy.
Our contribution is a method of learning cascade parameters
that minimize this loss at each level of the hierarchy. In the
second setting, the classifier cascade receives a classification
budget as input and produces predictions where the average
cost of classifying an instance does not exceed the budget.
Our contribution is learning cascade parameters that allow
the classifier to produce results given arbitrary cost budgets.

2. RELATED WORK

Computational cost of classification has been reduced through

cascade classifiers following the approach of Viola and Jones
[12]: instances are initially processed through computation-
ally efficient classifiers for a coarse judgment and those in-
stances judged interesting during the coarse classification are
reconsidered with increasingly computationally demanding
models. Recent work has sought a joint optimization of the
different classifier stages by minimizing a Lagrangian com-
bining cost and classification accuracy[10]. Cascade archi-
tectures for solving granular, coarse-to-fine problems are a
topic of active research, and an early version of this work has
been presented in such forums[1]. The problem of hierarchi-
cal text classification as initially presented in [6] supports
feature sets tailored to the classification task at a particular
level. Subsequent work has considered hierarchical classifica-
tion of e-mail[5]. The question of actively acquiring features
to improve classifier performance[11] both during training
[7] and at test time [2] has also been studied.

3. PROBLEM SETTING

We introduce the problem of cost-sensitive supervised clas-
sification and the use of cascades as a tool for combining
classifiers to solve cost sensitive problems in Section 3.1.
We introduce two novel problems, granular classification and
load-sensitive classification and provide a formal definition
of these problems in Section 3.2.

3.1 Cost-Sensitive Classifier Cascades

In a basic supervised classification setting, a training set
D = {(x1,41) - .- (Xn,yn)} is provided, containing instances



x; € X and class labels y; € Y = {—1,1}. Each instance x
is described by m sets of features,

X = ($1(X) ... pm(x))

The goal is to learn a mapping from the instances X to
classes Y, h : X — Y. This is achieved by minimizing a loss
function, L(y, h(x)) over the training data.

mhin Z L(y, h(x))

(x,y)€ED

In cost-sensitive classification, the problem requires min-
imizing a loss function that includes a component propor-
tional to the cost of classification, C'(h(x)). In our work, we
ascribe this cost to feature acquisition or the computational
overhead of computing a decision function. We designate a
loss function sensitive to the cost L.(y, h(x); \), and refer to
the parameter A, which governs the contribution of cost to
the loss function, as the cost-sensitivity of the loss function.

Le(y, h(x); A) = L(y, h(x)) + AC(h(x))

mhin Z Lc(y, h(x))

(x,9)€D

To learn the mapping from instances to labels, we em-
ploy a series of base classifiers, continuous-valued predictors,
fi...fm that approximate h using a subset of the feature
space. We define the i base classifier f; to make predictions
using the first ¢ feature subsets, ¢1(x) ... @i (x):

The output of each of these base classifiers is the decision
margin, or the distance of the instance from the decision
boundary. Values close to 0 indicate uncertainty about the
prediction. Each base classifier has an associated cost or
complexity, c1 . ..cm, attributed to the cost of acquiring the
subset of features used by the classifier. In this setting, since
base classifiers progressively incorporate more features, the
costs are strictly ordered, such that ¢c1 < c2... < ¢
Classifier cascades provide a framework for combining the
base classifiers to minimize a cost-sensitive loss, providing
the required trade-off between classification accuracy and
computational cost. We can formulate the learned hypoth-
esis h(x) as a classifier cascade F(x) given base classifiers
f1...fm and with parameters 7; . ..~vm, denoted as
F(fr- - fm;71-..¥m)(x). As shorthand, we introduce the
notation F;(x) for the cascade F(f1... fi;y1-..vm)(x). We
set Fn(x) = fm(x). For i < m, we define

fl(X) :f(fl...fi;'yl ...’ym)(x) = {

Fit1(x) otherwise

The computational cost of the cascade, C(x), can be ex-
pressed as a similar recurrence:

ci if [fi(z)| = v
Cit1(x)  otherwise

Note that this definition of the cascade is different from
the conventional treatment, where a common assumption is
that negative instances vastly outnumber positive instances,
and only positive instances are considered by subsequent

C;(X) = C(fl .. .fi;’)/l .. wm)(x) = {

Ji(x) if |fi(z)] > v
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Figure 2: Parameters learned for a granular classi-
fication task with a 2-level hierarchy

stages. Instead, we borrow from boosting the idea of pro-
viding additional consideration to those instances that are
likely to be poorly classified by our existing classifier.

Since the base classifiers produce a continuous result, their
output can be considered a confidence or decision margin.
Consequently, we are able to parameterize the cascade with
Y1 ...Ym. We refer to the parameters 1 ...vn, as a policy.
The cascade classifier learns a policy by choosing param-
eters that control the circumstances where an instance is
evaluated by a subsequent stage. The choice of the policy
provides a method to minimize the cost-sensitive loss of the
classifier.

3.2 Extensions to Cost-Sensitive Cascades

The most basic goal in this problem setting is to minimize
a loss function sensitive to classification cost, L.(y, h(x); \).
In our formulation of classifier cascades, if the base classifiers
are fixed and A is given, this can be accomplished by learning
the parameters 71 . .. v that minimize this objective. How-
ever, we consider two scenarios, granular classification and
load-sensitive classification, which provide additional chal-
lenges to the classifier cascade model.

Granular Classification

In the e-mail domain it is necessary to make multiple, coarse-
to-fine judgments, a problem of granular learning: for a
series of related tasks, each task has differing cost-sensitivity.
This is directly applicable when predicting a series of class
labels in a hierarchy, with differing computational constraints
for each prediction. Coarse predictions, such as distinguish-
ing between “ham” and “spam” may have higher cost-sensitivity
than fine-grained predictions such as deciding between cat-
egories such as “newsletter” and “social network.” Due to
this pattern of cost-sensitivity, the coarse classification may
be limited to using few features to limit feature acquisition
cost, while the fine classification task is able to make pre-
dictions using a larger feature set. Features acquired for a
coarse judgment, such as the sending behavior of a domain,
can be reused in the fine classification task with little or no
overhead. However mistakes made in the coarse judgment
can cause errors to propagate to the fine judgment, as the
classifier undertakes different prediction tasks at finer levels
based on previous decisions. System designers can influence
the performance of a system across diverse operating pro-
files in terms of cost and accuracy of coarse and fine tasks
by appropriately choosing the cost-sensitivity.

While predictions in the granular classification setting oc-
cur on the same set of instances and have related labels,
the cost-sensitivity parameter, \ is different at each level of
the hierarchy. Our goal in this setting is to learn a policy by



choosing parameters (’yl .. .’ym> that minimize cost-sensitive
loss at each level of the hierarchy. Specifically, for a classi-
fier cascade, h;(x), at each level | of the hierarchy we must
learn parameters (v} ...~!,);, minimizing a loss with cost-
sensitivity, A;. This task is illustrated in Figure 2.

Load-Sensitive Classification

Another circumstance commonly encountered in the e-mail
domain is performing classification while faced with a com-
putational budget. Given a computational budget, B, gov-
erning the average cost of classifying an instance we may
wish to choose a policy that adheres to an additional con-
straint that C(x) < B. However, this computational budget
may not be known in advance, and can depend on prevailing
conditions. Users may send more e-mail at specific times of
day or during significant events, servers may suffer outages,
or malicious users may attack the system. Each of these cir-
cumstances might require a different computational budget
to maintain the throughput of the classification system.

Since the budget necessary for classification is not known
in advance, the problem of load-sensitive classification
requires learning a policy that can meet an arbitrary budget
constraint. In essence, we must learn a function Z(B, h(x)) —
(y1...79m), such that Z chooses v parameters for an arbi-
trary budget B given a known hypothesis h(x).

As an example, in a denial-of-service (DoS) attack, thou-
sands of machines may simultaneously attempt to access a
small set of servers, causing an influx of requests. While a
decision system might normally use a robust set of features,
during the DoS attack a system administrator might choose
a lower budget for classification. Using a load-sensitive clas-
sification system, parameters are chosen that decrease the
average cost of classification by restricting the features used
for many decisions. This allows the system to maintain con-
nectivity for legitimate traffic. Using fewer features may
reduce accuracy, a tradeoff explored in Section 5.

4. ADAPTIVE CASCADE CLASSIFIERS

In this section we present the method for minimizing cost-
sensitive loss we refer to as the Adaptive Cascade Classifier.
Using the formulation for classifier cascades introduced in
Section 3, we detail a method to learn policies that minimize
cost-sensitive loss and extend this method to solve the tasks
of granular classification and load-sensitive classification.

Learning policies for different load conditions or classifi-
cation granularity is a difficult task. One obstacle is that
the objective function .(y, h(x)) is not continuously differ-
entiable with respect to 71 ...7vm; changing one v value can
shift a number of instances from one classifier stage to the
next. Since the classification accuracy of a subsequent stage
may vary, the objective function is non-monotonic, posing
challenges for approaches that find local optima.

These aspects of the problem require a global optimiza-
tion in the combinatorial parameter space. To perform this
global optimization, we use grid search to learn the parame-
ters that minimize the objective function, as detailed in Al-
gorithm 1. While this approach is not generally tractable, it
is appropriate for the domain of e-mail classification where
training instances are many orders of magnitude smaller
than classification requests, and few constraints exist on the
classifier training time or resources.

4.1 Granular Classification

Algorithm 1 ACC-GRID-SEARCH: Find optimal cost-
sensitive policy

Require: Dataset D
Require: Cascade Classifier F
Require: Cost-Sensitivity parameter A
Require: GEN-COMB, a function sampling combinations
of values from the range of y1...7vm
MIN « oo
for all (v ..
LOSS <0
for all (x,y) € D do
LOSS « LOSS + L.(y, F(x); A)
end for
if LOSS < MIN then
MIN « LOSS
MINPARAMS — (71 ...7vm)
end if
end for
return MINPARAMS

Ym) = GEN-COMB do

The problem of finding optimal parameters is magnified
when learning related tasks, as the parameter choices made
to find the optimal policy for a coarse task, at the top of
the label hierarchy, can change the distribution of instances
presented to a fine task at a more granular level in the hier-
archy. Performing a joint optimization of cost-sensitive loss
requires weighing the contribution of the loss function at
each stage, and adjusting v parameters at multiple levels in
the hierarchy to minimize this loss. In this work, we approx-
imate this joint optimization by sequentially finding a global
optimum for each level of the hierarchy using ACC-GRID-
SEARCH, as shown in Algorithm 1. Using this method, we
can ensure that each classifier in the hierarchy optimizes over
the appropriate subset of instances from previous levels.

4.2 Load-Sensitive Classification

In a load-sensitive setting, the optimization problem de-
scribed earlier also becomes more complex. Since the goal
is to provide parameters for arbitrary cost budgets, we must
solve the meta-learning problem of discovering the mapping
from R — (71 ...7m). A grid search can provide cost infor-
mation for many parameter values, allowing us to create a
mapping from a subset of possible budgets to a set of pa-
rameters.

One issue of using cost information from grid search is
the possibility of overfitting. While a policy may have an
acceptable cost on the training data, a small difference in
the distribution of the test instances could cause the clas-
sifier to exceed the cost budget. Features missing in the
training dataset could result in low margins and high clas-
sification costs. In some cases, the cost budget is absolute,
and exceeding the budget is not possible. To increase the
robustness of the load-sensitive classification we add a reg-
ularization term.

The regularization term is generated by measuring vari-
ance in the cost predictions made by a specific policy and
adjusting the estimated cost for prediction. This is achieved
by modifying the load-sensitive constraint: C(x)+ Ao < B,
where o is the standard deviation of classification cost and
A is a constant tuned based on the flexibility of the budget.



Class Count

Spam 531
Business 187
Social Network 233
Newsletter 174

Personal/Other | 102

Table 2: Message Categories, Counts in Yahoo!
Mail Dataset

S. EXPERIMENTAL EVALUATION

In this section we discuss the evaluation of Adaptive Clas-
sifier Cascades on a real-world dataset from Yahoo! Mail
users and the TREC-2007 Spam Corpus. We begin by intro-
ducing relevant aspects of the e-mail domain, provide details
about the datasets we use and the calculations performed
for feature costs, and end by defining the specific tasks and
baselines used for evaluation and the associated results.

5.1 E-Mail Domain

E-mail is generally delivered to Mail Transfer Agents (MTAs)

using the Simple Mail Transfer Protocol (SMTP)[8]. This
protocol defines a conversation consisting of a well-ordered
set of commands (Table 1). These commands correspond to
the ordered feature sets, ¢1(X)...¢m(x) considered in the
problem description. After each command the MTA must
send a response code, indicating whether the command was
successful or resulted in an error, and update its internal
state.

The first piece of information available to the MTA is the
IP address of the remote sender, which arrives as soon as the
sender connects. As the conversation continues, the sender
will send the “MAIL FROM” command and provide an e-
mail address. The sender must provide one or more recip-
ients using the “RCPT TO” command. Finally, the sender
will enter the “DATA” state and send the message. Usually
the message will consist of headers and content. The head-
ers contain metadata about the message, including routing
information as well as items such as the date and time the
message was sent, the sender’s name, and the subject.

The structure of this conversation lends itself to coarse-
to-fine processing. The IP address can differentiate between
known hosts with a history of sending messages of a specific
type and unknown hosts. In particular, known senders of
spam can be given an error after the first command (e.g.,
after acquiring the first level features), effectively blocking
the sender.

5.2 Dataset

We evaluated on data sampled from a month-long time
window of e-mail data exchanged by users of Yahoo! Mail.*
To create a tractable experiment, the feature set was lim-
ited to four types of features: remote IP address, sender
mailfrom domain, sender mailfrom address, and tokens from
the message subject. We representatively sampled approxi-
mately 100 feature values from each of the four feature types,
yielding 432 features. We then randomly sampled messages

!This data was acquired when the first author was employed
by Yahoo! Mail. With the permission and support of Yahoo!
through their Academic Relations department, we have been
able to continue to use an anonymized version of this dataset
for research purposes.

Feature Set Cn | Cs C
P é1(x) 0 | 5.035 | .168
MailFrom— ¢2(x) | 3 | 6.640 | .322
Subject— ¢3(x) 8 | 7.299 | .510

Table 3: Feature Classes and Costs

from the same month of e-mail data, restricting the sample
to messages containing at least one of the selected features
values. For each of the 432 features, up to three messages
were randomly selected, yielding a total 1227 messages. The
full feature vectors, encompassing all possible IP, sender and
subject features found in the 1227 training messages, were
constructed for these messages.

Sampled messages were categorized by a human expert
into five categories: “business”, “social network”, “newslet-
ter”, “personal/unknown” and “spam”. The frequency of
each category is shown in Table 2.

In order to demonstrate the reproducibility of our results,
we also use the TREC-2007 Public Spam Corpus|[3], a stan-
dard mail dataset used in many studies, to evaluate the
load-sensitive classification task. We prepared the dataset
by using the final “Received” header for IP information, us-
ing the initial “From” line for sender features, and extracting
the “Subject” header for the subject features. Messages were
removed when a non-private IP did not occur in the final Re-
ceived header, From information was not available, or when
the Subject consisted of non-ASCII characters. This pro-
cedure yielded 47194 total messages, 39055 spam and 8139
ham.

5.3 Feature Classes and Costs

We defined three feature sets, IP features (¢1), sender fea-
tures (¢2), and subject features (¢3). Each of these feature
sets was attributed a cost, C' (Table 3). Costs were nor-
malized to their fractional share of the cost of the entire
feature vector, so that acquiring all features for a message
corresponds to incurring a cost of 1.

Two factors were considered when computing the cost of a
feature: the network traffic necessary to acquire the feature
(Cr) and the storage required to hold all possible feature
values (Cs). In practice these costs can be weighted by their
computational impact; here we weighted them equally. The
normalized combination of these two costs is shown as C.
Since MTAs communicate with senders via TCP, the net-
work cost can be quantified in packets exchanged with the
sender. The storage cost of features was computed by calcu-
lating the entropy of feature values in the sampled messages.
The entropy represents the number of bits needed to opti-
mally encode the feature values, and this is the best-case
scenario for storing feature information.

A notable observation about the feature costs in mail clas-
sification is that they increase by an order of magnitude at
each stage of the SMTP conversation. The estimated cost
of the MailFrom features is almost double that of the IP
features, and the subject features are similarly expensive
relative to the MailFrom features. This structure of feature
costs motivates cost-sensitive approaches to the problem.

5.4 C(lassification Tasks

We explore two classification tasks where features are ac-
tively acquired to minimize a combination of cost and clas-
sifier error, governed by the constant A. Base classifiers are



trained using MegaM|[4] at the IP, sender and subject feature
levels. The loss function used is 0-1 loss, resulting in a value
of 1 for each incorrectly classified instance. In each case, the
classifier learns two parameters, v; and 72, controlling when
sender information or header information, respectively, are
acquired on the basis of the classifier margin. Experiments
are done using 10-fold cross validation, where each method is
trained using 90% of the data and evaluated on the remain-
ing 10%. All results show are averages across 10 folds unless
otherwise noted. Results are compared with a baseline clas-
sifier, and paired t-tests at the (p < .05) level are used to
assess significance. Significance tests were only performed
for overall error and overall cost.

Granular Classification

In the granular classification task, we divide the problem
into two stages. The first, a “coarse” stage, involves deter-
mining if a message is “spam” or non-spam (“ham”). The
tradeoff between cost and accuracy for this stage is con-
trolled by the cost-sensitivity parameter, A;, and the classi-
fier learns parameters 7.1, Y2 that minimize the cost-sensitive
loss for the coarse task. We separately train a second, “fine”
stage using only ham messages, where the goal is to classify
the message into one of four granular categories (“business”,
“newsletter”, “personal”, “social network”). In the multiclass
setting, we use the ratio of probabilities of the second most
likely class and the most likely class for the classification
margin. Here the cost-accuracy trade-off is controlled by
Af, learning parameters vy, 2.

When classifying instances, we first apply the coarse clas-
sifier, and actively acquire features based on the learned ~.
parameters to decide whether messages are ham or spam.
All messages judged to be ham by the coarse stage are fur-
ther classified by the fine stage, using the already acquired
features and acquiring additional features as dictated by the
v¢ parameters. Loss is reported with respect to the number
of incorrectly classified instances across both tasks.

We compare the results of our approach with a naive base-
line that uses a static feature acquisition strategy. In this
baseline, a fixed feature vector is used to perform classi-
fication such that the cost of prediction for each instance
is equal, since the same set of features are used for all in-
stances. We compare against three feature vectors includ-
ing progressively more features: ¢1(x), (¢1(x), $2(x)) and

(91(x), p2(x), d3(x))-

Load-Sensitive Classification

For the load-sensitive classification task, the goal is to max-
imize classifier accuracy while performing classification un-
der a computational cost budget. Since computational costs
have been normalized from 0 to 1, the classifier maps each
cost in this range (at a granularity of 1073) to the optimal
Y1, Y2 parameters.

To increase robustness, the standard deviation in classi-
fication cost, o weighted by constant A is used as part of
the cost estimate. This avoids overfitting cost estimates in
the training data when learning a policy and models the
diversity of instances at prediction time.

We test the classifier in the same (0, 1) range of budgets,
measuring the classification accuracy and the actual classifi-
cation cost at each budget level. The metrics used for eval-
uation include the loss, the percentage of instances where
classification cost exceeds the budget, and the average ex-

cess computational cost when exceeding the budget.

The baseline we compare against is a naive approach where
the largest fixed feature vector with cost below the budget is
used to classify each instance. In this setting, each instance
will have the same classification cost for each budget, but
this classification cost can increase as the budget increases.
By virtue of this design, the naive classifier will never exceed
the cost budget.

5.5 Results

The goal of this work is to demonstrate techniques that
deal with the common trade off between the accuracy of
predictions and the cost of classification. In Section 4 we
introduced methods to train a cascade classifier model to
minimize a combination of classification error and classifica-
tion cost. In the results, we focus on how using this method
can allow the design of classifiers meeting diverse needs.

Granular Classification Results

One scenario we consider is granular classification, where
there is a relationship among classification tasks, and pa-
rameters control the cost-sensitivity of these related tasks.
Results for the granular classification task are presented in
Table 4, with bold values indicating significant values based
on paired t-tests at a significance level of (p<.05).

Cascade classifiers offer significant improvements over the
baseline performance. When cost is very important, as in
the first pair of rows, it is necessary to operate with the
bare minimum of features. In this case, there is no way to
reduce the cost beyond the baseline which acquires a single
feature. However, a cascade classifier parameterized with
Ae = 1.5, Ay =1 can reduce error even with small increases
in the classification costs.

In the second pair of rows, the baseline classifier acquires
two features for each instance, while the cascade classifier
parameterized with Ac = .1, \y = .075 adaptively acquires
features. The learned model allows the cascade classifier to
outperform the baseline in both cost and accuracy.

Finally, the third pair of rows shows a baseline classifier
using the full feature set and a cascade classifier parameter-
ized with A\; = .02, \y = .02. In contrast to the first com-
parison, where no fewer features could be acquired, in this
setting no more features can be acquired. Consequentially,
the overall error of both classifiers is equal. However, the
cascade classifier can achieve this accuracy at significantly
lower costs by acquiring features adaptively.

As the range of cost profiles in the results suggests, choos-
ing the parameters Ac and Ay correctly is crucially important
to the classification outcome. Moreover, due to the relation-
ship between tasks in the granular classification setting, the
choice of one parameter can have an impact on the potential
influence of other parameters. This is evidenced in Figure
3(a) where the effect of A\. on classification error is shown
for differing values of A\y. When A. is low, the coarse classi-
fication stage aggressively acquires features and makes the
cost sensitivity of future tasks immaterial as most features
have already been acquired. As the cost sensitivity of the
coarse task increases, the choice of Ay has greater influence
on the overall error.

Aggressive feature acquisition produce lower error rates,
but can result in a corresponding increase in cost, as seen
in Figure 3(b). As seen with classification error, when A. is
low, the choice of Ay has little impact. However, at higher
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levels of coarse cost sensitivity the classifiers that produce
predictions with lower error also incur greater costs.

Load-Sensitive Classification Results

In the second task of interest, load-sensitive classification,
the goal is to perform classification within a specified com-
putational budget. This objective is complicated by both
overfitting the budget and variability in the budget predic-
tions, so regularizing the estimates based on their standard
deviation is necessary. We present the results of experiments
in Table 5 for the Yahoo! Mail dataset and Table 6 for the
TREC-2007 spam corpus. These results include trends for
error and adherence to the budget over the range of all pos-
sible budgets (.168 to 1) in increments of .001. We also
investigate how the value of the regularization constant A
impacts the accuracy of the predicted budget.

While the load sensitive cascades show lower error on the
prediction task, the regularization determines whether the
classification occurs within the classification budget. When
no regularization is used, the load-sensitive cascade exceeds

the budget on test data for the majority of budgets in the
Yahoo! Mail dataset and for almost 40% of the budgets in
the TREC dataset, with average excesses of .054 and .059
respectively. In the Yahoo! Mail dataset, when the regular-
ization constant is .25, budget excesses are both small and
rarer, and with a regularization constant of .5, the classifier
almost never exceeds the budget. For the TREC dataset, a
regularization constant of .25 results in budget predictions
that never exceed the desired budget on test instances.
Figure 4(a) shows that the error rate for all cascade clas-
sifiers converges relatively quickly as the budget increases,
regardless of the A parameter. The cost of classification at
test time relative to the budget is shown in Figure 4(b), and
clearly demonstrates the benefits of regularization. The ob-
served costs at A = 0 usually overshoot the budget, while
the costs at A = .5 are consistently below the allowed bud-
get. At A = .25, the predicted costs follow the budget very
closely. The naive method can only take full advantage of the
budget when the budget matches feature costs. Classifica-
tion accuracy can be quite good even for small classification



Classifier, Features Coarse L(x) | Fine L(x) | Overall L(x) | Overall C(x)
Naive, ¢1(x) .139 181 .229 .168
ACC, Ae =1.5,Af =1 .140 .156 217 187
Naive, ¢1(x), p2(x) 128 142 .200 .490
ACC, A = .1, \; = .075 111 100 .163 .431
Naive, ¢1(x), p2(x), P3(x) .106 .108 .162 1.00
ACC, A\c = .02, Ay = .02 .108 105 .162 .691

Table 4: Baseline results for misclassification and feature acquisition costs in a granular classification setting
on Yahoo! Mail dataset, comparing progressive feature classes and cascade classifier, 10-fold cross validation.
Bold values for overall within each group of rows indicate a significant difference at (p<.05).
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Classifier L(x) | % C(x) > B | avg excess
Naive 131 0.00% 0.00
ACC, A =0 .143 66.1% 115
ACC, A = .25 .110 17.1% .002
ACC,A=5 | 111 0.10% 004

Table 5: Results for Load-Sensitive Classification
task with different values of regularization constant,
A for the Yahoo! Mail dataset, 10-fold cross valida-
tion

Classifier L(x) | % C(x) > B | avg excess
Naive .057 0.00% 0.00
ACC, A =0 .021 30.2% .059
ACC, A= .25 .024 0.00% 0.00
ACC, A=.5 | .027 0.00% 0.00

Table 6: Results for Load-Sensitive Classification
ON TREC DATASET with different values of reg-
ularization constant, A for the TREC-2007 dataset,
10-fold cross validation

budgets, as shown in Figure 5.

Finally, the budget trade-off in Figure 5 for load-sensitive
classification shows a parallel to the cost-sensitivity trade-off
in granular classification shown in Figure 6. Using a bud-
get, the cost of classifying a set of instances can be bounded,
with lower accuracy at lower budgets. By adjusting the cost-
sensitivity parameter to a cascade, the relationship between
classifier cost and error is similarly regulated, with increased
accuracy requiring increased costs. In granular classifica-
tion, tuning the cost-sensitivity requires knowledge of the
relative importance of error and cost. For load-sensitive clas-
sification, the budget for classification require similar consid-
eration. Depending on the appropriate circumstance, Adap-
tive Classifier Cascades provide two approaches to achieving
a necessary trade-off.

6. LIMITATIONS & FUTURE WORK

The common problem of minimizing computational costs
at test time is well-studied, and many different solutions
have been proposed[11][12]. In our work, we modify a popu-
lar solution to computation-constrained prediction, the clas-
sifier cascade, and apply this solution in two scenarios perti-
nent to e-mail classification. This modification of the classi-
fier cascade requires base classifiers that provide a margin as
a metric of the uncertainty of the base classifier’s prediction.
Our work does not explicitly model or exploit the margin
distribution of the base classifiers, nor does it provide any



theoretical guarantees on the basis of these margins or the
performance of the base classifiers. While having few restric-
tions provides a generalizable setting to explore solutions to
the problem, one drawback is that the objective function
we seek to minimize is discontinuous and non-monotonic.
By including more restrictions on the margins and accuracy
of the base classifiers, it may be possible to prove stronger
results about the capabilities and performance of classifier
cascades. We are working to form a better understanding
of how the margins and accuracies of base classifiers can
impact the behavior of cascades.

By virtue of the classifier cascade model and lack of re-
strictions on base classifiers, the optimization problem we
consider is not suitable for gradient-based methods. Our
use of grid search over the combinatorial parameter space is
a simple global optimization, but there is extensive work on
global optimization strategies for exact and approximate re-
sults. One area where better optimization models would be
useful is the granular classification task, where each level of
the classification hierarchy is currently optimized separately.
A true optimum would require optimizing the parameters at
every stage of the hierarchy in tandem, but for many prob-
lems the search space for these parameters is vast. We hope
to explore algorithms that are able to approximate the global
optimum in such problem settings in future work.

The first scenario we consider involves granular classifi-
cation, or the prediction of a series of related labels in a
label hierarchy. An obstacle to this approach is the lack of a
universally accepted label taxonomy for e-mail messages. In
fact, e-mail messages may possibly belong to multiple classes
within a level of a taxonomy. A better approach might be
to model a tag taxonomy and predict inclusion in a series of
increasingly specific tags. While we have acquired a small
dataset with granular labels, larger corpuses that include tag
information are critical for continued research.

In the second scenario we consider, load-sensitive classifi-
cation, the classifier cascade can adapt to quickly changing
budgets. However, our solution requires explicitly regular-
izing using the variability in the instances during training
time. Tuning this parameter may be difficult, and the true
variability in test instances may be unknown or change in
scenarios that generate high load. One solution to this prob-
lem would be calculating the weight of the regularization
parameter online, and using a precomputed set of cascade
parameters for the computed value of regularization. This
option holds the possibility of adapting the method to an
online, adversarial setting while maintaining the benefits of
training offline, an area of research we are actively pursuing.

7. CONCLUSION

The use of classifier cascades for classifying e-mail mes-
sages shows great promise. Our work demonstrates that
this approach can be used to balance trade-offs between
cost and accuracy in different tasks. We introduce one sce-
nario, granular classification, with the goal of predicting
labels within a hierarchy where the cost-sensitivity varies
with the level of the hierarchy. A second scenario we con-
sider is load-sensitive classification, where classification
is required within an arbitrary computational budget. We
provide a novel formulation of classifier cascades using base
classifiers trained on progressively increasing subsets of fea-
tures. In our formulation, Adaptive Classifier Cascades, we
parameterize the relationship between these base classifiers

on the basis of classification margin, and then learn a policy
consisting of parameters that minimize a combination of cost
and error across training instances. Learning these param-
eters provides an intelligent feature acquisition strategy in
classifying e-mail messages that can adapt to different tasks
or different computational constraints. System administra-
tors can use this approach to meet a variety of circumstances
based on business needs of the organization. Using a real-
world dataset, we provide a realistic model of feature costs.
Our evaluation shows the applicability of classifier cascades
to both scenarios. In granular classification, we can show
significant reductions in cost, error, or both cost and error
versus methods that use a fixed set of features for classifi-
cation. We provide an analysis of error and cost in different
operational conditions, showing that this approach is suit-
able for many possible trade-offs of cost and accuracy. For
load-sensitive classification, we show that our method can
classify instances for arbitrary cost budgets while reducing
error relative to fixed-feature classifiers. By including a reg-
ularization parameter for modeling the variability in test
instances, we improve results to provide stronger guaran-
tees on the adherence to computational budgets. This ini-
tial work shows this method is especially well-suited to the
problem of e-mail classification.
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