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Abstract

The multiple-instance learning model has received much attention recently with a primary ap-
plication area being that of drug activity prediction. Most prior work on multiple-instance learning
has been for concept learning, yet for drug activity prediction, the label is a real-valued affinity
measurement giving the binding strength. We present extensions ofk-nearest neighbors (k-NN),
Citation-kNN, and the diverse density algorithm for the real-valued setting and study their per-
formance on Boolean and real-valued data. We also provide a method for generating chemically
realistic artificial data.

1. Introduction

Themultiple-instancelearning model is becoming increasingly important within machine learning.
Unlike standard supervised learning in which each instance is labeled in the training data, in this
model each example is a set (orbag)1 of instances which is labeled as to whether any single instance
within the bag is positive. The individual instances are not given a label. The goal of the learner
is to generate a hypothesis to accurately predict the label of previously unseen bags. Consider the
standard learning problem of learning an axis-aligned box inℜn. In the standard learning model
each labeled example is a point inℜn (drawn according to some unknown distributionD) and
labeled as positive if and only if it is in the target box. In the multi-instance model, an example is a
collection of points inℜn (often called abagor r-example) which is labeled as positive if and only
if at least one of the points in the bag is in the target box.

1. We use the standard terminology of the field, in which a bag of points is a set, not a mathematical bag, of points.
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The multiple-instance model was motivated by thedrug activity prediction problemwhere each
example is a possible configuration (or shape) for a molecule of interest and each bag contains all
low-energy (and hence likely) configurations for the molecule (Dietterich, T. G., Lathrop, R. H. and
Lozano-Ṕerez, T, 1997). For the drug discovery application, each bag corresponds to a drug, each
point in the bag corresponds to the shapes that it is likely to take, and the target point corresponds
to the ideal shape that will create the strongest bind with the receptor molecule. By accurately pre-
dicting which molecules will bind to an unknown protein, one can accelerate the discovery process
for new drugs, hence reducing cost.

The algorithms we present here are quite general. We assume that each bag in the training
data,B, contains a set of any number of instances where each instance is described by a set ofn
features. Thus, we can view this problem as a geometric learning problem where each bag is a set of
any number ofn-dimensional points. For the drug activity prediction problem typically one would
expect one point in the bag for each low-energy conformation. The inductive bias upon which our
algorithms depend is that there is some unknown target point (in then-dimensional feature space)
and the label of a pointpi, j is a non-increasing function of the distance between the target point and
pi, j under some unknown metric. The label of the bag is based on the point in the bag closest to the
target point. Any representation of a molecule as a set ofn-dimensional points that shares this bias
would be applicable when applying our algorithm.

In the standard multiple-instance model with Boolean labels, any bag containing only points
sufficiently distant from the target will be labeled negative and the others will be labeled as pos-
itive. More formally, letB .= {〈B1, `1〉,〈B2, `2〉, . . .〈B|B|, `|B|〉} where`i is the label of bagBi .
Bi

.= {pi,1, pi,2, . . . pi,|Bi |}, and`i, j is the label of pointpi, j ∈ Bi . Then∀i `i
.= `i,1∨ `i,2∨ . . .∨ `i,|Bi |.

In standard supervised learning, we can see the label of each point. In the multiple-instance model
we can see only the labels of the bags.

{〈p1,1, `1,1〉, . . .〈p1,|B1|, `1,|B1|〉︸ ︷︷ ︸, 〈p2,1, `2,1〉, . . .〈p2,|B2|, `2,|B2|〉︸ ︷︷ ︸, . . . }
{〈B1, `1〉, 〈B2, `2〉, . . . }

There has been a significant amount of research directed towards this problem (Auer 1997;
Maron and Lozano-P̀erez, 1998, Maron 1998, Wang and Zucker 2000). Other applications for
the multiple-instance model have also been proposed (Maron and Raton, 1998; Ruffo 2000). For
example, Maron and Raton (1998) applied the multiple-instance model to the task of learning to
recognize a person from a series of images that are labeled positive if they contain the person and
negative otherwise. They have also applied this model to learn descriptions of natural images (such
as a waterfall) and then used the learned concept to retrieve similar images from a large image
database. More recently, Ruffo (2000) has used this model for data mining applications.

Most prior research performed under the multiple-instance model is for concept learning (i.e.
Boolean labels). The first empirical study of Dietterich et al. (1997) used real data for the problem
of predicting whether or not a synthetic molecule binds to the musk receptor. However, binding
affinity between molecules and receptors is quantitative, borne out in quantities such as the energy
released by the molecule-receptor pair upon binding (the more energy, the better the bond) and
hence a real-valued classification of binding strength in these situations is preferable to a binary
classification.

One chemical motivation for being able to make such a classification is the ability to project
needed drug dosages based on the relative binding ability of a drug molecule. In fact, binding
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strength of a drug is a major factor in its economy and toxicological effects on patients; strongly
binding drugs need to be produced in lower quantities, and lower doses may represent a benefit to the
patients using the drugs. Hence, in real drug-discovery work, most data is labeled with real-valued
affinity measurements obtained via laboratory work. The only real data sets available as benchmarks
are the Musk1 and Musk2 data sets provided by Dietterich et al. (1997) for the problem of predicting
the strength of synthetic musk molecules. Presumably, positive examples of musk molecules bind
well to olfactory receptors and negative examples do not. However, the key question is often not
whether or not a molecule binds, but how strong the tendency to bind is. Dietterich et al. note that
“The only aspect of the musk problem that is substantially different from typical pharmaceutical
problems is that the musk strength is measured qualitatively by expert human judges, whereas drug
activity binding is usually measured quantitatively through biochemical assays.” We argue later that
other aspects of the musk data sets are also atypical.

In this paper, we study extensions of the diversity density,k-NN, and citation-kNN algorithms
for the real-valued multiple-instance setting. We look at both the squared loss and the prediction
error (where all labels> .5 are treated as 1 and the rest are treated as 0).2 While our paper focuses
on studying the real-valued multiple-instance setting, we also want to deepen our understanding of
algorithms that have been proposed for the Boolean setting. Despite some criticism of the musk data
sets, most notably by Maron (1998) in regards to the MULTINST algorithm working well despite the
strong (and inaccurate) distributional assumptions it makes, these data sets are still widely used as
experimental benchmarks for multiple-instance learners. Along with some real-valued benchmarks,
additional Boolean benchmarks are needed. Wang and Zucker (2000) note that, “Although the two
adaptation algorithms ofk-NN performed remarkably well, the basic reasons why they acquired
such high accuracy on the musk data sets are unclear.” The ability to generate artificial data sets has
enabled us to answer this question and others like it.

We provide two baselines with which to compare our work. In the first baseline, a random bag
from the training data is selected and its label is returned. As a second baseline, we use the standard
unweightedk-NN algorithm by converting the multiple-instance problem to a standard supervised
learning problem by assigning each point the label of its bag. Then, the standard (single-instance)
k-NN algorithm using the Euclidean distance is used. We compare the performance of these algo-
rithms when using real-valued data to their performance when using Boolean labels obtained by
rounding the real-valued labels to 0 or 1. Even when the training data has only labels of 0 or 1, the
prediction is real-valued. For example, fork-NN, the average label from thek-nearest neighbors
is output. We report the squared loss between the underlying real-valued label and the real-valued
prediction made by the algorithm that received only Boolean labels. Not surprisingly, we found the
squared-loss is greatly reduced when using real-valued labels versus the Boolean labels obtained by
rounding.

Our empirical work has provided some valuable new insights about these algorithms. A sec-
ondary contribution of our work is a procedure for generating chemically realistic artificial data in
which you can control factors such as the number of conformers, the number of relevant features,
and their degree of relevance. We have placed the data sets used in this paper at
www.cs.wustl.edu/ ∼sg/multi-inst-data/ .

2. We assume without loss of generality that the labels are in[0,1].
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2. Previous Work

In their seminal paper, Dietterich et al. (1997), presented three methods for learning axis-aligned
boxes (often referred to as APR for axis-parallel rectangles) in the multiple-instance model. They
presented three general designs for learning axis-aligned boxes in the multi-instance model. First,
they considered the standard algorithm that forms the smallest box that bounds the positive exam-
ples. They also explore a noise-tolerant version of this algorithm. Next they presented an algorithm
they refer to as the “outside-in” algorithm. In this algorithm, first they construct the smallest box
that bounds all of the positive examples, and then they shrink this box to exclude false positives.
Finally, they presented a third algorithm, the “inside-out” algorithm, which starts with a set point
in the feature space and “grows” a box with the goal of finding the smallest box that covers at least
one example from each positive bag and no examples from any negative bag. Then they expanded
the resulting box (via a statistical technique) to get better results. When appropriately tuned, their
algorithm gives 89% accuracy on the Musk2 data set.

Prior to the work of Dietterich et al., Jain et al. (1994) presented COMPASS which is a neural
network algorithm for the drug activity prediction problem which was designed to be robust to errors
in the initial alignment of the molecules. While COMPASS can handle real-valued labels, we are
not aware of any reported results on any available real-valued data sets.

Auer (1997) presented an algorithm that learns using simple statistics and hence avoids some
potentially hard computational problems that were required by the heuristics used by Dietterich et
al. Their algorithm worked quite well on the Musk2 data set (obtaining 84% accuracy) despite the
fact that they assumed each point in a bag was drawn independently of the others.

Maron and Lozano-Ṕerez (1998) described a framework calledDiverse Density(see also Maron,
1998). The intuition of their approach is as follows. When describing the shape of a molecule by
n features, one can view each configuration of the molecule as a point in ann-dimensional feature
space. As the molecule changes its shape, it traces out a manifold through thisn-dimensional space.
(To keep the size of the bags manageable, only shapes of the molecule that have sufficiently low
potential energy were considered). The diverse density at a pointp in the feature space is a measure
of both how manydifferentpositive bags have an example nearp, and how far the negative instances
are fromp. They use gradient ascent with multiple starting points (namely, starting from each point
from a positive bag) to find the point that maximizes the diverse density. Their algorithm obtained
82.5% accuracy on the Musk2 data.

More recently, Wang and Zucker (2000) proposed a lazy learning approach to multiple-instance
learning by applying a variant of thek-nearest neighbor algorithm (k-NN). To compute the distance
between bagsb1 andb2 they used the minimum distance between a point inb1 and a point inb2.
While a standardk-NN approach did not work well, by also using citers ofp (points who includep
as one of its nearest neighbors) as well asp’s nearest neighbors they reached a 92.4% accuracy on
Musk1 and 86.3% accuracy on Musk2. There has also been some nice theoretical work on learning
the multiple-instance concept class of axis-aligned boxes inn-dimensional space (Long and Tan,
1998; Auer et al., 1997; Blum and Kalai, 1998).

Ray and Page (2001) studied multiple-instance linear regression using artificial data to empir-
ically evaluate their algorithm, which uses an inductive logic programming based approach com-
bined with a linear regression algorithm supplemented with EM. In their work, they assume that the
hypothesis underlying the data is a linear model with Gaussian noise on the value of the real-valued
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label. Furthermore, they assume there is someprimary instance that is responsible for the label (i.e.
the one closest to the target hyperplane).

The only other prior work which we are aware of on real-valued multiple-instance learning
is the theoretical work by Goldman and Scott (2001). As in our work, they associate a real-valued
label with each point in the multiple-instance example. They provide on-line agnostic algorithms for
learning real-valued multiple-instance geometric concepts defined by axis-aligned boxes inconstant
dimensional space by reducing the learning problem to one in which the exponentiated gradient (or
gradient descent) algorithm can be used. However, their work (and their basic technique) assumes
thatd is constant which is not feasible for the drug discovery application sinced is typically in the
hundreds.

3. Artificial Data Generation

In this section, we justify our decision to generate artificial data, and discuss the technique we use
to generate the data. We first review how the musk data sets were generated. Dietterich et al. (1997)
constructed a molecular surface for each conformation by orienting all molecules with respect to
a common origin, and then using 162 uniformly distributed random sampling rays radiating from
the origin. The length of the molecular surface along each ray was recorded as a feature value.
These 162 features were supplemented with additional measurements specific to musk molecules to
obtain a 166-dimensional feature vector for each conformation. Dietterich et al. obtained Boolean
classifications by calling molecules strongly believed (by a human expert) to be musk as positive
examples and those strongly believed to be non-musk as negative examples — no “borderline” data
was included.

The exclusion of borderline data is one of several factors which make the musk data sets easier
than one would typically expect. We now argue that in the musk data a significant fraction of the
features are likely to be relevant and that there are only three levels of importance (or relevance)
for the features that are relevant. While the structure of the binding site of the musk receptor is
unknown, based on the structural requirements for nitro-free aromatic musk molecules (Fehr et al.,
1989), the interaction between a musk molecule and the receptor can be approximately categorized
to three different interactions: the hydrogen bond involving the oxygen atom, the van der Waals or
hydrophobic interaction involving the aromatic ring, and the van der Waals interaction involving
the aliphatic chains. Accordingly, we would expect the degree of importance (or relevance) for the
relevant variables to be one of three values depending on which kind of interaction occurs. Further-
more, musk molecules have a closely packed structure and the binding involves large portions of the
molecule. Since the rays used to represent the shape of the molecule were approximately uniformly
emanated from the origin, a considerable number of rays will pass through the structural motifs of
the molecule that involve binding. Hence a large number of features will be relevant.

Because of these aspects of the musk data sets, some algorithms may work very well on Musk1
and Musk2 but not work as well on more typical data. The artificial data provides some additional
benchmarks with much more varied characteristics. Furthermore, knowledge about the parameters
used to generate the artificial data enables us to develop a better understanding of the strengths
and limitations of various learning algorithms. For example, we believe that if we knew important
factors such as which features were relevant, then we could obtain substantially better performance.
However, we had no way to test this hypothesis on the real data since we do not know which features
are relevant. While some of our findings are as expected, others have been surprising. Also, with the
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artificial data we can vary, in a controlled way, parameters such as the number of relevant variables
and the number of relevance levels and see how various algorithms’ performance is affected by
these changes.

We created our artificial data by generating an “artificial receptor” with each feature value rep-
resenting the distance from the origin to the binding sites of the receptor on that feature. “Artificial
molecules” were then generated with each feature value considered as the distance from the origin
to the molecular surface when all molecules are in the same orientation, assuming that all artificial
molecules have been placed in a standard position and their orientations have been aligned with
respect to the binding sites of the artificial receptor. Artificial molecules (bags) with 3 to 5 instances
per bag were generated for each artificial receptor.3 Let 〈Bi , `i〉 denote theith labeled bag in data set
B, Bi j denote thejth instance of bagi, andBi jk denote the feature value of instanceBi j on featurek.
Given the artificial receptor (target)t, let tk represent the value oft on featurek.

The binding energies between the artificial molecules and receptor were calculated on the basis
of a widely used empirical potential for intermolecular interactions, theLennard-Jones potential
(Berry, 1980). For a given featurek

Vk(r) = 4εk

((σ
r

)12
−

(σ
r

)6
)

whereεk is the depth of the potential well for featurek, σ is the distance at whichV(r) = 0, and
rk is the internuclear distance for two monoatomic molecules. One can viewεk as a parameter that
represents the degree of importance of that feature in the binding process, with 1 as the most relevant
and 0 as irrelevant. We choose theLennard-Jones(LJ) model because of its mathematical simplicity
and ability to qualitatively mimic the real interaction between molecules. In generating the artificial
data, we assumeσ is a constant across all features. The interaction energy between receptort and
instanceBi j on featurek, EBi jk , was calculated using the Lennard-Jones potential (withr = tk−Bi jk)
for featurek. The binding energy ofBi j with t, EBi j was calculated as the sum ofEBi jk over all
features. The binding energy of moleculeBi to t is

EBi = max
Bi j∈Bi

{
n

∑
k=1

V(tk−Bi jk)

}

wheren is the number of features.
The label for moleculeBi is the ratio ofEBi to the maximum possible binding energy (Emax)

possible given the artificial receptor and scale factors:

LabelBi = EBi /Emax (1)

whereEmax = −∑n
k=1 εk. We have obtained one real data set4 that has real-valued affinity val-

ues. This data set has 283 features and 139 bags with an average of 32.5 points per bag. Only
29 bags have labels that were high enough to be considered as “positive.” In the real data we
have the labels were not uniformly distributed. Accordingly, during the generation of artificial
molecules, the feature values of one instance in a molecule were generated in a controlled man-
ner to mimic this behavior so the resulting labels also form similar stripes. We varied this part

3. Data sets with larger bags could also be created.
4. Jonathan Greene from CombiChem provided us with the Affinity data set. However, due to the proprietary nature of

it we cannot make it publicly available and do not have any information about how the features were generated.
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of the generation across the data sets to create some additional diversity. Our data sets are at
www.cs.wustl.edu/ ∼sg/multi-inst-data/ .

A summary of the key characteristics of our artificial data sets as well as those of the real data
sets are given in Table 1. As a naming convention we use LJ-r. f .swherer is the number of relevant
features,f is the number of features (i.e. dimensions), ands is the number (or levels) of different
scale factors used for the relevant features. The values for different scale factors are 1, 1-(1/s), 1-
(2/s), ..., and 1/s, respectively, with roughlyf /s features possessing the same scale factor. LJ-r.30.s
is a small data set to quickly test the performance of different algorithms, LJ-r.166.s is to partially
mimic the Musk data sets, and LJ-r.283.s is to partially mimic the affinity data set.

We now describe in more detail how the artificial bags were generated. Our goal was to create a
method to generate bags using the Lennard-Jones potential that had the “striped” property we saw in
the Affinity data set. To explain what we mean by having a striped property, we refer to Figure 11.
Imagine projecting all of the points in the rightmost plot to thex-axis (the label axis). In doing this
observe that there is a lot of data with labels between 0.34 and 0.42. This is what we mean when
we refer to a stripe.

We first generate the artificial receptor (i.e. the target point). The attribute value for the artificial
receptor on each dimension is chosen randomly from a uniform distribution to be between 10-15
angstroms. We pickedσ in the Lennard-Jones potential foreach dimensionuniformly at random
between 1.5-2.0. In defining the artificial receptor, the scale factors are also assigned as described
above.

We now describe how we generate an artificial molecule (i.e. bag). Recall that the bag will
consist of a set of points. Letp be one such point. In what follows, we always describe how
we generate the distancedi between the target attribute valueti and the attribute valuepi of p. The
receptor can be thought of as going around the molecule and hence has larger feature values. Hence,
we setpi = ti −di . In a moment we describe how we generated the shape (i.e. point within the bag)
that is closest to the target, meaning that it will have the strongest bind and hence its binding strength
will be that used to label the bag. For all other points in the positive bag, and for all feature values for
points in the negative bags, the distance between the feature values is uniformly chosen at random
to be between 1.5σi and 3.5σi . For a molecule in which all features are selected in this way, the
label is typically less than 0.1.

The rest of this section focuses on how we generate the attribute values for the point that defines
the label of the bag (i.e. the one that is closest to the target.) In the Lennard-Jones potential, the
maximum interaction energy on each axis is 21/6σi ≈ 1.12246σi . We control the distance between
the receptor and molecule for each dimension (feature) as follows, where the procedure to generate
the values forindex[0], . . . , index[2], which determine how many dimensions belong to each of these
four cases, is shown in the appendix.

(a) For dimensions 0 toindex[0]−1, the distances are randomly uniformly distributed from 1.08
to 1.26σi which will be very close to the value which will give the maximum binding strength.

(b) For dimensionsindex[0] to index[1]− 1, the distances are randomly uniformly distributed
from 1.02 to 1.38σi .

(c) For dimensionsindex[1] to index[2]− 1, the distances are randomly uniformly distributed
from 1.0 to 2.8σi .
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(d) Finally, for featuresindex[2] to the total number of dimensions the distances are randomly
uniformly distributed from 1.5 to 3.5σi . Observe that for this range of distances, the contri-
bution to the binding strength in the Lennard-Jones potential from this feature is very small.
These features correspond to the irrelevant features.

Notice that from (a) to (d), the amount by which the distance from the target varies from the
optimal distance increases, which in turn reduces the label of the resulting molecule. Furthermore,
the values ofindex[0], index[1], andindex[2] are randomly generated for each molecule and hence
the value is different for each molecule. From the pseudo-code provided in the appendix, one can
observe that as you move from the “a” to the “b” to the “c” data sets, more and more features fall
into the category of features that are drawn over a wider range and thus are less likely to be near the
optimal value; molecules with such features will have lower labels.

We acknowledge that there are a lot of hand-picked constants in this method to generate the
artificial data. These were selected so that the resulting data had the “striped” properties of the
affinity data, yet we could still control parameters such as the number of dimensions, the number
of relevant features, and so on. In Figures 4–9, you can clearly see the four stripes obtained from
the “4ah” data sets when the points are projected onto thex-axis. Contrast this with the “4ch” data
set shown in Figure 10 where the attribute values are varied enough that the stripes blend into one
another, creating data that is much more uniformly distributed.

As a default, a bag with label 1.0 is generated by setting each of the relevant features to the
correct value for one molecule and then the irrelevant features are randomly selected to be between
1.5σi and 3.5σi . We also considered several other variations. For one data set in LJ-r.30.s, we
just use the method as described above to generate all conformations of each molecule. When
using this method, the maximum label will be the largest that occurs. Since the maximum label is
approximately 0.9 we use the “-0.9” suffix for this data set.

For some data sets in LJ-r.166.s, we only used labels that were not near 1/2 (indicated by the
“S” suffix), and all scale factors for the relevant features were randomly selected between[.9,1] to
partially mimic the musk data. We refer to these data sets as thestrongdata sets, since the labels
are strongly positive or negative. For these data sets we used the same method to generate the data
except that we tunedindex[0], index[1], andindex[2] so that there were no labels around 0.5. More
specifically, we did not generate any molecules with labels in the range 0.4 to 0.6.

More variations were performed on the LJ-r.283.s data set to better understand the behavior of
learning algorithms on the affinity data set. In the LJ-r.283.4 data set, the number of different scale
factors was fixed at 4, and the number of relevant features varied as 40, 80, 120, 160, 200, 240, and
280 to study the effect of the number of relevant features on the performance of learning algorithm.
In the LJ-150.283.s data set, the total number of relevant features was fixed at 150, but the number
of different scale factors varied as 2, 4, 10, and 15 to study the effect of levels of relevance on the
performance of algorithm. We also varied the distribution among the labels. In the “a” data sets
they are heavily clustered with no clusters near 1/2. This is characteristic of what occurs in the musk
data sets. In the “b” data sets they are still clustered but not quite as heavily as in the “a” data sets.
Finally, in the “c” data sets they are generated in a much more uniform manner. A much harder data
set withs= 4 was also considered in which there are only 25 features each at the two higher levels
of relevance and 50 features each at the two lower levels of relevance. We use “h” to denote these
harder sets.
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Finally, the data sets denoted LJ-150.283.Rs were generated in a different manner than the
others with varied scale factors. In these cases all the features are highly relevant but there are still
s different levels of relevance with small differences between them.

data number number # scale number # bags with other key
set relevant features factors of bags label> .5 characteristics
Affinity - 283 - 139 29 real data
Musk1 - 166 - 92 47 real data
Musk2 - 166 - 102 39 real data
LJ-r.30.s r 30 s 60 25
LJ-r.166.1 r 166 1 92 32-35
LJ-r.283.s r 283 s 200 60
LJ-16.30.2 16 30 2 60 25
LJ-16.30.2-0.9 16 30 2 60 25 max label of about 0.9
LJ-160.166.1-S 160 166 1 92 47 no labels in [.4,.6]
LJ-160.166.1 160 166 1 92 47
LJ-80.166.1-S 80 166 1 92 47 no labels in [.4,.6]
LJ-150.283.sa 150 283 s 200 60 highly clustered labels
LJ-150.283.sb 150 283 s 200 60 clustered labels
LJ-150.283.sc 150 283 s 200 60 fairly uniform
LJ-150.283.4ah 150 283 4 200 60 harder variation of 4a
LJ-150.283.4bh 150 283 4 200 60 harder variation of 4b
LJ-150.283.4ch 150 283 4 200 60 harder variation of 4c

Table 1: Summary of the data set characteristics.

4. Nearest Neighbor Based Approach

One set of approaches we evaluated is based on the nearest neighbor algorithm. In particular, we
consider a multiple-instance variant of unweightedk-NN in which the distance between bagsBi and
Bj is defined as the minimum Euclidean distance between a point inBi and a point inBj . Wang and
Zucker (2000) called this distance measure theminimal Hausdorff distance. In thek-NN algorithm,
the prediction made for bagB is the average label of thek closest bags.5 The other approach we
used is a variation of citation-kNN (Wang and Zucker, 2000). Given a bagB, theC-nearest citers
of B include bagBi if and only if B is one of theC-nearest neighbors (under the minimal Hausdorff
distance) ofBi . Note that the number ofC-nearest citers is generally notC. Citation-kNN makes
a prediction for bagBi by taking the average value of theR-nearest neighbors (using the minimal
Hausdorff distance)andC-nearest citers. Wang and Zucker found that for the musk data sets the
best performance is obtained whenR= 3 andC = 5 and in general recommended havingC = R+2.
Unless otherwise specified, for citation-kNN we use these values. However, we also did experiments
with R= 8 andC = 10, and since the nearest neighbor information seemed valuable and we wanted
to make a fair comparison between 8-NN and citation-kNN. We also performed experiments with
R= 5 andC = 3.

5. Unlike the work of Wang and Zucker, we do not normalize all features to have the same range of values.
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Since the computation of the distance between two points is calculated using all features, when
there are many irrelevant features, the distance between two points can be dominated by the irrel-
evant features. One way to address this problem is to stretch the axes (shortening the axes corre-
sponding to less relevant features and lengthening the axes corresponding to more relevant features).
We refer tos1, . . . ,sn as the scale (or relevance) factors wheresi defines the relevance of featurei in
computing the target value. Using the artificial data, we compared the results obtained when using
(1) the true scale factors (i.e. those that yield theεk values used in generating the data) to rescale
the axes (“true”), (2) when projecting out all features with a scale factor less than 1/2 (“highly rel-
evant”), and (3) when projecting out all features with a scale factor of 0 (“relevant”). For both (2)
and (3), there is no rescaling of the axes for the features that are used.

We have used a very simple heuristic based on the MULTINST algorithm (Auer, 1997) to es-
timate which features are relevant, and then project out those features which we estimated to be
irrelevant. To estimate whether dimensiond is relevant, we project the points onto dimensiond and
apply a low-pass filter by averaging the values of points nearby in this dimension to eliminate jitter.
If the resulting graph has exactly one peak, we estimate that this is a relevant dimension and other-
wise we set the scale factor to 0. The results are very preliminary, but in some cases we obtained an
improvement to using no scaling.

Observe that both citation-kNN and thek-NN algorithm, when used with minimal Hausdorff
metric, are designed for the multiple-instance setting. Not surprisingly, our results demonstrate
that both of thesek-NN variations significantly outperform the NN-baseline which simply uses the
Euclidean distance and ignores the division of the points into bags by just giving each point the label
of the bag from which it came.

We now briefly explore the advantages and disadvantages of citation-kNN versus using the
k-NN algorithm with the minimal Hausdorff metric. To do this, we first consider the following
“idealistic” setting in which there is a very small dense region around the target point for which
strong binding (i.e. a label near 1) will occur. Second, assume that there is some distributionD
over then-dimensional space with no weight near the target point from which each point from the
negative bags are drawn and all but one point from the positive bags are drawn. That is, we assume
that with the exception of the one conformation of each drug with strong binding that defines the
label, the distribution over the other conformations of drugs that have strong binding are not any
different from the conformations taken by drugs that do not bind.6 Since the points are in very high-
dimensional space, we assume that any two points drawn fromD are much further from each other
than the diameter of the dense region around the target for which strong binding occurs. Finally, to
simplify the analysis, we consider the situation in which the bag size,r, approaches infinity.

We also want to bring into our analysis the changes caused by the scale factors being wrong. We
make the assumption that if the scale were correct then, with probability 1, a positive bag will have
has as itsk nearest neighbors other positive bags. To capture the fact that when the scale factors
are not correct the dense region of positive points is stretched incorrectly and thus some positive
bags are likely to have negative bags as their nearest neighbors, we introduce a parameter 0≤ ε≤ 1
where a positive bag is expected to havek(1−ε) of its k-nearest neighbors be positive bags with the
remainingkε neighbors being negative bags. Whenε = 0, we model the situation when the scale
factors are correct and asε increases this models increasingly more errors in the estimation of the
scale factors.

6. Our artificial data makes the distributional assumptions used here.
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Next, consider a negative bag. Observe that as the bag size approaches infinity, the nearest
neighbor of a negative bag is equally likely to be any of the points that are not in the dense region
around the target. Letm+ (respectively,m−) be the number of positive bags (respectively, negative
bags), letp+ = m+/(m+ + m−) (respectivelyp− = m−/(m+ + m−) = 1− p+) be the fraction of
examples that are positive (respectively, negative), and letr be the size of a bag. Then among
the k nearest neighbors of a negative bag, one expectskrm−/((r − 1)m+ + rm−) of them to be
negative. This follows since there arerm− points from negative bags which are equally likely to be
selected among therm− points from the negative bags and the(r −1)m+ points from the positive
bags which are not the point in the bag near the target.7 Thus asr approaches infinity, one expects
km−/(m+ + m−) = kp− = k(1− p+) of the k-nearest neighbors of a negative bag to be negative
bags. The remainingkp+ of the k-nearest neighbors of a negative bag will be positive bags. So
depending on the fraction of examples which are positive, there can be a very high false positive
error rate.

Under the above assumptions, thek-NN algorithm has an accuracy of(1− ε) on the positive
bags and an accuracy ofp− on the negative bags. Hence the overall accuracy isp+(1−ε)+ p2−. So
as p+ goes from 0 to 1, the accuracy begins at 1.0 and drops down to a low typically a little less
than(1− ε) and then rises back up to 1− ε whenp+ reaches 1.

We now consider how the use of citers as done in citation-kNN changes the performance. We
assume thatk nearest citers are used. If we instead use thek+2 nearest citers as done by Wang and
Zucker (2000) then for smallk the citers would have slightly more influence in the overall prediction
than that given by our analysis here. This would accentuate the differences seen between the two
algorithms. When using citers, the problem of misclassifying negative examples is reduced since
the citers of a negative bag are very likely to be a negative bag since positive bags are very likely to
cite another positive bag. We now compute the expected number of positive and negative citers for
both positive and negative bags. From themp+ positive bags, we expectk(1− ε)mp+ positive bags
to be cited. Dividing these evenly among themp+ positive bags, we expectk(1− ε) positive citers
for each positive bag. Similarly, we expectkp− negative citers for each positive bag. Hence for a
positive bag the expected accuracy is 2k(1−ε)/(2k(1−ε)+kε+kp−) = 2(1−ε)/(2+ p−−ε) since
this is the sum of the number of citers and neighbors that are positive divided by the total number of
neighbors and citers. Similarly, one can compute that the expected accuracy on the negative bags is
2p−/(2p−+ p+ + ε). Thus the overall accuracy would be 2p+(1− ε)/(2+ p−− ε)+2p2−/(2p−+
p+ + ε).

In Figures 1, 2, and 3, we plot these formulas for the accuracy on the positive and negative bags
along with the resulting overall accuracy of bothk-NN and citation-kNN for values ofε of 0.0, 0.2
and 0.4. From these plots, the following observations can be made. First, whenε = 0, for small
values forp+ (until approximately 0.4) citation-kNN would be expected to slightly outperformk-
NN. For larger values orp+, k-NN has the better performance. Intuitively this occurs because when
p+ is small then a large fraction of the examples are negative and hence the reduction in the accuracy
for positive bags is outweighed by the increase in accuracy for the negative bags. Asε increases, this
relationship changes withk-NN performing better whenp+ is small and citation-kNN performing
better for largerp+. When p+ is small,k-NN’s performance is fairly insensitive toε since when
the scale factors are wrong causing the dense positive region to not appear very dense, the accuracy
when predicting the value of negative bags is not affected. However, citation-kNN’s performance

7. Since we are considering when the bag size approaches infinity, we do not need to add a term for the positive points
near the target region that may be a nearest neighbor of a negative bag.
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Figure 1: Accuracy ofk-NN and citation-kNN for ε = 0.0 for the analytical analysis we performed.

degrades asε increases since the citers provide much less valuable information. On the other hand,
when p+ is larger, citation-kNN performance only decreases a little asε grows due to the nearest
neighbors of the positive bags being more likely to be negative since the citers are still accurate. The
accuracy ofk-NN drops significantly because it is dominated by the 1− ε accuracy on the positive
bags.

The above analysis makes many simplifying assumptions. However, even under these idealistic
settings one can clearly see that in some situationsk-NN, when using the minimal Hausdorff met-
ric (which is quite different from using standardk-NN on the individual points), will outperform
citation-kNN while in others citation-kNN will perform best. Although citers were found to im-
prove performance for the musk data sets, in general they may not improve performance. Also this
analysis considers the accuracy for data with Boolean labels and for which Boolean predictions are
made. While, a much more complex analysis would be needed to truly understand the trade-offs
between these two approaches in terms of the squared loss, this simple analysis provides some an-
alytical grounding to think about the tradeoff between these two approaches which are based upon
the nearest neighbor algorithm.

5. Diverse Density Based Approach

In this section we describe our extension of the diverse density algorithm of Maron and Lozano-
Pérez for the real-valued setting. Intuitively, the diversity density of a pointt is just the like-
lihood (with respect to the data) thatt is the target. More specifically, the diverse density is
a measure of both high positive instance density and low negative instance density at locations
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Figure 2: Accuracy ofk-NN and citation-kNN for ε = 0.2 for the analytical analysis we performed.

in feature space. A high diverse density indicates a good candidate for a “true” concept. Let
B = {〈B1, `1〉, . . . ,〈Bi , `i〉, . . . ,〈Bb, `b〉} be the training data. LetBi j denote thejth instance of bagi,
andBi jk denote the feature value of instanceBi j on featurek. The diverse density of possible target
point t is defined as

DD(t) = Pr(t |B) = Pr(B| t)Pr(t)/Pr(B).

We assume uniform priors and so the goal is to search for at that maximizesPr(B| t). Assuming
the points inB are independent yields

Pr(B| t) =
r

∏
i=1

Pr(Bi | t).

By Bayes’ rule,

Pr(Bi | t) = Pr(t |Bi)Pr(Bi)/Pr(t).

We assume a uniform prior on the targets and thatPr(Bi) is constant with respect tot. Hence the
goal is to maximize∏b

i=1Pr(t|Bi). The key modification required in moving to the real-valued
setting is in estimating Pr(t |Bi). We let

Pr(t |Bi) = (1−|`i −Label(Bi | t)|)/Z

whereLabel(Bi | t) is the labelBi would receive for targett andZ is a normalization constant.
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Figure 3: Accuracy ofk-NN and citation-kNN for ε = 0.4 for the analytical analysis we performed.

We consider two formulas forLabel(Bi | t). The first is that of Maron (1999) in which

Label(Bi | t) =max
j

{
exp(−

n

∑
d=1

(sd(Bi jd − td))2)

}
(2)

where the target is defined by feature valuest1, . . . , tn and scale factorss1, . . . ,sn, and the softmax
is used to approximate the maximum so that it can be differentiated. If each`i ∈ {0,1} and we use
Equation (2), then our algorithm reduces to the standard diverse density algorithm. We also tried
used the LJ formula by settingLabel(Bi | t) = EBi /Emax.

The pointt that maximizes∏b
i=1Pr(t|Bi) is found using a gradient ascent search over the 2n di-

mensional space defined byt1, . . . , tn,s1, . . . ,sn using as multiple starting points the featurest1, . . . ,tn
from each point in a bag with the maximum label and 0.1 for eachsi .

6. Empirical Results

In this section we report on our results. While binding strength is real-valued, as was done for
the musk data sets, one can always convert the binding strength to a Boolean. In order to study
the difference in performance when using real-valued data versus Boolean data, for all of the data
sets we ran experiments using both the given real-valued labels and a Boolean label obtained by
rounding the label to 0 or 1. For each of these runs, we report the prediction error (i.e. the number
of prediction mistakes divided by the number of bags in the test set) where for real-valued labels and
predictions we used 0.5 as the cutoff between positive and negative. We also report the squared loss.
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For the nearest neighbor algorithms we use leave-one-out cross validation and for diverse density
we used 10-fold cross validation.8

NN 8-NN citationk-NN
baseline relevant no scaling est. scaling relevant no scaling est. scaling

data set %err loss %err loss %err loss %err loss %err loss %err loss %err loss
LJ-160.166.1-S 30.4 .0705 0.0 .0028 0.0 .0032 0.0 .0063 0.0 .0013 0.0 .0022 1.0 .0066
LJ-160.166.1 35.8 .0477 5.4 .0027 5.4 .0030 5.4 .0040 4.3 .0011 4.3 .0014 1.0 .0018
LJ-80.166.1-S 41.3 .0952 0.0 .0038 0.0 .0042 0.0 .0104 0.0 .0025 0.0 .0025 1.0 .0075
LJ-80.166.1 32.6 .0479 6.5 .0063 10.8 .0089 9.7 .0079 1.0 .0037 8.6 .0109 4.3 .0067
LJ-150.283.R2 7.5 .0480 0.0 .0023 27.5 .0709 1.5 .0165 3.5 .0026 31.5 .0782 9.5 .0157
LJ-150.283.R4 10.0 .0496 0.0 .0024 27.5 .0736 1.0 .0160 1.5 .0027 32.5 .0811 9.5 .0167
LJ-150.283.R10 13.5 .0525 0.0 .0026 29.5 .0774 2.5 .0206 1.0 .0029 32.5 .0852 7.0 .0185
LJ-150.283.R15 15.0 .0530 0.0 .0027 29.5 .0781 2.0 .0174 0.5 .0029 32.0 .0859 8.0 .0174
LJ-40.283.4 19.5 .0530 2.5 .0146 6.0 .0053 5.5 .0107 7.5 .0141 8.0 .0077 8.5 .0105
LJ-80.283.4 10.5 .0463 1.0 .0064 1.5 .0046 1.5 .0054 3.0 .0056 2.0 .0050 4.5 .0043
LJ-120.283.4 15.5 .0518 0.5 .0041 0.5 .0038 0.0 .0030 2.5 .0055 0.5 .0030 1.5 .0039
LJ-160.283.4 10.5 .0472 0.0 .0014 1.0 .0044 0.0 .0016 0.0 .0016 0.5 .0048 0.5 .0015
LJ-200.283.4 17.5 .0535 0.0 .0006 0.0 .0006 0.0 .0006 0.0 .0006 0.0 .0005 0.0 .0005
LJ-240.283.4 13.0 .0480 0.0 .0006 0.0 .0006 0.0 .0007 0.0 .0007 0.0 .0007 0.0 .0010
LJ-280.283.4 15.0 .0532 0.0 .0004 0.0 .0004 0.0 .0005 0.0 .0003 0.0 .0003 0.0 .0003
Average 19.1 .0544 1.0 .0035 9.2 .0226 1.9 .0081 1.6 .0032 10.1 .0246 3.7 .0075

Bool. Label Avg. 16.9 .0960 0.7 .0596 9.5 .0655 1.1 .0582 0.9 .0596 10.3 .0742 2.2 .0563

Table 2: Overview of nearest neighbor and citationk-NN (for R= 3 andC = 5) results when using
real-valued data. When using the random base the average prediction error was 46.1% and
the average squared loss was.1433. The last line of the table shows the average prediction
error and squared loss for when the labels are rounded to 0 or 1 (i.e. Boolean labels).
For the Boolean setting, the random base had an average prediction error of 46.1% and an
average squared loss of.3065.

6.1 Nearest Neighbor Results

We begin with an overview of results using both the nearest neighbor and citationk-NN algorithms
when we vary the number of relevant features and whether or not we use a “strong” data set in which
there are no examples with labels between 0.36 and 0.77. These results can be found in Table 2. The
three columns under both 8-NN and citationk-NN show results for different methods of selecting
the scaling factors used for the importance of each feature in the distance computation. The nearest
neighbor and citationk-NN algorithms both significantly outperformed both baselines. Between
the two baselines, the NN baseline performed significantly better than the baseline obtained by
predicting based on the label of a random bag. This relationship occurs in all the data sets and so
we only show the NN baseline for the remaining tables. On these data sets, we tested 2-NN, 8-NN,

8. We performed tests for the nearest neighbor algorithms using the test set and obtained comparable results to leave-
one-out cross validation. We would have also reported on results using the diverse density algorithm for leave-one-out
cross validation but were unable to do this because of the very high amount of computation time needed by the diverse
density algorithm.
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and citation-kNN (with R=3 and C=5). 8-NN performed approximately 75% better than 2-NN in
terms of both the prediction error and squared loss and hence we do not report those results. The
performance of 8-NN and citation-kNN are very similar which is very different than what is found
when using the musk data sets. For Musk1, 8-NN has error 20.7% whereas citation-kNN has error
10.9%. Similarly, for Musk2, 8-NN has error 27.5% whereas citation-kNN has error 14.7%. Further
studies are needed to explain why the results for the musk data sets are different in this respect than
for our artificial data sets.

Looking further at the second half of Table 2 it can be seen that the performance dramatically
improves as the number of relevant features increases. We believe that the strong performance with
respect to the prediction error rate on the musk data sets is partly due to the fact that most of the
features are likely to be relevant and that it is a “strong” data set. Finally, in the last two rows
we show the average performance when using real values and compare those results to the average
performance when using Boolean values (obtained by treating all labels< 0.5 as negative and the
rest as positive). Not surprisingly, the loss is significantly reduced when using real-valued labels.
What is a bit surprising is that the prediction error is sometimes reduced by using the Boolean labels
versus the real-valued labels. The reason for this phenomena is that by using labels of 0 or 1 then the
predictions tend to be away from 1/2 which increases the loss a lot but helps to keep the prediction
on the correct side of the 0.5 threshold.

Next we focus on the effect of varying the number of degrees of relevance. These results can
be found in Tables 3– 7. The leftmost column gives the squared loss for the NN baseline. The
next two columns show the results when the axes are not re-scaled (i.e. all features are treated as
equally relevant). The third column gives the performance when our estimation technique is used
to estimate which features are relevant. Then the features estimated to be irrelevant are not used in
the distance computation and the rest are treated equally. We then show three columns in which we
use knowledge of the trueε values to compute the correct scale factors for re-scaling the axes. In
the column labeled “use only relevant” we perform the procedure which that estimation technique
is trying to do. All of the irrelevant features are not used in the distance computation (and the rest
are treated equally). In the column labeled “only use highly relevant” all of the features in which the
correct scale factors are at least 1/2 are used. Finally, the column labeled “true scaling” re-scales
the axes based on the true scale factors. Thus as we move to the right, we are using more and more
detailed information about the true levels of relevance of the features. We include these last three
columns to help provide insight into what gains could be made if accurate scale factors could be
estimated.

There are several observations that can be made from looking at these tables. First, the more
uniform the data the harder it is to learn. Both the “a” and “b” data sets are fairly clustered but
without any true labels near 1/2. Hence, they are easier to learn than the “c” data set. These differ-
ences can be seen by looking at the distribution over thex-axis (the actual labels) in Figures 4– 9.
As one would expect, as the number of levels of relevancy increases the loss increases. However, as
seen in the “h” data sets, what is really more important than the number of levels of relevance is the
percentage of the relevant features which have a low degree of relevance. Notice that when the scale
factors are known then the performance on the “h” data sets are comparable to the corresponding
data set with roughly the same number of features at each degree of relevance. However, in all other
cases the performance for the “h” data set, in which there are four levels of relevance, is typically
the one for which the worst (or near worst) performance occurs. Finally, one can see that while our
estimation procedure works well in some cases, it does not always improve performance.
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NN no estimated use only use only true
baseline scaling scaling relevant highly rel. scaling

LJ-150.283.2a .0956 .0044 .0030 .0032 .0032 .0018
LJ-150.283.4a .0928 .0043 .0033 .0032 .0052 .0022
LJ-150.283.10a .0960 .0056 .0042 .0047 .0032 .0023
LJ-150.283.15a .0967 .0057 .0043 .0048 .0026 .0025
LJ-150.283.4ah .0986 .0071 .0060 .0063 .0075 .0022
LJ-150.283.2b .0945 .0046 .0063 .0064 .0064 .0016
LJ-150.283.4b .0922 .0048 .0067 .0065 .0066 .0038
LJ-150.283.10b .0956 .0070 .0074 .0084 .0058 .0057
LJ-150.283.15b .0963 .0074 .0077 .0088 .0055 .0058
LJ-150.283.4bh .0980 .0098 .0065 .0103 .0095 .0050
LJ-150.283.2c .0374 .0100 .0091 .0080 .0080 .0056
LJ-150.283.4c .0352 .0100 .0072 .0072 .0085 .0067
LJ-150.283.10c .0486 .0136 .0100 .0089 .0086 .0067
LJ-150.283.15c .0506 .0138 .0097 .0089 .0082 .0062
LJ-150.283.4ch .0611 .0161 .0091 .0109 .0102 .0040

Table 3: Performance of 2-NN when varying the number of levels of relevance as measured by the
squared loss.

The performance of 2-NN and 8-NN are fairly similar with 8-NN performing slightly better
than 2-NN on the easier data sets but with more significant differences on the more complex data
sets. Citationk-NN with 3 citers and 5 neighbors outperforms 8-NN. Using 5-citers and 3 neighbors
yielded improvements on the easiest “a” data sets but there was a slight degradation in performance
on the other data sets. As the data becomes more clustered then the nearest neighbor provides more
information and hence the need for citers is reduced. Finally, using 10 citers and 8 neighbors gave
the best overall performance.

Next we take a more in-depth look at 2-NN versus citationk-NN with 3 citers and 5 neighbors
on the “4ah” data sets. In the plots of Figures 4– 9 we present plots of the predicted label (y-axis)
versus the actual label (x-axis). These plots provide more detail than just reporting the squared loss.
In each plot we show the 2-NN result on the left and the citationk-NN result on the right. The
“4bh” data sets are very similar to the “4ah” data sets and so we don’t show them here. In Figure 10
we look at two plots for the “4ch” data sets to show the different characteristics that these data sets
have.

Figure 11 shows the results obtained using Citation-kNN on the Affinity data with Boolean
labels (on the left) and with real-valued labels (on the right). In the Affinity set all of the negative
labels are clustered near 0.4 and we believe this is part of the reason why the performance is better.
Further tests are needed to verify this theory.

In comparing the results obtained when using Boolean versus real-valued labels, as one would
expect, the expected loss is much lower when real-valued labels are used. Interestingly, the number
of classification errors is slightly less, in general, when using Boolean labels. For the Affinity data
set, when using Boolean labels the prediction accuracy was 86.3% and the average squared loss was
0.1094. In contrast, when using the real-valued labels, the prediction accuracy was 85.6% and the
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NN no estimated use only use only true
baseline scaling scaling relevant highly rel. scaling

LJ-150.283.2a .0565 .0036 .0034 .0031 .0031 .0016
LJ-150.283.4a .0554 .0037 .0037 .0033 .0041 .0019
LJ-150.283.10a .0612 .0054 .0053 .0049 .0036 .0019
LJ-150.283.15a .0621 .0056 .0056 .0051 .0026 .0018
LJ-150.283.4ah .0662 .0070 .0077 .0066 .0052 .0019
LJ-150.283.2b .0563 .0049 .0056 .0053 .0053 .0021
LJ-150.283.4b .0555 .0048 .0057 .0056 .0059 .0023
LJ-150.283.10b .0612 .0066 .0074 .0078 .0053 .0024
LJ-150.283.15b .0622 .0067 .0077 .0081 .0042 .0023
LJ-150.283.4bh .0658 .0084 .0095 .0102 .0076 .0019
LJ-150.283.2c .0184 .0090 .0066 .0059 .0059 .0049
LJ-150.283.4c .0187 .0088 .0059 .0063 .0055 .0054
LJ-150.283.10c .0289 .0123 .0078 .0081 .0079 .0044
LJ-150.283.15c .0301 .0124 .0089 .0082 .0080 .0046
LJ-150.283.4ch .0356 .0151 .0092 .0100 .0104 .0050

Table 4: Performance of 8-NN when varying the number of levels of relevance as measured by the
squared loss.

2-NN citationk-NN (R= 5,C = 3)
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Figure 4: Predictions on “4ah” data sets for NN baseline. In each of these plots thex-axis corre-
sponds to the actual label and they-axis gives the predicted label.

average squared loss was 0.0124. This difference can be seen visually in Figure 11. So in terms of
reducing squared loss there are tremendous benefits to using real-valued data.
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NN no estimated use only use only true
baseline scaling scaling relevant highly rel. scaling

LJ-150.283.2a .0610 .0025 .0026 .0023 .0023 .0012
LJ-150.283.4a .0596 .0025 .0032 .0023 .0033 .0013
LJ-150.283.10a .0642 .0038 .0034 .0036 .0022 .0017
LJ-150.283.15a .0650 .0038 .0035 .0038 .0024 .0016
LJ-150.283.4ah .0681 .0048 .0051 .0051 .0031 .0018
LJ-150.283.2b .0603 .0030 .0045 .0037 .0037 .0015
LJ-150.283.4b .0593 .0032 .0037 .0040 .0049 .0020
LJ-150.283.10b .0640 .0048 .0053 .0055 .0030 .0028
LJ-150.283.15b .0648 .0049 .0056 .0058 .0033 .0022
LJ-150.283.4bh .0678 .0065 .0065 .0071 .0067 .0021
LJ-150.283.2c .0206 .0077 .0062 .0067 .0067 .0045
LJ-150.283.4c .0205 .0076 .0048 .0066 .0065 .0054
LJ-150.283.10c .0308 .0102 .0078 .0079 .0066 .0047
LJ-150.283.15c .0322 .0103 .0063 .0079 .0071 .0040
LJ-150.283.4ch .0380 .0123 .0068 .0095 .0092 .0031

Table 5: Performance of citationk-NN with 3 citers and 5 neighbors when varying the number of
levels of relevance as measured by the squared loss.
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0.2 0.4 0.6 0.8 1
Actual

0.2

0.4

0.6

0.8

1

P

0.2 0.4 0.6 0.8 1
Actual

0.2

0.4

0.6

0.8

1

P

Figure 5: Predictions on “4ah” data sets when no scaling is used (i.e. unweighted distance metric)

6.2 Diverse Density Results

We compare the performance of citation-kNN with the diverse density algorithm when using Maron’s
formula for computing the labels (Equation (2)) and with all scale factors initially 0.1. A summary
of these results is given in Tables 8 and 9. The diverse density algorithm performs better only for
the small data sets (and in one of the larger Boolean data sets). The most likely explanation is that
with a smaller search space, the gradient ascent search is successful. It is important to note that the
diverse density algorithm runs orders of magnitude slower that citation-kNN.
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NN no estimated use only use only true
baseline scaling scaling relevant highly rel. scaling

LJ-150.283.2a .0651 .0024 .0022 .0022 .0022 .0013
LJ-150.283.4a .0638 .0025 .0031 .0021 .0035 .0014
LJ-150.283.10a .0689 .0033 .0030 .0033 .0024 .0021
LJ-150.283.15a .0699 .0033 .0031 .0033 .0027 .0017
LJ-150.283.4ah .0740 .0040 .0043 .0044 .0030 .0017
LJ-150.283.2b .0645 .0032 .0046 .0040 .0040 .0019
LJ-150.283.4b .0634 .0033 .0044 .0041 .0050 .0025
LJ-150.283.10b .0687 .0049 .0054 .0056 .0032 .0026
LJ-150.283.15b .0696 .0051 .0057 .0058 .0036 .0027
LJ-150.283.4bh .0737 .0067 .0056 .0071 .0060 .0026
LJ-150.283.2c .0241 .0080 .0067 .0065 .0065 .0055
LJ-150.283.4c .0236 .0080 .0049 .0063 .0073 .0055
LJ-150.283.10c .0343 .0105 .0081 .0073 .0066 .0054
LJ-150.283.15c .0357 .0105 .0071 .0073 .0079 .0053
LJ-150.283.4ch .0422 .0125 .0067 .0089 .0092 .0037

Table 6: Performance of citationk-NN with 5 citers and 3 neighbors when varying the number of
levels of relevance as measured by the squared loss.
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Figure 6: Predictions on “4ah” data sets when our estimation method is used to estimate which fea-
tures are relevant. Only the features estimated to be relevant are used (weighted equally).

In other results (not shown), we found some interesting phenomena. Since the LJ formula for
computing the label of a point is much more chemically realistic than the Maron formula, we use it
to generate our artificial data. One would expect that using the LJ formula within the diverse density
algorithm would yield better results. However, when using the LJ formula with any starting scale
factors other than the true ones, the search stopped after only a few steps whereas with the Maron
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NN no estimated use only use only true
baseline scaling scaling relevant highly rel. scaling

LJ-150.283.2a .0529 .0026 .0026 .0022 .0022 .0011
LJ-150.283.4a .0521 .0026 .0027 .0023 .0027 .0013
LJ-150.283.10a .0581 .0039 .0037 .0034 .0021 .0015
LJ-150.283.15a .0591 .0040 .0039 .0035 .0017 .0013
LJ-150.283.4ah .0634 .0051 .0051 .0046 .0030 .0013
LJ-150.283.2b .0524 .0030 .0034 .0027 .0027 .0014
LJ-150.283.4b .0520 .0030 .0036 .0029 .0036 .0016
LJ-150.283.10b .0580 .0045 .0048 .0040 .0034 .0016
LJ-150.283.15b .0590 .0046 .0050 .0041 .0028 .0016
LJ-150.283.4bh .0632 .0061 .0058 .0053 .0058 .0016
LJ-150.283.2c .0185 .0086 .0057 .0055 .0055 .0042
LJ-150.283.4c .0187 .0084 .0051 .0057 .0048 .0046
LJ-150.283.10c .0285 .0112 .0062 .0070 .0065 .0033
LJ-150.283.15c .0297 .0113 .0069 .0071 .0062 .0037
LJ-150.283.4ch .0348 .0135 .0065 .0084 .0082 .0036

Table 7: Performance of citationk-NN with 10 citers and 8 neighbors when varying the number of
levels of relevance as measured by the squared loss.
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Figure 7: Predictions on “4ah” data sets when knowledge of the true scale factors are used to only
use the truly relevant features (weighted equally).

formula (with all initial scale factors of 0.1) the search continued much longer and reached a better
point. We believe that the Maron formula is more robust in terms of searching when started from
a “wrong” point. Consider the results shown in Figure 12 in which the Maron formula with initial
scale factors of 0.1 is used. Interestingly, starting at a point that is not the target point actually gives
better results, presumably because when all of the relevant features begin at their correct values,
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Figure 8: Predictions on “4ah” data sets when knowledge of true scale factors are used to only use

the relevant features with scale factors at least 0.5 (weighted equally).
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Figure 9: Predictions on “4ah” data sets when the true scale factors are used to re-scale the axes.

then the search stops after only a few rounds and the scale factors are not able to adjust. However,
when the maximum label is 0.9 there is “more room” for the search procedure to work and hence
the results are better.

Another important observation is that the final scale factors obtained by the diversity density
algorithm have little relation to the true scale factors used in generating the data. For example, on
data set LJ-160.166.1, diverse density (when obtaining 100% accuracy) assigned very high scale
values to some irrelevant features and some relevant features had low scale factors. Hence, one
cannot use the ending scale factors to draw any conclusions about the level of relevancy of a feature.
In fact, for the Musk 1 data, by picking a different starting point, we obtained 87% accuracy, results
comparable to those of Maron and Lozano-Pèrez, yet a completely different set of features had high
scale factors. The feature with the highest scale factor in Maron’s work had one of the lowest in our
classifier, yet both worked equally well.
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Figure 10: Predictions on “4ch” data sets made by citationk-NN with 5 neighbors and 3 citers. The

plot on the left uses the actual scale factors and the plot on the right uses our estimation
procedure.
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Figure 11: Results from using citation-kNN on the Affinity data set.

Next we show some plots to partly explain why such good results have been obtained on the
musk data sets. We created three data sets, each of which has 166 features. To mimic the choice of
data (strongly musk or strongly non-musk) in the Musk1 and Musk2 data sets, in LJ-160.166.1-S
all bags that had labels between 0.3 and 0.6 were removed. We generated bags until we kept 92 of
them. In LJ-160.166.1 no constraints were placed on the labels. Finally, to understand the effect
of increasing the number of irrelevant features, we generated a third set (LJ-80.166.1-S) which was
like the first but only 80 features were relevant. This data was generated using the LJ formula but for
computing the diverse density we used Maron’s formula with all initial scale factors set to 0.1. The
results are shown in Figure 13. Notice how using the “strong” data set (leftmost plot) with a large
number of relevant features made the learning task easier. The results are much worse when the
data is not restricted to be only “strongly negative” and “strongly positive” (middle plot). Finally, if
the number of irrelevant features rises then even with a “strong” data set, the results get noticeably
worse (right plot).
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Diverse Density citation-kNN
data set %err loss %err loss
LJ-160.166.1-S 0.0 .0052 0.0 .0022
LJ-160.166.1 23.9 .0852 4.3 .0014
LJ-80.166.1-S 53.3 .1116 0.0 .0025

LJ-16.30.2-0.9 6.7 .0071 8.3 .0197
LJ-16.30.2 6.7 .0240 16.7 .0260

Affinity 26.8 .0421 14.4 .0124

Table 8: Comparison of results of diverse density (where all scale factors are initially 0.1) and
citation-kNN with no scaling when using real-valued labels.

Diverse Density citation-kNN
data set %err loss %err loss
LJ-160.166.1-S 4.3 .0278 0.0 .0463
LJ-160.166.1 12.0 .0904 2.2 .0750
LJ-80.166.1-S 51.1 .1140 0.0 .0444

LJ-16.30.2-0.9 11.7 .0736 5.0 .0359
LJ-16.30.2 13.3 .0731 18.3 .0403

Table 9: Comparison of results of diverse density (where all scale factors are initially 0.1) and
citation-kNN with no scaling when using Boolean labels.

7. Concluding Remarks

In this paper we present extensions of nearest neighbor and diverse density algorithms for the real-
valued setting. Our initial studies have provided some important insights into these algorithms. The
performance of both the nearest neighbor and diverse density algorithms are very sensitive to the
number of relevant features. When most of the features are relevant the performance is quite good
and degrades as a larger fraction of the features become irrelevant. There is also some dependence
on the number of different scale factors but this has a smaller effect on performance than the number
of relevant features. (Both of these phenomena can be seen for the nearest neighbor algorithms in
the results shown in Table 2.) We believe that good performance has been obtained on the musk
data sets partly because a significant fraction of the features are relevant. For 2-NN, 8-NN, and
several variations of citation-kNN we showed how performance is affected as we vary the number
of relevant features, the degree of relevance, the distributional features of the data, and the learning
algorithm.

An important problem that must be addressed for both sets of algorithms is the development
of a technique to accurately estimate which features are relevant. As discussed earlier, prior work
using the musk data sets have made assumptions about which features were relevant based on the
final scale factors found by the diverse density algorithm. Using artificial data we have shown
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Figure 12: Results obtained when using the diverse density algorithm for real-valued data. In data
set LJ-16.30.2-T, all features values including the irrelevant features are selected based
on the target point versus the standard method in which the irrelevant features are ran-
domly selected.
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Figure 13: Results obtained when using the diverse density algorithm for real-valued data.

that these values have basically no correlation to the real values. We believe the reason for this
phenomena is that scale factors are found that increase performance for a local optimum in the
gradient ascent search. We have provided a heuristic to estimate which features are relevant, but
much more research in this direction is needed. Perhaps the diverse density search heuristic could be
adapted to accelerate the search and obtain final scale factors that correlate better with the true scale
factors. Having artificial data sets in which the true scale factors are known will be very valuable in
evaluating the effectiveness of different algorithms to estimate which features are relevant.

There are many interesting directions for future research. For the nearest neighbor algorithms
there are many variants that should be systematically studied, such as using a weighted variant. We
also need to further study the optimal choice for the number of references and citers for the citation-
kNN algorithm and fork for k-NN. Artificial data sets in which the number of points per bag is
comparable to the affinity data set has been generated and we are running experiments on these data
sets. In addition, we plan on comparing the algorithms we have considered here with COMPASS
and an approach based on the EM algorithm. Finally, we would like to consider other application
areas for studying real-valued multiple-instance learning.
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Appendix

Here is the pseudo-code used to generate the artificial data. In this pseudo-codoi is the index for
the molecule. Also, this pseudo-code is for the LJ-150.283 data sets. Others were generated in a
similar fashion except that the number of attributes (283) and relevant attributes (150) were varied.

The below procedure generates values forindex[0], index[1], andindex[2]. The method to assign
the attribute values to the features that fall in the ranges which end atindex[0], index[1], andindex[2]
is described in the body of the paper. The method described in the paper along with the method used
below to defineindex[0], index[1], index[2] is used to generate the shape of the molecule responsible
for the label in the “0.9” data sets in which there is no label with value of 1.0. For the data sets
in which there is a label of 1.0, for the case wheni = 0, a molecule is generated that has the exact
target value for each relevant attribute. Finallyrand0 andrand1 are both a random number generate
uniformly from [0,1].

For the "a" data set: if (i<3){
index[0] = 150; index[1] = 150; index[2] = 150;

}else if (i<10){
tmp0 = (int)(100+50*rand0);
index[0] = tmp0; index[1] = 150; index[2] = 150;

}else if (i<30){
tmp0=(int)(25+5*rand0);
tmp1=(int)(125+25*rand1);
index[0] = tmp0; index[1] = tmp1; index[2] = 150;

}else if (i<60){
tmp0=(int)(10+5*rand0);
tmp1=(int)(60+10*rand1);
index[0] = tmp0; index[1] = tmp1; index[2] = 150;

}else if(i<100){
tmp1=(int)(125+25*((rand0+rand1)/2.0));
index[0] = 0; index[1] = 25; index[2] = tmp1;

}else if (i<150){
tmp1=(int)(50+100*((rand0+rand1)/2.0));
index[0] = 0; index[1] = 0; index[2] = tmp1;

}else{
index[0] = 0; index[1] = 0; index[2] = 0;

}
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For the "b" data set: if (i<3){
index[0] = 150; index[1] = 150; index[2] = 150;

}else if (i<10){
tmp0=(int)(50+100*rand0);
index[0] = tmp0; index[1] = 150; index[2] = 150;

}else if (i<30){
tmp0=(int)(20+10*rand0);
tmp1=(int)(100+50*rand1);
index[0] = tmp0; index[1] = tmp1; index[2] = 150;

}else if (i<60){
tmp0=(int)(10+5*rand0);
tmp1=(int)(60+10*rand1);
index[0] = tmp0; index[1] = tmp1; index[2] = 150;

}else if(i<100){
tmp1=(int)(100+50*rand0);
index[0] = 0; index[1] = 25; index[2] = tmp1;

}else if (i<150){
tmp1=(int)(50+100*rand1);
index[0] = 0; index[1] = 0; index[2] = tmp1;

}else{
index[0] = 0; index[1] = 0; index[2] = 0;

}

For the "c" data set: if (i<3) {
index[0] = 50; index[1] = 50; index[2] = 50;

}else if (i<10){
tmp0=(int)(20+10*rand0);
index[0] = tmp0; index[1] = 50; index[2] = 50;

}else if (i<30){
tmp0=(int)(10+8*rand0);
tmp1=(int)(18+10*rand1);
index[0] = tmp0; index[1] = tmp1; index[2] = 50;

}else if(i<60){
tmp0=(int)(6+6*rand0);
tmp1=(int)(15+10*rand1);
index[0] = 0; index[1] = tmp1; index[2] = 50;

}else if (i<100){
tmp0=(int)(10+10*rand0);
tmp1=(int)(35+10*rand1);
index[0] = 0; index[1] = tmp0; index[2] = tmp1;

}else if (i<150) {
index[0] = 0; index[1] = 0; index[2] = 50;

}else{
index[0] = 0; index[1] = 0; index[2] = 0;

}
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