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Abstract: By considering string-objects and rewriting rules, we propose a variant
of tissue P systems, namely, rewriting tissue P systems. We show the computational
efficiency of rewriting tissue P systems by solving the Satisfiability and the Hamiltonian
path problems in linear time. We study the computational capacity of rewriting tissue
P systems and show that rewriting tissue P systems with at most two cells and four
states are computationally universal. We also show the universality result of rewriting
tissue P systems with at most one cell and five states. Finally we propose some new
directions for future work.
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1 Introduction

P systems [Paun 2000], a field of current research, is motivated from the struc-
ture of the cell and the functioning of membranes. The three fundamental fea-
tures of the cell which we use in this computing model are membrane struc-
ture, objects, and evolution rules. In a cell, objects can be considered as being
atomic, as in the case of P systems with symbol-objects, or they can be associated
with a structure, as in the case of DNA molecules, which can be described by
a string. This leads one to consider P systems with string-objects [Paun 2000,
Martin-Vide and P&un 2000, Ferretti et al. 2003]. Depending on the way in which
string-objects being processed, P systems can be further divided into rewriting P
systems [Dassow and Paun 1999, Paun 2000, Martin-Vide and Pdun 2000] and
splicing P systems [Paun and Yokomori 1999, Paun 2000]. We process string-
objects in rewriting P systems with rules of the form X — v(tar), where X — v
is a context-free rule and tar € {here,in,out} is a target indication specifying
the region where the result of rewriting should go. All strings in a region are
processed in parallel, but each single string is rewritten by only one rule. In
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other words, the parallelism is maximal at the level of strings and rules, but the
rewriting is sequential at the level of the symbols from each string.

One common feature in all the variants of P systems is the tree-like repre-
sentation of the membrane structure. A new way of looking at P systems was
considered in tissue P systems [Martin-Vide et al. 2003], where the membrane
structure was represented in a graph-like structure. Tissue P systems are based
on the ideas of inter-cellular communication and the way the neurons cooper-
ate and process impulses in a complex net established by synapses [Arbib 1978].
Tissue P systems consist of several cells which are related by protein channels.
Each cell has a state from a given finite set and can process multisets of ob-
jects, represented by symbols from a given alphabet. The rules are of the form
sM — s'M', where s, s' are states and M, M’ are multisets of symbols. A single
rule can be applied to one occurrence of M (the minimal mode) or to all possible
occurrences of M (the parallel mode) or we can apply a maximal package of rules
of the form sM; — s'M], 1 <i < k, that is involving the same states s and s',
which can be applied to the current multiset (the mazimal mode). The processed
objects can be communicated to one of the neighboring cells (the one mode) or
to all the neighboring cells (the repl mode) or to a subset of the neighboring
cells (the spread mode).

In this paper, we propose rewriting tissue P systems by combining the ideas
of tissue P systems and rewriting P systems. Instead of multisets of objects, here
we consider string-objects and hence use rewriting rules, in particular, context-
free rules, for processing string-objects. Like in tissue P systems, we consider
three modes of processing string-objects and three modes for transmitting the
processed strings, hence obtain nine possible ways of working with this model.
Our model is computationally efficient in a sense that using this model we can
solve the Satisfiability and the Hamiltonian path problems in linear time. From
the computational capacity point of view, we show that our model, working in
all possible modes, is computationally universal.

In the next section we give some language prerequisites. Section 3 defines
our new model. We give algorithms for solving the Satisfiability problem and
the Hamiltonian path problem in Section 4 and illustrate the algorithms with
examples. We study the computational universality of our model in Section 5
and conclude the paper with a brief note in Section 6.

2 Prerequisites

Before proceeding to the main section of the paper, we recall the definition of
matrix grammar.

A context-free matriz grammar with appearance checking is a 5-tuple G =
(N,T,S,M,F), where N and T are disjoint sets of nonterminals and terminals,
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respectively, S € IV is the start symbol, M is a finite set of matrices, i.e., se-

quences of the form (A; — z1,..., 4, — zn), n > 1, of context-free rules, and
F is a set of occurrences of rules in M.
For w,z € (NUT)* we write w — z if there is a matrix (4; = z1,..., 4, —

xy) in M and the strings w; € (NUT)*, 1 <i < n+ 1, such that w = wy,
Z = Wpy1, and, for all i, 1 < i < n, either (1) w; = wiA;w!, wiyr = wizw}, for
some w;, wi € (NUT)*, or (2) w; = wit1, A; does not appear in w;, and the
rule A; — x; appears in F.

The rules of a matrix are applied in order, possibly skipping the rules in F’
if they cannot be applied. Thus, if a rule not in F' is met, then it has to be
used. If a rule from F' is met, then we have two case: if it can be applied, then
it must be applied; if it cannot be applied (the nonterminal from its left-hand
side member is not present in the current string), then the rule may be skipped.
If these conditions do not hold, the matrix is not applicable. If F' is the empty
set, a matrix grammar without appearance checking is presented.

We denote by M AT, the family of languages generated by matrix grammars
with appearance checking. We omit the lower index ac, if we consider only matrix
grammars without appearance checking.

A matrix grammar with appearance checking G = (N, T, S, M, F) is said to
be in binary normal form, if N = N; U No U {S, T}, with these three sets are
mutually disjoint, and the matrices in M are in one of the following forms:

1. (8§ - XA), with X € Ny, A € Ny;

2. (X Y, A—x), with X, Y € Ny, A€ Ny, z € (N, UT)*;
3. (X =Y, A=), with XY € Ni, A€ Ny;

4. (X >\ A—>x), with X e Ny, A€ Ny, € T*.

Moreover, there is only one matrix of type 1 and F consists exactly all rules
A — t appearing in matrices of type 3; T is called a trap symbol, because once
introduced, it is never removed. A matrix of type 4 is used only once, in the last
step of the derivation.

According to [Dassow and Paun 1989], for each matrix grammar there is
an equivalent matrix grammar in binary normal form. For an arbitrary ma-
trix grammar G = (N,T,S, M, F), let us denote by ac(G), the cardinality of
the set {A € N | A - «a € F}. If a matrix grammar G is in binary nor-
mal form and ac(G) < 2, it is said to be in strong binary normal form. In
[Freund and Paun 2001], it was proved that each recursively enumerable lan-
guage can be generated by a matrix grammar G such that ac(G) < 2.

We now formally define rewriting tissue P systems.
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3 Rewriting Tissue P Systems

A rewriting tissue P system, of degree m, m > 1, is a construct
II=(V,T,01,02,,Cm, SYN, iout),
where:
— V is the total alphabet of the system;
— T CV is the terminal alphabet;
— syn C{1,...,m} x {1,...,m} (synapses among cells);
— lout € {1,...m} indicates the output cell;

— o0, -,0m, are cells, of the form
O; = (Qi;si,07Li,07Pi)7 1 S 1 S m,

where:

e (); is a finite set of states;
® 5,0 € (Q; is the initial state;
e L;o € V* is the initial set of strings;

e P; is a finite set of rules of the form sX — s'w(tar), where s,s" € Q;,
X € (V-T),w € V* and tar € {here,go} for i # iy and tar €
{here, go,out} for i = i,,:. When presenting the rules, the indication
here is in general omitted.

Any m-tuple of the form (s1Lq, -, 8mLy), with s; € Q; and L; € V* 1 <
i <'m, is called a configuration of IT; thus, (s1,0L1,0, -, Sm,0Llm,0) is the initial
configuration of II.

We can change the configuration of the system by using rules from the sets
P;, 1 < i < m. To define transitions among the configurations of the system, first
we need to define various modes for both processing strings and transmitting the
processed strings from a cell to another cell.

For processing strings, we define min, par, and maz modes as follows:

min_mode:- We choose one string at random from all available strings in a cell
and apply a possible rule from the cell on it. Application of the rule results
in replacing only one occurrence of the symbol (the left-hand side member
of the rule) with the right-hand side member of the rule and changing the
state of the cell.
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In a formal way,

sL; = min §'L} iff there is © € L; and sX — s'w(tar) € P; such that
r=2'X2" and L} = (L; — {z}) U {z'wa" }.

par mode:- We choose a rule from all available rules in a cell and apply the
rule simultaneously to all possible strings in the cell. Simultaneous appli-
cation of the rule results in replacing only one occurrence of the left-hand
side member of the rule with the right-hand side member of the rule in all
possible strings. As usual, the state change will occur.

That is,

sL; = par 'L} iff there is sX — s'w(tar) € P; such that
L;:(L'—{Cﬁl,.’EQ,"' xk})u{y17y27"'7yk} where
{z1, 22, - mk}CLl,x]—m Xxj,y]—a: wa: ,1 <5<k,

and if z € L; — {x1,22,---, 2}, then |z|x = 0.

max_mode:- We choose a set of rules which use the current state of the cell
and introduce the same new state after processing strings and apply the set
of rules on all possible strings present in the cell. Here each string is being
processed by one rule from the set, and moreover only one occurrence of the
symbol from left-hand side of the rule is processed in each string.

Formally,

sL; = mae 8L, iff L, = (L; — {&1, 22, -, o }) U{y1,y2," +,yx}, where
{z1,2z9,---,zr} C L;, there are the rules
sX1 = s'wy(tary),-- -, 58Xy, — s'wg(tary,) € P;, such that
T =x; Xx],y] —a: wa: ,1<j <k, and if
x € Ly —{x1,22, -, 21}, then |z|x = 0 for all rules
sX — s'z(tar) € P;.

Based on the tar value, processed strings can be remained in the same cell
(if tar = here) or sent to other cells (if tar = go) or environment (if tar = out).
Rules with tar = out can be applied only in the output cell, whereas rules with
tar = {here, go} can be applied in any cell. Since a cell can be connected to many
other cells, we consider three modes, i.e., repl, one, and spread, for transmitting
strings which are obtained by using rules with tar = go from one cell to other
cells.

For a language L; € V*, we denote by L; ,, the set of strings which are not
processed by any rule from P;, L; pere the set of strings which are processed by



Mutyam M., Prakash V.J., Krithivasan K.: Rewriting Tissue P Systems 1255

rules with tar = here from P;, L; 4, the set of strings which are processed by
rules with tar = go from P;, and L; o, the set of strings which are processed
by rules with tar = out from P;. If cell 7 is not the output cell, then L; 5,0 = 0.
Furthermore, for a node i in the graph defined by syn we denote the ancestor of
node i as anc(i) = {j | (4,7) € syn}.

We now define the transition among the configurations of the system II as
follows:

Let Cy = (s1L1,-++,$mLm) and Cy = (s{LY,---,s, L") be any two con-
figurations of IT. We then write C1 =43 Cs, for a € {min,par,maz}, f €
{repl, one, spread}, if there are finite languages L{,---, L! over V such that

$iL; =4 s;L;,1 <i <m, where each L] = L no U L; pere U Li go U Li out
and

— for 8 = repl we have:

L;I = Li,no U Li,here U U Lj,go§
j€anc(i)

— for f = one we have:

L;', - Li,no 9] Li,here 9] U Lj,go;

JjEI;
where I; C anc(i) such that the set anc(i) was partitioned into Iy, -, In;
at this transition, all non-empty sets of strings of the form UjEIk Ljg0,1<

k < m, should be sent to receiving cells (added to Lj’, 1 <1 < m);

— for 8 = spread we have:
L;, - Li,no U Li,here U L%)

where L} C Ujeanc(i) Ligo such that Li, -+, L. are sets with the property
U721 Lj = Ujcane(iy Li.go> and such that all Li, - -+, L;, are sent to receiving
cells (added to L}, 1 <1 < m);

Note that in the case of the output cell we also remove from L} all strings from
the set L; out.

If there is only one string in a cell, all the three modes of processing strings
are same. Similarly, If the system has at most two cells, all the three modes of
transmitting the processed strings from a cell to other cells are same.

During any transition, some cells can do nothing: if no rule is applicable to

the available strings in the current state, a cell waits until it gets new strings
from its ancestor cells. We assume that each transition lasts one time unit so
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that the work of the net is synchronized, and the same clock marks the time for
all cells.

A sequence of transitions among configurations of the rewriting tissue P
system IT is called a computation of II. A computation is said to be successful if
it ends in an halting configuration, i.e., a configuration where no rule in any cell
of the system can be used. The output of a computation is the set of all strings
which are ejected from the output cell to the environment. But we consider
the output of a successful computation. The set of all strings over T from the
output of a successful computation is said to be the language generated by
the rewriting tissue P system. We denote by L, g(II), a € {min,par,maz},
B € {repl,one, spread}, the language generated by a rewriting tissue P system
IT in the (a, 8) mode. The family of all languages generated by rewriting tissue
P systems with at most m, m > 1, cells, each of which using at most r, r > 1,
states, is denoted by RtP,, .(a,3). When one of the parameters m, r is not
bounded, replace it with x.

We now discuss the computational efficiency of our model by giving linear
time algorithms for solving two NP-complete problems.

4 Solving NP-Complete Problems

We consider two well-known NP-complete problems, i.e., the Satisfiability prob-
lem and the Hamiltonian path problem, and give linear time algorithms for solv-
ing them. In order to solve these problems, we do some pre-processing in terms
of building the system. In other words, we construct the system which is spe-
cific to the given instance of the problem in polynomial time. We then run the
algorithm on the constructed system and check whether or not the problem has
a solution in linear time. The problem has a solution if and only if at least one
string is sent out of the system. We also illustrate the algorithms with examples.

4.1 Solving the Satisfiability Problem

The Satisfiability problem is to check whether or not a given propositional for-
mula in the conjunctive normal form is satisfiable.

A propositional formula C' is in the conjunctive normal form if it is a con-
junction of disjunctions, i.e.,

C=CiANCoN---NCp,
where each C;, 1 <1i <m, is a clause of the form
Ci =i Vyi,2 Ve \/yi7pi,

with each literal y; being either a propositional variable, x4, or its negation, Z5.
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Theorem 1. The Satisfiability problem can be solved in linear time with respect
to the number of variables and the number of clauses by a rewriting tissue P
system working in the (max, repl) mode.

Proof. Let us consider a propositional formula C = C; A Cy A --- A Cy,, with
Ci = yi1Vyi2V-Vyip,,forsomem > 1,p; > 1,and y; ; € {zk, 7 | 1 < k < n},
1<i<m,1<j<p;.

We construct the rewriting tissue P system

IT = (Va@:(ﬁa"'aU2n+m,8yn,2n+m),
where:

—syn = {(20 — 1,20+ 1),(20,2i + 1), (20 — 1,20 +2),(20,2i +2) | 1 < i <
n—1}U{(2n-1,2n+1),(2n,2n+ 1)} U{(i,i+1) | 2n+1 <i < 2n+m—1};

— Each 0; = ({s},s, L;, P;), 1 <i < 2n + m, where:

o Ly =Ly ={z172  2,T1 T2 Tp};
o Li=0,3<i<2n+m;

o P ={sT; = sFi(go)}, 1 <i<m
o Py = {sz; > sT;(go)}, 1 <i < n;

o Poyyi = {sTj = sTj(go) | x; € C;,1 < j <n}U{sF; = sFj(go) | T; €
Ci,1<j<n}1<i<m-1;

® Poyim = {sTj — sTj(out) | z; € Cp,1 < j < n}U{sF; - sFj(out) |
T; € Op,1<j <n}.

The system works as follows:

The system has 2n + m cells and all these cells are connected as shown in
Figure 1. The system works in two phases, i.e., generating phase and checking
phase. In generating phase, distinct strings will be generated with all possible
truth assignments. Cells from o7 to o, are involved in the generating phase.
In checking phase, each cell o245, 1 <@ < m, checks whether or not the truth
assignments in strings of o9, ; satisfy the clause Cj.

In the initial configuration, the system has a string zizs---2,77 - T,
in both o; and o3. In the next step, both o3 and o4 get two strings, i.e.,
Tixo-  TpTy Tz -+ Ty and x1Xo - - £, F1T3 - - - Ty, from their ancestor cells. Since
the system is working in the (maz, repl) mode and each cell g;, 3 <i <2n+1,
has two ancestor cells, after n successive configurations, 9,11 gets 2™ distinct
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2n+m
/!

output cell

Figure 1: SAT network

strings each of which represents one of the 2™ possible n-variable truth assign-
ments. Cells involved in the checking phase filter all available strings based on
the truth assignments associated with each string. So, 02,41 sends only those
strings which correspond to the truth assignments satisfying the clause C; to
Oan+2. Similarly oa2,42 sends only those strings which correspond to the truth
assignments satisfying the clause C> to o2p+3. Thus the truth assignments of
the strings present in 0,3 satisfy both €} and Cs. In this way, the filtering
process continues for cells from o943 t0 02,4m. It is clear that the strings
present in a cell oa,44, 2 < ¢ < m, correspond to the truth assignments satisfy-
ing C1 ACy--+- A Ci_;1. Hence, the strings come out of o2y, correspond to the
truth assignments satisfying Cy ACs A - -+ A C),. Thus, the propositional formula
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is found to be satisfiable if and only if the output cell sends at least one string
to the environment.

Time Complexity: Our algorithm takes (n + m) steps to determine whether
or not a given propositional formula that contains n variables and m clauses is
satisfiable. Note that here we excluded the time for constructing the system. O

Figure 2: SAT network for the example

Ezample 1. Checking whether or not the following propositional formula ~ is
satisfiable.

v = (1‘1 V o \/1’3) A (1‘1 Vl’_z\/l'g) /\(Z’_l\/l’z \/1'_3)
We construct the rewriting tissue P system
I = (V,@,O’l, e 70978yn79)7

where:
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— syn is as shown in Figure 2;

— Each o; = ({s},s,L;, P;), 1 <i <9, where:

o Ly =Ly = {z12223T1 T2 T3};

e L;i=0,3<i<9;

e Each P;, 1 <1 <9, contains the rules as given in the above theorem.

step O :

step 1:

step 2 :

step 3 :

step 4 :

step 9 :

step 6 :

(s{z122w3T1 T3 T3}, s{aw1 222371 T3 T3}, 50, 50, s0, s0, 50, 50, s0);
(50,50, s{z12223 F1 T3 T3, T12223T1 T2 T3}, S{T120223F1 T3 T3,

Ty 222377 T3 T3}, 80, s, sO, s0, s0);

(50, s0, 50, sO, s{z122203 F1 FoT3, Ty w2237 Fs T3, 21 Tox3 F1 T2 T3,

T ThxsT Tz T3}, s{x1xexs Fy FoTz, Thxax3T1 Fo T3, 211223 FAT T3,
T\ Tyx3T1 T2 T3}, 50,50, 50);

(s0, 50,50, 50, 50, sO, s{z1T273 F1 Fo F3, TY 2ow3T1 Fo Fy, 1 Tox3 F1T5 F3,
T Thxsmy T2 Fs, w122 T3 1 Fows, T e 1371 Fy T3, v1 1o T3 F1Ts T3,

T\ ToT3%1 @5 T3}, 50, s0);

(s0, 50,50, 50, 50, sO, s{z17273 F1 Fo F3}, s{T17273T1 Fo F3, v1 Tox3 F1 72 F},
T ToxsTy ToF3, Thvao T3T1 By T3, w22 T3 FL o, 1 T T3 Fi o5 5,

T\ T»Ts371 T2 T3}, s0);

(50,50, 50,50, s0, sO, s{z1z203 F1 FoF3}, s{z1Toas F1T2F3},
s{Tiwaz3T1 Fo 3, Ty Toxs®y ToF3, T122 1371 Fy T3, 217213 Fy Fo,

1 Ty T3F1 75 T3, Ti T2 T37%1 T3 T3});

(s0, s0, 50, 50, sO, sO, s{z1x23 F1 FoF3}, s{z1Tox3 F1T2F3},
s{Thx2T5T1 F> T3 })ThwoxsTr Fo By, Th Tox3T1 T2 F3, x122T5F) Fog,

21 ToT3 175 o3, TV 11371 T T3;

The ejected strings (from the output cell) indicate that the given formula is
satisfiable for the truth assignments TFF, TTF, FFT, FTT,and TTT.

4.2 Solving the Hamiltonian Path Problem

Given an undirected graph G = (U, E) with |U| = n, n > 2, where U is the set
of nodes and E, the set of edges, the Hamiltonian path problem is to determine
whether or not there exists a path that passes through all the nodes in U exactly
once. The Hamiltonian path problem for undirected graphs is known to be NP-
complete. We solve this problem in linear time with respect to the number of
nodes of a graph by using rewriting tissue P systems.



Mutyam M., Prakash V.J., Krithivasan K.: Rewriting Tissue P Systems 1261

Theorem 2. The Hamiltonian path problem for undirected graphs can be solved
in linear time with respect to the number of nodes by a rewriting tissue P system
working in the («, repl) mode, where o € {par,mazx}.

Proof. Let G = (U, E) be an undirected graph with |U| = n, n > 2. Let U =
{ai,---,a,}. We construct the rewriting tissue P system

I = (V7 wao-la ter, 02n, SYN, 2”)7
where:
~V = {aihi | 1<i <n};

— syn = {(6,3), i, ) | (s, a;) € EYU{(i,n+1) | 1 <i < n}U{(n+i,n+i+1)]
1<i<n-—1}

— Each o; = ({s},s, L;, P;), 1 <i < 2n, where:
o Li={aay---a,},1<i<m

o Lypi=0,1<i<n

P,i; = {sh; = shi(go)}, 1 <i<n-—1;

Py,, = {sh,, — shy(out)}.

We constructed the system to check whether or not there exists an Hamil-
tonian path in a given graph of n nodes. The system has 2n cells and all these
cells are connected as shown in Figure 3. Cells from the set {o1,---,0,} are
connected based on the connectivity of all n nodes of the given graph. All these
cells are also connected to 0,41 so that any processed string from these cells
can also be sent to o,41. In the initial configuration, each cell from the set
{o1,---,0,} contains a string of the form ajas - - - a,,. From the set of rules given
in the algorithm, it is clear that any cell 0;, 1 < ¢ < n, can send a string = such
that |z|,; = 1 to all its ancestor cells by replacing a; with h;. Generally op41
gets strings over {a;,h; | 1 <1i < n}. A string from 0,41 can be sent out from
the output cell (i.e., 02,) via opta, - -,02,—1, if and only if it is of the form
hihs - - - h,. That means, if a string in 0,41 contains at least one symbol from
the set {ay,---,a,}, the string cannot be sent out from the output cell. oy,41
gets a string of the form hyhs - - h, (after (n + 1)** configuration) from one or
more of the cells from the set {01, -, 0y} if and only if all the cells from the set
{o1,---,0,} are connected. But we know that the cells from the set {o7,---,0,}
are connected in the same way as the nodes of the given graph are connected.
This indicates that 0,1 gets a string of the form hjihs - - - hy, if and only if all the
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Given Graph

cells are connected
as given in the graph

2n—]©
output cell
2n Q/

Figure 3: HPP network

nodes in the graph are connected. In other words, a string is sent out from the
output cell if and only if there exists an Hamiltonian path in the given graph.

Time Complexity: Our algorithm takes 2n steps to determine whether or not
there exits an Hamiltonian path in a given graph that contains n nodes. Like in
the previous theorem, we are not considering the pre-processing cost. O

Figure 4: Example graph

Ezample 2. Checking whether or not the graph as shown in Figure 4 contains



Mutyam M., Prakash V.J., Krithivasan K.: Rewriting Tissue P Systems 1263

an Hamiltonian path.
We construct the rewriting tissue P system
I=,boy,-,06,syn,6),
where:
—V=A{ai,h;|1<i<3}
— syn is as shown in Figure 5;

— Each 0; = ({s},s,L;, P;), 1 <i < 6, where:
L L1 = L2 = L3 = {a1a2a3};

L4 L4=L5=L6:@5

e Each P;, 1 <14 <6, contains the rules as given in the above theorem.

O
O

output cell
o

Figure 5: HPP network for the example graph

step 0 : (s{a1aza3}, s{araza3}, s{arasa3}, s0, s, s0);

step 1: (s{a1hoag,a1ashs}, s{hiasas}, s{hiasas}, s{hiazas,aiheas,ajashs},
s0, s0);

step 2 : (s{hihaag, h1ashs}, s{hihaas, hiashs}, s{h1hsas, hiashs},
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s{h1h2ag, hiashs, a1 haas,arashs}, s{hiasas}, sh);
step 3 : (s{hihahg, hihohg, hihoas, hiashs}, s{hihoas}, s{h1azhs},
s{h1hohg, h1hohs, a1haas, ajashs}, s{h1hyas, hyashs, hyasasz}, sO);
step 4 : (s{hihahs, hihahs, hihoas, hiashs}, s{hiheas}, s{hiazhs},
s{aihaas,arashs}, s{h1hahg, h1hahg, hyashs, hiasas}, s{hihaas});
step 5 : (s{hi1hahg, hihohs, hihoas, hiashs}, s{h1hoas}, s{h1azhs},
s{ayhoas, ajazhs}, s{hiashs, hiasas}, s{hihohs, hihohg, hihoas});
step 6 : (s{hihahs, hihahs, hihoas, hiashs}, s{hiheas}, s{hiazhs},
s{aihaas,arashs}, s{hiazhs, hiasas}, s{hihaas})hihahs, hihahs;

Two strings are ejected from the output cell. This indicates that the graph
contains two Hamiltonian paths.

Having discussed the computational efficiency, we now discuss the computa-
tional capacity of our system.

5 Computational Universality

In this section we study the computational universality of our variant. First we
consider rewriting tissue P systems working in the maximal mode and show the
universality result. Later we obtain the universality of rewriting tissue P systems
working in the minimal mode. From the proof of the universality theorem of
rewriting tissue P systems working in the minimal mode, we show that rewriting
tissue P systems working in parallel mode are computationally universal.

Henceforth, unless otherwise stated, we denote by G = (N,T,S,M,F) a
matrix grammar with appearance checking, in strong binary normal form, with
rules of the four forms mentioned in Section 2, and with ac(G) = 2. The nonter-
minal alphabet N is of the form N = N; UN,U{S,t}. Let B(Y) and B(® be the
two symbols in N for which we have rules BU) — {, j € {1,2}, in the matrices
of M. Let us assume that we have

— k matrices of the form m; : (X - a,A - x),X € N1, A € Ny,a € Ny U{\},
and z € (N2 UT)*, 1 <@ < k;

— h matrices of the form m/ : (X — Y,BU = 1), X,Y € Ny,j € {1,2}; these
matrices are labeled by m}, with ¢ € lab;, for j € {1,2}, such that lab;, lab,
and laby = {1,---,k} are mutually disjoint sets.

Theorem 3. RE = RtP; 5(max,7), for v € {repl,one, spread}.

Proof. We prove the inclusion RE C RtP; 5(mazx,7), v € {repl,one, spread},
the reverse inclusion can be obtained in a straightforward manner. We start
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by considering a matrix grammar G = (N, T, S, M, F) in strong binary normal
form, and construct the rewriting tissue P system

I = (V>T7 Ul)wa 1)>
where:

*V:N1UN2U{XI|X€N1}U{Z}U{Xi,Ai|X€N1,A€N2,0Si§
k+1};

— o1 = ({s,51,80,51),5?},5,{X, A}, P;), where P; contains the following
rules:

1. sX — s51Xg and sA — s149,X € N1, A € Ny;

2. 51X; - 51Xy and s14; = 51441,0< 5 < k;

3. 51X; = s2Y" and s14; — sz, for a matrix m; : (X = Y, A — x);
4. s3Y" — sY;

5. s0A; = sZ(out), A € No,1 < i <k;

6. s2X; = sZ(out),X € Ni,1 <i<k;

7. 51X; — s and s14; — sz(out), for a matrix m; : (X — A\, A — z);
8. sX — sWY', for a matrix m/ : (X =Y, BY) = {);

9. sDY" = sY and s BY — sZ(out), for a matrix m/, : (X — Y, BU) —
ok

10. SleJrl — 81Z(0Ut),X S Nl;
11. SlAk+1 — 81Z(0Ut),A S NQ.

The system works as follows:

The system has only one cell. Since it has only one cell, all the three modes
of transmitting the processed strings from a cell to other cells are same. Initial
configuration of the system is (s{X, A}). Assume that at a particular instant
the configuration of the system is (s{X,w;Aws}), where wy,ws € (N2 U T)*.
We apply two rules sX — s1Xg and sA — s; Ag on two strings X and w; Aws,
respectively, in parallel, so that the configuration of the system is changed to
(s1{Xo, w1 Apwz}). We now increment the subscripts of both X and A simul-
taneously. Let the configuration of the system be (s{X;, w;A;wz}). In order to
simulate a matrix m; : (X = Y, A — ), we can apply the rules s; X; — s2Y”’
and s1A; — sox. If we apply only one of these two rules, a trap symbol Z is
introduced in the next step. On the other hand, if we apply both the rules si-
multaneously, X; and A; are replaced with Y’ and z, respectively, and the state
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of the cell becomes s». In the next step, Y is replaced with Y and the state
changes to s. Now the configuration of the system becomes (s{Y, wjzw,}) which
represents the correct simulation of the matrix. The same procedure is applied
for simulating a matrix m; : (X — A\, A — z), except the last step. In the last
step, we apply the rules s;X; — s and s; 4; — sz(out) on X; and A;, respec-
tively, so that the configuration of the system becomes (s{A}) and the string
wixws is sent to the environment. If w;zws contains any nonterminal, it is not
considered as a result.

Let (s{X,w}) be the configuration of the system. For simulating a matrix
mk: (X = Y,B®M — 1), we apply the rule sX — s(V)Y” so that the configuration
of the system becomes (s("){Y’ w}). If w contains B!, a trap symbol Z is
introduced. Otherwise, Y is replaced with Y and the configuration of the system
becomes (s{Y, w}) which represents the correct simulation of the matrix. Similar
procedure can be given for simulating a matrix m’ : (X — Y, B — 1).

The procedure for simulating a matrix of type 2 (type 3) can be iterated for all
the matrices of type 2 (type 3). Finally the simulation process ends by simulating
a type 4 matrix. So any derivation in G can be simulated by a computation in
IT and, conversely, the result of successful computations in IT corresponds to the
terminal derivations in G. Thus, the equality L(IT) = L(G) follows. O

We now show that the universality of rewriting tissue P systems can be
achieved with only four states but at the cost of one extra cell.

Theorem 4. RE = RtP; 4(mazx, ), for v € {repl, one, spread}.

Proof. In order to prove the theorem we make use of a matrix grammar G =
(N,T,S, M, F) in strong binary normal form. We now construct the rewriting
tissue P system

= V,T,01,02,{(1,2),(2,1)},1),

where:

— V:N1UN2U{XI|XEN1}U{E,Z}U{XZ',AZ'|XEN1,AEN2,0SiS
k+1};

— o1 = ({s,s1,82,83},s,{X, A}, P1), where P, contains the following rules:

1. sX — s51Xg and sA — s149,X € Ni, A € Ny;

2. 51X; - 51Xy and s14; = 51441,0< 5 < k;

3. 51X; = s2Y" and s14; = sax, for a matrix m; : (X = Y, A — x);
4. 55" — sY;

5. s0A; = sZ(out), A € No,1 < i <k;
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6. s2X; = sZ(out),X € Ni,1 <i<k;
7. 51X; — s and s1A; — sz(out), for a matrix m; : (X = A\, A — z);

8. X — 53 (go) and sA — s3A(go), A € No, for a matrix m/ : (X —
Y, B — t);

9. s3E — s and s3Z — sZ(out);
10. 51 X1 — s1Z(out), X € Ny;
11. s1Ag11 — s1Z(out), A € No;
12. 53X — s3Z(out), X € Ny;

— oy = ({s,51, 52,53}, 5,0, P»), where P, contains the following rules:

1. sYW — 5;Y", for a matrix m/ : (X — Y, B — 1);

2. 5;Y" = s3Y and sjB(j) — 537, for a matrix m/ : (X — Y, BU — t);
3. s34 — sA(go), A € No;

4. s3Y — sYE(go),Y € N.

The system works as follows:

Here the system has two cells o1 and o2. We know that if the system has at
most two cells, all the three modes of transmitting the processed strings from a
cell to other cells are same. Initial configuration of the system is (s{X, A}, s0).
The procedure for simulating matrices of type 2 and type 4 is same as the one
given in the proof of Theorem 3. Let us suppose that at a particular instant, the
configuration of the system is (s{X,w}, s0), where w € (N2 UT)*.

For simulating a matrix m/ : (X — Y,B") — 1), we apply the rules
sX — s3Y((go) and sA — s3A(go) so that the configuration of the system
becomes (s30,s{Y® w}). We now apply the rule sY ") — 5V’ and change
the configuration of the system to (s30,s1{Y”,w}). In the next step, we replace
Y’ with Y and change the state to s3. At the same time, if w contains BW),
a trap symbol Z is introduced. Otherwise, in the next step we apply the rules
s3A — sA(go) and s3Y — sY E(go) so that the configuration of the system
becomes (s3{Y E,w}, sf). We complete the simulation of the matrix by apply-
ing the rule s3E — s. Similar procedure can be given for simulating a matrix
m}: (X = Y,B? 1),

We repeat the procedure for simulating a matrix of type 2 (or type 3) for all
the matrices of type 2 (or type 3) and end the process of simulation by simulating
a type 4 matrix. So any derivation in G can be simulated by a computation in
IT and, conversely, the result of successful computations in IT corresponds to the
terminal derivations in G. Thus, the equality L(IT) = L(G) follows. O
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We now show the universality of our system working in the minimal mode.
Theorem 5. RE = RtP» 4(min, ), for v € {repl,one, spread}.

Proof. We start by considering a matrix grammar G = (N, T, S, M, F) in strong
binary normal form, and construct the rewriting tissue P system

I = (Va T, 01,02, {(1> 2)7 (2) 1)}7 1);
where:

— V=NUN,U{X'| X € N;}U{E, B\, Z}U{X;, A;, A, | X e NyU{f}, A€
Ny, 0<i<k+1};

— o1 = ({s, 51, 82,83},s,{X, A}, P1), where P, contains the following rules:

1. sX = s1Y;(go), for a matrix m; : (X —» Y, A — z);
2. s1A — sxA;(go), for a matrix m; : (X - Y, A — x);
3. sX — s1fi(go), for a matrix m; : (X = N\, A — z);
4. s1A — sz Al(go), for a matrix m; : (X = X\, A — z);
5. Y = sY, Y € Ny;

6. soFb — s;

7. sf' — s9;

8. s2E1 — sA(out);

9. sX — s53Y()(go), for a matrix mj (X — Y, B0 — 1);
10. s3A — s1A(go);
11. $1Y — sY'(go);
12. sE — s2Z(out);
13. sZ — sZ(out);
14. sA; = sZ(out),0 <i < k;

— o3 = ({s,51, 52,53}, 5,0, P»), where P, contains the following rules:

1. sY; —)ngfl,y € N; U{f},]. << k,
2. s34; — SAifl,A € Ny, 1<i<k;

3. S3A; — SA;il,A € N2,1 <1< k?,
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4. sYy — s3Y'(go),Y € NyU{f};
5. s34¢ = sE(go), A € Na;
6. s3Ay — sE1(go), A € Ny;
7. sY() 5 5;Y(go),Y € Ny;
8. s;BW) — 5;7Z(go), for a matrix mj (X — Y,B® — 1);
9. 5,Y" — sY'(go);
10. sA — sAE(go).

The system works as follows:

Here also the system has two cells so that all the three modes of transmitting
the processed strings from a cell to other cells are same. Since the system is
working in the minimal mode, only one rule can be applied on one of the available
strings. Initial configuration of the system is (s{X, A}, s0). Let us suppose that
at a particular instant, the configuration of the system is (s{X,w;Aws}, s0),
where wy,wy € (Ny UT)*.

In order to simulate a matrix m; : (X = Y, A — z), we apply the rule sX —
51Y;(go) so that the configuration of the system becomes (s;{w;Aws},s{Y;}).
We now simultaneously apply the rules s14 = st A;(go) in o1 and sY; — s3Y;_1
in o5 and change the configuration of the system to (s, so{Y;—1, w1zAjw>}). In
the next step, we change the state of o2 to s by decreasing the subscript of A.
Now the configuration of the system is (sf), s{Y;_1,wizA;_1w>}). The process of
decreasing the subscripts of both Y and A (each in subsequent steps) is repeated
until one of the subscripts becomes 0. Based on the subscripts of Y and A, we
have the following situations:

— if i < 7, at a certain stage the configuration of the system becomes (sf), s{Yp,
wizA;_;w2}). By applying the rule sYy — s3Y’(go) we change the con-
figuration of the system to (s{Y'}, ss{wizA;_;w>}). In the next step, the
subscript of A is decreased and the state is changed to s. At the same time, in
o1 we replace Y’ with Y and change the state to s3. Now the system reaches
an halting configuration (s2{Y}, s{wixA4;_;_1w>}) due to non applicability
of any rule so that we get no result.

— if ¢ > j, at a certain stage the configuration of the system becomes (s, s{Y;_;,
wyzAgwsy }). We now decrease the subscript of Y and change the state to ss.
In the next step, by applying the rule s34y — sE(go) we change the config-
uration of the system to (s{wizEws},s{Y;—;j_1}). In 01, a trap symbol Z is
introduced by applying the rule sE — s2Z(out). Hence we get no result.
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— if i = j, at a certain stage the configuration of the system becomes (sf), s{Yp,
wizAgwa}) so that by applying the rule sYy — s3Y'(go) we change the
configuration of the system to (s{Y'}, ss{wizAows>}). In the next step, we
simultaneously apply the rules s3Ag — sE(go) in o2 and sY' — sV in oy
so that the configuration of the system becomes (so{Y,wijxEws},s30). In
the next step we erase the symbol E by applying the rule so E — s.

So when both the subscripts are equal, we get the correct simulation of the
matrix. We can explain the simulation of matrices of type 4 in a similar way.
Whenever we simulate a matrix of type 4, at a certain stage the configuration
of the system becomes (s{f’,uixEjw-},s0). By applying the rule sf’ — s,
we erase f' and change the state to ss. In the next step we apply the rule
s2E1 — sA(out) so that the configuration of the system becomes (s{\},s0)
and the string wyzxwsy is sent to the environment. If this string contains any
nonterminal, it is not considered as a result.

For simulating a matrix m} : (X — Y, B®™ — 1), we apply the rule sX —
53Y () (go) and change the configuration of the system to (sz{w; Aws}, s{Y(V}).
We now simultaneously apply the rules s3sA — s;A(go) in oy and sY () —
s1Y (go) in o2 so that the configuration becomes (sl{Y},sl{wlAng(l)}). If
wy Aw, contains BM | a trap symbol Z is introduced. Otherwise, no rule is ap-
plied on the string. At the same time, we apply the rule s;Y — sY’(go) in oy
and send the string Y’ to o2. We now apply the rule ;Y — sY'(go) so that
the string Y’ is sent to o1. Once the state of o5 becomes s, we apply the rule
sA — sAFE(go) so that the string wi AEws is sent to o1. At the same time, we
replace Y' with Y in o7 and change the state to ss. Finally we apply the rule
so ' — s so that the symbol FE is erased. In this way we can simulate the matrix.
Similar procedure can be given for a matrix of the form m’ : (X — Y, B?) — 1),

The procedure for simulating a matrix of type 2 (type 3) can be iterated for all
the matrices of type 2 (type 3). Finally the simulation process ends by simulating
a type 4 matrix. So any derivation in G can be simulated by a computation in
IT and, conversely, the result of successful computations in IT corresponds to the
terminal derivations in G. Thus, the equality L(IT) = L(G) follows. O

In the proof of the above theorem, we consider the minimal mode so that
only one rule can be applied at any time on the available strings. But we consider
two strings X and w such that X € Ny and w € (NoUT)*. Since the two strings
are over disjoint alphabet, a rule which can be applied on one string cannot
be applied on the other string. From this observation we can easily prove the
following theorem.

Theorem 6. RE = RtP» 4(par,), for v € {repl, one, spread}. O
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6 Conclusion

We proposed a variant of tissue P systems and studied its efficiency and compu-
tational capacity. Interestingly for all modes we obtained the universality with at
most two membranes and four states. Currently we are investigating the power
of tissue P systems with leftmost rewriting [Mutyam and Krithivasan 2004]. Like
the descriptional complexity for rewriting P systems [Mutyam 2004], one can de-
fine the descriptional complexity for rewriting tissue P systems. For rewriting
tissue P systems, in addition to the descriptional complexity measures given
in [Mutyam 2004], one can consider descriptional complexity measures such as
number states, type of communication (i.e., one-way or two-way), and membrane
structure representation (i.e., star, tree, chain, cycle). Finally, it is an interest-
ing research problem to consider parallel rewriting [Krishna and Rama 2000] to
define a new mode of processing string-objects and study the computational
capacity of such systems.
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