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Abstract. The present paper contains a specification of the EM algorithm in order to fit an
empirical counting process, observed at discrete times, to a Markovian arrival process. The
given data are the numbers of observed events in disjoint time intervals. The underlying phase
process is not observable. An exact numerical procedure to compute the E and M steps is
given.

1. Introduction

Markovian arrival processes have been introduced by Neuts (1979) and Lucantoni (1991). They
have extensively been used as models for input streams to queueing systems (for a survey see Lucan-
toni (1993)). Their appealing feature is that they are Markovian (and hence analytically tractable)
on the one hand but very versatile (even dense in the class of point processes, see Asmussen and
Koole (1993)) on the other hand. Although the concept of Markovian arrival processes (MAPs†)
has gained widespread use in stochastic modelling of communication systems and other application
areas, the quest for the best statistical methods of parameter estimation is far from finished yet.

A survey of estimation methods is given in Asmussen (1997). His emphasis is on maximum
likelihood estimation and its implementation via the EM algorithm (see Dempster et al. (1977)).
Asmussen et al. (1996) derived a fitting procedure for phase-type distributions via the EM algo-
rithm. Markov chain Monte Carlo methods for the estimation of phase-type distributions (and
functionals of these) are given in Bladt et al. (2003). For a special case of MAPs, the Markov–
modulated Poisson Process (MMPP), an EM algorithm has been developed in Ryden (1996). Bladt
and Soerensen (2005) specify the EM algorithm for the case of discretely observed Markov jump
processes (MJPs). We will have to deal with discretely observed MJPs, for which even the ob-
servations at discrete times are partial only. Fearnhead and Sherlock (2006) provide a simulation
method for MMPPs. Our results extend this paper in so far in that we provide a maximum likelihood
approach for a more general class of processes.

Statistical model fitting depends of course on the type of data observation that is available. In
practice, we think of essentially two types of data:
(a) Exact times are recorded for each observed event.
(b) The arrival process is observed at a grid of discrete times only. This yields only the information
of how many arrivals have occurred in each interval of the grid.
We always assume that the underlying phase process is unobservable. An EM algorithm for case
(a) has been given in Breuer (2002). The present paper contains a specification of the EM algorithm
for MAPs in the case (b) of discrete time observation.

†There is some confusion in the literature about this acronym. It is used also for Markov–additive processes,
which form a much more general class than Markovian arrival processes. However, since MAP is the most
common abbreviation for Markovian arrival processes, we will use it in this article.
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In section 2, we review shortly the main definitions and notations for MAPs. The EM algorithm
is specified to discretely observed MAPs with hidden phases in section 3. Exact expressions for the
integrals appearing in the E–step are given in sections 4 and 5. In the remainder of this section,
we describe the kind of data available from observations and give a short remark on estimating the
order of the MAP which is to fit the empirical time series.

We assume to be in the following, for many applications typical, situation of data retrieval:
An empirical counting process is observed at discrete times tn, n = 0, . . . , N , where t0 := 0. To
simplify later notation we assume that tn := n. It will be apparent that this assumption of equidistant
observation points is not necessary. We further assume that the observed point process is stationary
in time. The only information that can be measured is the number of observed events in the interval
]tn−1, tn], denoted by zn, n = 1, . . . , N . Thus the given data has the form z = (z1, . . . , zN ). Due
to the result that MAPs are dense in the class of all point processes on the positive real axis (see
Asmussen and Koole (1993)), the approach of model fitting by a MAP is reasonable. By the nature
of the problem, no information is given on the underlying phase process, not even the number of
phases.

Throughout this article, we fix the number of phases for the MAP model to be a known integer
m ≥ 1. Procedures for estimating the number m of phases are discussed in Ryden (1997) for the
MMPP.

Since the adaptation of the model increases with the assumed number of phases m, the likelihood
gain at the ML estimates is always positive if we increase m by 1. If this gain is not bigger than
some threshold value, we can assume that we have found the right value for m. This incremental
method was proposed by Jewell (1982). The threshold value reflects the limit of accuracy beyond
which the gain in model adaptation is not worth the additional computation time.

2. Markovian arrival processes

A Markovian arrival process is a homogeneous Markov process Y = (Yt : t ≥ 0) with state space
E = N0×{1, . . . , m}, where m is some positive integer, and a generator matrix of the (block) form

G =




D0 D1

D0 D1

. . . . . .




In this generator, only the main and the first upper block diagonals have non–zero entries. Apart
from that there are no restrictions for the matrices D0 and D1, except of course the generator
conditions

(D0 + D1)1 = 0, D0;ij ≥ 0 for i 6= j, D1;ij ≥ 0 for all i, j

where 1 and 0 denote the vectors with all entries being ones and zeroes, respectively. In order to
avoid absorbing states, we assume that D0;ii is strictly negative for all i = 1, . . . ,m.

As Yt is two–dimensional, it is natural to write Y = (N ,J ) = ((Nt, Jt) : t ≥ 0). The marginal
processes N and J are called the counting process and the phase process associated with Y . For
any state (n, i) ∈ E, the first dimension is called the level and the second one is called the phase.

Under this interpretation, the entries D0;ij of D0 give the infinitesimal transition rates among
phases {1, . . . ,m} without an arrival if i 6= j. The entries D1;ij of D1 give the infinitesimal
transition rates among phases accompanied by an arrival. The diagonal entries D0;ii are the negative
parameters of the exponential sojourn times in any state (n, i), independently from n ∈ N0.
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The special case of a Markov–modulated Poisson Process (MMMP), also called a Cox process,
arises if D1 is chosen to be a diagonal matrix. This has of course a large impact on the modelling
power. The matrix D1 governs correlations between inter–arrival times (which are crucial in many
applications). If D1 is restricted to be diagonal, there is no way to control these. This is the main
reason why MMPPs can be employed only in special modelling situations.

The process has stationary increments if it starts in phase equilibrium π, which is determined
as the stationary distribution of the phase process, i.e. by π(D0 + D1) = 0. As we wish to fit a
stationary empirical point process by a MAP, we can hence assume that P(Y0 = (0, i)) = πi.

The likelihood of a complete sample path x on [0, tN ] under parameters D0 = (D0;ij) and
D1 = (D1;ij) is given by

f(x|D0, D1) =
m∏

i=1

exp (D0;iiZi)
m∏

i=1

m∏

j=1,j 6=i

D
Bij

0;ij

m∏

i=1

m∏

j=1

D
Aij

1;ij (1)

where Zi denotes the total time spent in phase i, Bij the number of jumps from phase i to phase j
without arrival, and Aij the number of jumps from phase i to phase j with accompanying arrival.
These variables form a sufficient statistic for likelihood based estimations. They can of course be
decomposed into the sum of the respective variables over all the intervals ]tn−1, tn], n = 1, . . . , N .
Thus we can write

Zi =
N∑

n=1

Zn
i , Bij =

N∑
n=1

Bn
ij , Aij =

N∑
n=1

An
ij

where Zn
i , Bn

ij , and An
ij refer to the nth interval.

Remark:
The above equation (1) shows that under the complete statistics

T (x) = (Zi : i ≤ m;Bij : i 6= j;Aij : i, j ≤ m)

we are dealing with an exponential family in T and a parameter vector

ζ(D0, D1) = (D0;ii : i ≤ m; log D0;ij : i 6= j; log D1;ij : i, j ≤ m)T

where we define by natural extension log 0 := −∞ and (−∞) · 0 := 0. Under this setting we
obtain

f(x|D0, D1) = exp(T (x)ζ(D0, D1))

This shows that results obtained by Sundberg (1974) are applicable to the problem studied here.

Acknowledging the relation D0;ii = −
(∑m

j=1 D1;ij +
∑m

j=1,j 6=i D0;ij

)
, the maximum likelihood

estimators D̂0 and D̂1 for the matrices D0 and D1 are then given by

D̂0;ij =
Bij

Zi
, D̂1;ij =

Aij

Zi
, (2)

D̂0;ii = −



m∑

j=1

D̂1;ij +
m∑

j=1,j 6=i

D̂0;ij


 (3)

for 1 ≤ i, j ≤ m, see Albert (1962).
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3. The EM algorithm

The typical property of observing time series derived from a MAP is that only the arrivals but not the
phases can be seen. If the phases were observable, then one could apply the maximum likelihood
estimators for finite state Markov processes (see Albert (1962)). To make things worse, we cannot
even observe the exact arrival times. Thus we have a problem of estimation from incomplete data.
For this type of statistical problems, the so–called EM algorithm has proven to be a good means
of approximating the maximum likelihood estimator (see Dempster et al. (1977), McLachlan and
Krishnan (1997) or Meng and van Dyk (1997)). The name EM algorithm stems from the alternating
application of an expectation step (for E) and a maximization step (for M) which yield successively
higher likelihoods of the estimated parameters.

In our case, the incomplete sample consists only of the sequence z = (z1, . . . , zN ) indicating
the number of observed arrivals within each interval. Denote the the maximal observed number of
arrivals within one interval by M .

Given the parameters D0 and D1 as well as the stationary phase distribution π (which is deter-
mined by D0 + D1), the likelihood of the incomplete sample z is

f(z|D0, D1) = π

N∏
n=1

g(zn|D0, D1)1 (4)

with g(0|D0, D1) = eD0 and

g(i|D0, D1) =
∫

u0+...+ui=1

(
i−1∏
n=0

eD0unD1

)
eD0ui du0 . . . dui−1

for i ≥ 1.
Assume that the estimates after the kth EM iteration are given by the matrices (D̂(k)

0 , D̂
(k)
1 ).

Then in the first step of the k + 1st cycle, the conditional expectations of the variables Zi, Aij and
Bij given the incomplete observation and the current estimates (D̂(k)

0 , D̂
(k)
1 ) are computed.

In order to simplify notations, define the column vectors

ηN := 1 and ηn−1 := g(zn|D̂(k)
0 , D̂

(k)
1 ) ηn =

N∏

i=n

g(zi|D̂(k)
0 , D̂

(k)
1 )1 (5)

iteratively for 2 ≤ n ≤ N .
Since the empirical time series is observed in a stationary regime, we can set the phase distribu-

tion α0 at time 0 to be the estimated phase equilibrium, i.e. satisfying α0(D̂
(k)
0 + D̂

(k)
1 ) = 0. Then

we define iteratively the row vectors

αn+1 := αn g(zn+1|D̂(k)
0 , D̂

(k)
1 ) = π

n∏

i=0

g(zi|D̂(k)
0 , D̂

(k)
1 ) (6)

for 0 ≤ n ≤ N − 2. Clearly f(z|D̂(k)
0 , D̂

(k)
1 = αnηn.

We begin the E–step with the accumulated sojourn times in a phase i. These are given by

Z
(k+1)
i := E

(D̂
(k)
0 ,D̂

(k)
1 )

(Zi|z) =
(
f(z|D̂(k)

0 , D̂
(k)
1 )

)−1 N∑
n=1

E
(D̂

(k)
0 ,D̂

(k)
1 )

(Zn
i |z)
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where i = 1 ≤ m and Zn
i denotes the random variable of the total amount of time spent in phase i

within the nth interval. The terms in the sum are given by

E
(D̂

(k)
0 ,D̂

(k)
1 )

(Zn
i |z) = αn−1 czn

(i, i|D̂(k)
0 , D̂

(k)
1 ) ηn (7)

for all 0 ≤ n ≤ N , where the matrix–valued functions cn are defined as

c0(i, j|D̂(k)
0 , D̂

(k)
1 ) :=

∫ 1

0

exp (D̂(k)
0 u)ei · eT

j exp (D̂(k)
0 (1− u)) du (8)

cn(i, j|D̂(k)
0 , D̂

(k)
1 ) :=

∫

u0+...+un=1

n∑

h=0

(
h−1∏

l=0

exp (D̂(k)
0 ul)D̂

(k)
1

)
(9)

∫ uh

0

exp (D̂(k)
0 v)ei · eT

j exp (D̂(k)
0 (uh − v)) dv

(
n∏

l=h+1

D̂
(k)
1 exp (D̂(k)

0 ul)

)
du0 . . . dun−1

for 1 ≤ i, j ≤ m and 1 ≤ n ≤ M . Here ei denotes the ith canonical column base vector and eT
i

its transpose, i.e. the row vector. The empty products
∏−1

l=0 . . . and
∏n

l=n+1 . . . are defined as the

identity matrix. The values for cn(i, j|D̂(k)
0 , D̂

(k)
1 ) can be rewritten in terms of the n+2-dimensional

simplex as

n∑

h=0

∫

u0+...+un+1=1

(
h−1∏

l=0

exp (D̂(k)
0 ul)D̂

(k)
1

)
exp (D̂(k)

0 uh)ei · eT
j exp (D̂(k)

0 uh+1)

(
n+1∏

l=h+2

D̂
(k)
1 exp (D̂(k)

0 ul)

)
du0 . . . duh . . . dun (10)

The derivation of (7) is completely analogous to the one in Asmussen et al. (1996), p.439.
Likewise,

B
(k+1)
ij := E

(D̂
(k)
0 ,D̂

(k)
1 )

(Bij |z) =
(
f(z|D̂(k)

0 , D̂
(k)
1 )

)−1 N∑
n=1

E
(D̂

(k)
0 ,D̂

(k)
1 )

(Bn
ij |z)

with
E

(D̂
(k)
0 ,D̂

(k)
1 )

(Bn
ij |z) = D̂

(k)
0;ij · αn−1 czn(i, j|D̂(k)

0 , D̂
(k)
1 ) ηn (11)

for 1 ≤ n ≤ N is derived using completely the same arguments as in Asmussen et al. (1996), p.440.
The E–step is completed by

A
(k+1)
ij := E

(D̂
(k)
0 ,D̂

(k)
1 )

(Aij |z) =
(
f(z|D̂(k)

0 , D̂
(k)
1 )

)−1 N∑
n=1

E
(D̂

(k)
0 ,D̂

(k)
1 )

(An
ij |z)

with

E
(D̂

(k)
0 ,D̂

(k)
1 )

(An
ij |z) =

{
0, zn = 0
D̂

(k)
1;ij · αn−1 czn−1(i, j|D̂(k)

0 , D̂
(k)
1 ) ηn, zn > 0

(12)

for 1 ≤ n ≤ N .
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Remark
Based on the fact that

∂ exp(D(k)
0 uh)

∂D
(k)
0;ij

= uh

∫ 1

0

exp(tD(k)
0 uh)eie

T
j exp((1− t)D(k)

0 uh)dt

=
∫ uh

0

exp(D(k)
0 v)eie

T
j exp(D(k)

0 (uh − v))dv

and by transferring the derivative inside the integration sign one can easily see that

∂g(n|D(k)
0 , D

(k)
1 )

∂D
(k)
0;ij

= cn(i, j|D(k)
0 , D

(k)
1 ) and

∂g(n|D(k)
0 , D

(k)
1 )

∂D
(k)
1;ij

= cn−1(i, j|D(k)
0 , D

(k)
1 ).

Therefore
∂f(z|D(k)

0 , D
(k)
1 )

∂D
(k)
0;ij

=
N∑

r=1

αr−1czr
(i, j|, D(k)

0 , D
(k)
1 )ηr

and
∂f(z|D(k)

0 , D
(k)
1 )

∂D
(k)
1;ij

=
N∑

r=1

αr−1czr−1(i, j|D(k)
0 , D

(k)
1 )ηr.

Similarly, one could easily obtain the second or higher order derivatives of the likelihood. These
derivatives can be easily adopted for the cases when there is some simple functional relationship
between the entries of the parameter matrices D

(k)
0 and D

(k)
1 .

Now, the next step of the k+1st cycle of the EM consists of the computation of maximum likelihood
estimates given the new (conditional but complete) statistic computed in the E–step. This can be
done by simply replacing the variables in equations (2) and (3) by the conditional expectations
computed above. This leads to re-evaluated estimates

D̂
(k+1)
0;ij =

B
(k+1)
ij

Z
(k+1)
i

, D̂
(k+1)
1;ij =

A
(k+1)
ij

Z
(k+1)
i

,

and

D̂
(k+1)
0;ii = −




m∑

j=1

D̂
(k+1)
1;ij +

m∑

j=1,j 6=i

D̂
(k+1)
0;ij




for 1 ≤ i, j ≤ m.
Using these, one can compute the likelihood f(z|D̂(k+1)

0 , D̂
(k+1)
1 ) of the empirical time series

under the new estimates according to equation (4). If the likelihood ratio

ρ =
f(z|D̂(k+1)

0 , D̂
(k+1)
1 )

f(z|D̂(k)
0 , D̂

(k)
1 )

remains smaller than a threshold 1 + ε, then the EM iteration process can be stopped, and the latest
estimates may be adopted. The threshold value reflects the limit of accuracy beyond which the gain
in model adaptation is considered not to be worth the additional computation time.
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4. Implementation of EM

In this section we focus on the implementation of the EM algorithm.
It is clear that in order to evaluate the update rules we need to be able to calculate the value of

the matrix integral of the type

I =
∫

u0+···+uk=1

eD0u0P1e
D0u1 · · ·PkeD0ukdu

where D0 is our parameter square matrix of order m and Pr’s are equal to D1 except for calculating
the elementary terms for ck−1(i, j|D̂0, D̂1) in (10) where one Pr needs to replaced with eie

T
j . Note

that the true likelihood function is also constructed in terms of such expectations.
In the following, we show two ways to calculate I. The first operates with the matrices of the

same dimension as D0 and D1 and the second is based on the matrix exponentials of some large
dimension depending on k and m. The choice of these approaches for practical implementation will
depend on the computing limitations related to large values of m and k.

4.1. Direct evaluation
The purpose of this sub-section is two fold:

First, to demonstrate a direct method of evaluating the density function of a convolution of
Erlang distributions. To our knowledge this is not reported before and we show it to be closely
related to the normalizing constant of a particular spherical distribution.

Secondly, the expression of the density function of the convolutions of Erlang’s is shown to be
closely related to the close form expression of I. In particular, if the Jordan decomposition of D0

is known, we have a closed form expression for evaluating both the likelihood function and the EM
update steps.

4.1.1. Convolutions of Erlang distributions
Let assume that the random variables Xi have distribution Gamma(ni + 1, λi) for i = 0, · · · , k.
Since we will obtain the pdf of Y = X0 +X1 + · · ·+Xk, we can assume without loss of generality
that all λi’s are distinct.

It is now clear that the pdf of Y at point s is

fY (s) =
k∏

i=0

λni+1
i

ni!

∫

v0+···+vk=s

e−
Pk

i=0 viλi

k∏

i=0

vni
i dv

where dv =
∏k

i=1 dvi. A change of variables ui = vi/s leads to

fY (s) =
k∏

i=0

λni+1
i

ni!
sk+

Pk
i=0 ni

∫

u0+···+uk=1

e−
Pk

i=0 uisλi

k∏

i=0

uni
i du (13)

Integrals of the type
∫

u0+···+uk=1

e−
Pk

i=0 uiλi
∏k

i=0 uni
i du are obtained in the closed form in

Kume and Wood (2007). The authors provide the value of the normalizing constant for Complex
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Bingham Distributions (see Kent (1994)) with multiplicities in the eigenvalues of the parameter
matrix. In particular, provided that all λi’s are distinct, it is shown in Proposition 2 there that

∫

u0+···+uk=1

e−
Pk

i=0 uiλi

k∏

i=0

uni
i du

=
k∑

i=0

∑

|J0(i)|=ni

(−1)ni+je−λini!
j!j0! . . . ji−1!ji+1! . . . jk!

∏

r 6=i

(nr + jr)!
(λr − λi)nr+jr+1

(14)

where the second summation is performed along all J0(i) = (j, j0 . . . , ji−1, ji+1, . . . , jk) , which
are integer partitions (including zeros) of ni in k + 1 components. A simple algorithm which
generates such partitions is given on page 49 of Nijenhuis and Herbert (1978) where the number of
such partitions is shown to be Cni

ni+k. Replacing λi’s in (14) by sλi’s we have

∫

u0+···+uk=1

e−
Pk

i=0 uisλi

k∏

i=0

uni
i du

= s−k−Pk
i=0 ni

k∑

i=0

∑

|J0(i)|=ni

(−1)ni+je−sλisjni!
j!j0! . . . ji−1!ji+1! . . . jk!

∏

r 6=i

(nr + jr)!
(λr − λi)nr+jr+1

(15)

which implies that

fY (s) =
k∏

i=0

λni+1
i

ni!

k∑

i=0

e−sλi

∑

|J0(i)|=ni

(−1)ni+jsjni!
j!j0! . . . ji−1!ji+1! . . . jk!

∏

r 6=i

(nr + jr)!
(λr − λi)nr+jr+1

(16)

The expression (14) is also valid for complex values of λi. This fact is important in calculating our
expectations if the eigenvalues of D0 are complex.

4.1.2. Evaluating I
Assume that D0 has p distinct eigenvalues with Jordan decomposition

D0 = O∆O−1 = O




∆1(r1)
. . .

∆p(rp)


O−1 with ∆j(rj) =




λj 1

λj
. . .

1
λj




where rj is the dimension of ∆j(rj) and O is an invertible matrix. Without loss of generality we can
assume that O is the identity matrix. This can easily be seen from the fact that exD0 = Oex∆O−1

and so
I = O

∫

u0+···+uk=1

e∆u0Q1e
∆u1 · · ·Qke∆ukdu O−1 Qj = O−1DjO.

We need to make the following remarks
Remark 1

ex∆ =




ex∆1(r1)

. . .
ex∆p(rp)



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Remark 2 From the decomposition ∆j(rj) = λjI + N(rj) with

N(rj) =




1
. . .

1




and noting that N(rj) is a nilpotent matrix of order rj , it follows that

ex∆j(rj) = exλj

rj−1∑
w=0

xwN(rj)w

w!
.

with N(rj)0 = I .
Let denote by M(j, w) the p× p matrix related to the block matrix N(rj) defined as

M(j, w) =


 N(rj)

w

w!




It is now easy to see that the required value of I is given in terms of a finite sum of elementary
integrals of the type

I =
p∑

j0=1

rj0−1∑
wj0=1

· · ·
p∑

jk=1

rjk
−1∑

wjk
=1

J (j0 . . . jk; wj0 . . . wjk
)

where

J (j0 . . . jk; wj0 . . . wjk
) =

∫

u0+···+uk=1

eu0λj0 u
wj0
0 M(j0, wj0)

k∏

l=1

Ple
ulλjl u

wjl

l M(jl, wjl
)du.

In the summation above each of j0, j1, · · · , jk take values independently from 1, 2, · · · , p and for
each jl the corresponding wjl

takes values in 1, 2, · · · , rjl
. Note that p is the number of distinct

eigenvalues of D0 and rjl
denotes the multiplicity of the eigenvalue λjl

.
It can be seen that the integrating factors in J (j0 . . . jk;wj0 . . . wjl

) are only scalars which can
be grouped together such that

J (j0 . . . jk; wj0 . . . wjl
) = M(j0, wj0)

k∏

l=1

PlM(jl, wjl
)

∫

u0+···+uk=1

e
Pk

l=0 ulλjl

k∏

l=0

u
wjl

l du

It is now clear that we only need to evaluate the value of
∫

u0+···+uk=1

e
Pk

l=0 ulλjl

∏k
l=0 u

wjl

l du.

Using the result (14) we can exactly evaluate I. Note that for implementing directly (14) in this
case we need all λjl

’s distinct, otherwise, we then need to initially collapse to a single ui all those
ul’s such that λjl

’s share the same value.
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4.2. Matrix exponential approach
A novel idea for calculating I is reported in Carbonell et al. (2007) who describe a method for
calculating the matrix integrals of the type

∫

u0+···+uk=t

eA0u0P1e
A1u1 · · ·PkeAkukdu

where Ai’s and Pi’s are square of dimension m × m. Their method relies heavily on the matrix
exponential function and expands to any k the approach of Van Loan (1978) for k ≤ 4. In particular,
they show that the resulting matrix above is in fact the top-right m×m sub-matrix of exp(tA), where
A is a two-diagonal square matrix of dimension (k + 1)m defined as

A =




A0 P1 0 · · · 0
0 A1 P2 0 · · · 0
...

. . .
...

0 · · · 0 Ak−1 Pk

0 · · · 0 0 Ak




.

Our expectation I is the top-right m×m sub-matrix of exp(A) where all Ai’s are equal to D0.
The implementation of this approach is straightforward, but rather inefficient since we need to

calculate the (k + 1)m × (k + 1)m matrix exp (A) and extract only a small part. If its dimension
however is unmanageably large for the computer we can apply the same result to low order matrices
as shown below.

Applying the result of Carbonell et al. (2007) for a scalar case i.e. all Ai = λi are numbers
and Pi = 1 see that the corresponding integral in (14) for ni = 0 is simply the top right entry of
exp(A), where

A =




λ0 1 0 · · · 0
0 λ1 1 0 · · · 0
...

. . .
...

0 · · · 0 λk−1 1
0 · · · 0 0 λk




.

One can easily show that the values in (14) for ni 6= 0 can be similarly obtained by expanding each
dimension ofA to

∑k
i=0 ni +k+1 such that each λi is repeated ni +1 times and the resulting value

obtained after evaluating exp(A) needs re-scaling by
∏k

i=0 Γ(ni + 1). We can use this method to
then evaluate the elementary integrals J (j0 . . . jk; wj0 . . . wjl

) in the direct approach in subsection
4.1.2.

5. Numerical examples

The purpose of this section is to show that the proposed algorithm can indeed be implemented in a
tractable way on a normal PC. We utilized the first matrix exponential approach of subsection 4.2
where A has matrix blocks and performed the calculations in the Statistical package R.

Example 1 We consider an application where we know that all inter–arrival times have an
exponential distribution. This makes an estimation simpler as we can set the off–diagonal elements
of D̂0 as zero. The EM algorithm guarantees that initial estimates of zero remain zero, see equations
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(11) and (12). We set the original parameters as

D0 =
(−0.2 0

0 −5

)
and D1 =

(
0 0.2

0.5 4.5

)

With these parameters we ran a simulation of 500 arrivals, yielding a time series of N = 353
intervals. This served as the input to our EM algorithm. The initial estimates were set as

D̂
(0)
0 =

(−N/d 0
0 −M

)
and D̂

(0)
1 =

(
N/2d N/2d
M/2 M/2

)

where M = max{zn : n ≤ N} is the maximal number of arrivals within one interval, d is the total
number of intervals without arrivals, and N is the total number of intervals in the time series. After
28 EM steps, the estimates for D0 and D1 are

D̂0 =
( −0.207 0.000

0.000 −4.727

)
and D̂1 =

(
0.000 0.207
0.555 4.172

)

The likelihood of the time series under these estimates is l̂ = 2.017871e − 203 as compared to
the likelihood l = 6.151147e − 204 under the original parameters. Note that the qualitative entry
D0;11 = 0 has been found by the algorithm on its own.

Example 2 The second example is a Markov–modulated Poisson process (MMPP). The original
parameters were set as

D0 =
(−1 0.5

0.5 −2

)
and D1 =

(
0.5 0
0 1.5

)

Again, we used these parameters to run a simulation of 500 arrivals, yielding a time series of N =
479 intervals. This served as the input to our EM algorithm. The initial estimates were set as

D̂
(0)
0 =

(−N/d N/2d
M/2 −M

)
and D̂

(0)
1 =

(
N/2d 0

0 M/2

)

with M and d as defined in example 1. After 142 steps, the algorithm produced the following
estimates for D0 and D1:

D̂0 =
( −1.509 1.130

1.370 −3.220

)
and D̂1 =

(
0.378 0.000
0.000 1.850

)

The likelihood of the time series under these estimates is l̂ = 7.820401e − 285, under the original
parameters it is l = 7.218375e− 285.

Example 3 Now a full Markovian arrival process with two phases: Original parameters are

D0 =
(−2.5 1

2.5 −5

)
and D1 =

(
1 0.5

1.5 1

)

Again, we used these parameters to run a simulation of 500 arrivals, this time yielding a time series
of N = 293 intervals. The initial estimators were set as

D̂
(0)
0 =

(−N/d N/3d
M/3 −M

)
and D̂

(0)
1 =

(
N/3d N/3d
M/3 M/3

)
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After only two steps, the estimates for D0 and D1 are

D̂0 =
( −2.432 0.992

2.521 −4.948

)
and D̂1 =

(
0.961 0.479
1.458 0.970

)

The likelihood of the time series under these estimates is l̂ = 6.623291e − 209, under the original
parameters it is l = 4.625924e− 209.

If we apply the same algorithm to the first part of the same data such that there are N = 200
intervals only, we obtain after 28 steps

D̂0 =
( −2.323 1.175

3.361 −6.757

)
and D̂1 =

(
0.576 0.572
1.635 1.761

)

Here the likelihoods are l̂ = 9.80752e − 147 under the estimates and l = 2.817786e − 147 under
the original parameters.

Example 4 The last example deals with real data taken from measurements of fetal lamb move-
ments. They have been analysed in Leroux and Puterman (1992) via discrete time hidden Markov
models. Here we apply our continuous time model to these data. In Leroux and Puterman (1992)
the assumption was that in each interval the number of counts follows a Poisson distribution. The
equivalent assumption in a continuous time model is that of exponential inter-arrival times. We can
model this by setting D0 to be diagonal, which means that the underlying phase can change only
upon an arrival (i.e. together with an observed movement). In order to find the most suitable num-
ber m of phases, we just try increasing values of m until the likelihood gain does not appear to be
worthwhile anymore.

The estimates for m = 2 are

D̂0 =
( −0.243 0.000

0.000 −2.775

)
and D̂1 =

(
0.222 0.021
0.435 2.340

)

where the achieved likelihood is 3.638315e− 78. For m = 3 the estimates are

D̂0 =




−0.096 0.000 0.000
0.000 −0.548 0.000
0.000 0.000 −3.631


 and D̂1 =




0.059 0.028 0.009
0.044 0.504 0.000
0.221 0.000 3.410




They generate a likelihood of 1.264017e − 73. The estimates for m = 4 yield a likelihood of
1.275225e− 72. This last likelihood gain appears as too small to justify an extra phase. Hence we
stop here and decide for the model with three phases.

It is remarkable that the qualitative entries D̂1(2, 3) = D̂1(3, 2) = 0 have been picked up by the
discrete time model in Leroux and Puterman (1992), table 4 under m = 3, too. The interpretation is
that phase 1 serves as an intermediate phase, over which also changes between phases 2 and 3 need
to occur.
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