gbooooOooooo 120560 2001 0O 37-42

37

A parallel algorithm for finding all hinge vertices
of a trapezoid graph

AM%EF Hirotoshi Honmal #4111% Shigeru Masuyama?
oy WRIyw

Department of Information Engineering,
Kushiro National College of Technology

P empoimle iy ARERLIYER
Department of Knowledge-Based Information Engineering,
Toyohashi University of Technology

Keywords: Parallel algorithms; Trapezoid graphs; Hinge vertices; Shortest paths

1 Introduction

Given a simple undirected graph G = (V, E) with vertex set V and edge set E, let G — u be a
subgraph induced by the vertex set V' —u. We define the distance dg(z, y) as the length of the shortest
path between vertices z and y in G. Chang et al.[1] defined that u € V is a hinge vertex if there exist
two vertices z,y € V — {u} such that dg_u(z,y) > dc(z,y). A graph without hinge vertices is called
a self-repairing graph|2]. Farley et al. presented a constructive characterization related to the class of
self-repairing graph. An articulation vertez is a special case of a hinge vertex in the sense that removal
of an articulation vertex u changes the finite distance of some nonadjacent vertices z, y to infinity. For
the design and analysis of distributed networks, the computation of topological properties is a very
important research topic. The overall communication cost in a network is increased if a computer
corresponding to a hinge vertex stalls. Therefore, finding the set of ﬁinge vertices in a graph can be
used to identify critical nodes in an actual network. A number of studies concerning hinge vertices
have been made in recent years. There exists a trivial O(n3) sequential algorithm for finding all hinge
vertices of a simple graph by a result in Ref. [1], e.g., Theorem 1 in this letter. In general, it is known
that more efficient sequential or parallel algorithms can be developed by restricting classes of graphs.
For instance, Chang et al. presented an O(n + m) time algorithm for finding all hinge vertices of a
strongly chordal graph[l]. Ho et al. presented a linear time algorithm for finding all hinge vertices
of a permutation graph(3]. Recently, we presented a parallel algorithm which runs in O(logn) time
with O(n) processors, for finding all hinge vertices of an interval graph[6]. In this paper, we shall
propose a parallel algorithm which runs in O(logn) time with O(n) processors on CREW PRAM
(Concurrent-Read Exclusive-Write Parallel Random Access Machine) for finding all hinge vertices of

a trapezoid graph[d).

38

2 Definition

We first illustrate the trapezoid diagram before defining the trapezoid graph. There are two
horizontal lines, called the top channel and the bottom channel, respectively. Each channel is labeled
with consecutive integer values 1, 2, ..., 2n (where n is the number of trapezoids). A trapezoid T; is
defined by four corner points [a;, b;, ¢;, d;] where a;, b; (a; < b;) lie on the top channel and ¢;, d; (¢; < d;)
lie on the bottom channel, respectively. Without loss of generality, we assume that each trapezoid has
four corner points and all corner points are distinct[9). The geometric representation described above
is called a trapezoid diagram D[9]. We assume that trapezoids are labeled in increasing order of their

corner points b;’s, i.e., T; < Tj if b; < b;.

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
a2 al bl b2 a3l ad b3 be a5 b5 a6 b6 a7 b7 al0 a8 a9 bs b9 blo
—

el e a3 a1 c? a7 c4 ¢S c2 42 dé ci0 dS c8 c6 das 46 d10 oY a9 1 6 8 9
(a) Trapezoid dlagram D (b) Trapezold graph G corresponding to
Trapezoid diagram D

1: Trapezoid diagram D and graph G

An undirected graph G = (V, E) is called a trapezoid graph if there exists a trapezoid diagram D
satisfying

V={ i | vertex i corresponds to trapezoid T; },

E={ (4,7) | trapezoids T; and Tj intersect in trapezoid diagram D }[9].

Fig. 1 illustrates a trapezoid diagram D and a trapezoid graph G corresponding to D. All hinge
vertices of this trapezoid graph are vertices 2, 5, 6, 7 and 10.

The class of trapezoid graphs includes two well-known classes, the class of interval graphs[4], and
that of permutation graphs[4]. The former is obtained by setting a; = c; and b; = d; for alli, and the
latter is obtained by setting a; = b; and ¢; = d; for all 4, respectively. When w has a larger vertex
(resp., trapezoid) number than that of vertex (resp., trapezoid) v, then we say that w is larger than
v when no confusion may arise.

In the following, terminologies used in this paper are introduced.

Let v be a vertex in a trapezoid graph G. Let N(v) be {w | v,w € V, (v, w) € E}.

TR(v) (resp., BR(v)) is the largest vertex w € V satisfying by, > by (resp., dy > dy), where T,
intersects with T},. Similary, STR(v) (resp., SBR(v)) is the second-largest vertex w under the same
condition as TR(v) (resp., BR(v)). TL(v) (resp., BL(v)) is the smallest vertex w € V satisfying

39

aw < ay (resp., ¢y < ¢y), where Ty, intersects with T,. Similary, STL(v) (resp., SBL(v)) is the
second-smallest vertex w under the same condition as T'L(v) (resp., BL(v)). When such a vertex
does not exist for some definition, let e.g., TR(v) = v, STR(v) = v,..., SBL(v) = v. We define
detect vertez sets as Drr(v) = {i | bsrrp) < t < braw)}, Dri(v) = {i | arpp) < i < asrrw)}
and Dpr(v) = {i | dsBr(v) < ¢ < dBR(v)}, respectively. In addition, we define represent vertex
sets P(TR), P(TL), P(BR) as follows. First,I let 1 < z3 < ... < zy be different values among
TR(v)'s, v € V and we divide V into vertex sets V1, V3, ..., Vi, where V; = {v | TR(v) = z;}. Next,
we find v; for each V; such that |Drp;)| > |Drre)l, Yv € V. Here, we do not select v; such that
DrR(y;) = 0. We define P(T'R) as a set consisting of all vertices vj, j = 1,2,..,m. P(TL), P(BR) is
defined similarly. Represent vertex sets of G in Fig. 1(b) are P(T'R) = {1,2,5}, P(TL) = {7, 8,10},
P(BR) = {1,4,5,7,8}.

3 Properties of the hinge vertices in a trapezoid graph

Theorem 1 due to Chang et al. [1] characterizes the hinge vertices of a simple graph. We apply
this theorem for finding efficiently the hinge vertices of a trapezoid graph.

Theorem 1 For a graph G = (V, E), a vertez w € V is a hinge vertez of G if and only if there
exist two nonadjacent vertices x,y € N(u) such that u is the only vertex adjacent with both x and y

inG. 0O

When the condition in this theorem is satisfied, we say that u is the hinge vertex of z and y. In the

following, we shall describe lemmas characterizing the hinge vertices on a trapezoid graph.

Lemma 1 Let u be a hinge vertez of a trapezoid graph G. Assume that z,y(z < y) € N(u) are two
vertices satisfying dg—y(z,y) > dg(z,y). Then, the following three conditions hold.

(1) If ay < by, then bgrr@) < ay < brr), i-e., ay € Drr(T). ‘

(2) If b, < ay and ay < bz, then arpy) < by < agrr(y), i-e, bz € Drr(y).

(8) If by < ay and by < ay, then dgpg(z) < ¢y < dBR(), -, ¢y € DBr().

Lemma 2 A vertex u is a hinge vertex of G if and only if there eﬁst two vertices z,y satisfying the
following condition. |

(Case 1) w=TR(z), ay € Drgr(z): If BR(x) = TR(z), then dspr(z) < cy. Otherwise, dgp(x) < cy-
(Case 2) u=TL(y), bs € Dre(y): If BL(y) = TL(y), then dg < csprey). Otherwise, dz < cary)-
(Case 8) uw = BR(z), ¢y € Dpg(x): If BR(z) = TR(x), then bgrp(s) < ay. Otherwise, brp(y) < ay.

Lemma 3 Let G = (V, E) be a trapezoid graph. For vertices v,w € V, the following coﬁdition
holds. '

(Case 1) v € P(TR), w € V: If TR(w) = TR(v), then Drgr(w) € Drgr(v).

(Case 2) ve P(TL), we V: If TL(w) = TL(v), then Drr(w) € Drr(v).

(Case 8) v € P(BR), w € V: If BR(w) = BR(v), then Dgr(w) € Dpr(v).

40

Lemma 4 Let G = (V, E) be a trapezoid graph with n vertices.
(1) Xveprr) | DTr(v) | 2n.
(2) Xvep(rr) | Dri(v) |< 2n.
(3) Xvep(sr) | DBR(V) I< 2n.

Lemma 4-(1) implies that we need to search ay, ay € Drg(z) for deciding whether a given vertex
u = TR(z) is a hinge vetex or not. However, it suffices to consider only x € P(T'R), and the number

of times for searching is at most 2n.

Algorithm PHV

Input: The arrays of corner points a[l..n], b[1..n], ¢[1..n], d[1..n] of trapezoids in the trapezoid
diagram corresponding to the given trapezoid graph.

Output: The set of hinge vertices.
Step 1 (Construction of TR[1 : n},...,.SBR][1 : n])
(1) Make array TR(1 : n]

for all ¢, 1 < i < n, in parallel do MTR[i] := min{al[i], ali + 1}, ..., a[n]}
(2) Make array TR;[1..n]

for all ¢, 1 < i < n, in parallel do TRy[i] :=1

for alli,1 <i<n-1, in parallel do

if b[i{] > MTR[n] then TR,[i] :=n
else TR, [i] := j — 1 for the smallest j(> 1) such that b[i] < MTR][j]

(3) Re-computation of array MTR[1..n]

for all i, 1 < i < n, in parallel do MTR[i] := min{c[i], c[i + 1), ..., c[n]}
(4) Make array TRy[1..n]

for all i, 1 < i < n, in parallel do TRy[i] := i

foralli, 1 <i<n-1, in parallel do

if d[i] > MTR|[n] then TRy[i] :=n
else TRy|i] := j — 1 for the smallest j(> 1) such that d[i] < MTR][j]

(5) Make array T R[1..n]

for all i, 1 < i < n, in parallel do TR[i] := maz{T R[i], TRy[i]}

Similarly, compute T'L[1..n}, BR[1..n}, BL[1..n], STR|1 : n], STL[1..n}, SBR[1..n] and SBL[1..n].
Step 2 (Construction of represent vertex sets P(T'R), P(TL), P(BR))

P(TR) consists of elements index 1 such that T'R[i] has different values. Here, if there exists some
T R|i]’s which have the same value, select i such that ST R[i]’s value is the minimum.

This Step is realized by applying sorting in lexicographic order for TR[1..n}, STR|[1..n].

Similarly, compute P(TL), P(BR).
Step 3 (Construction of detect vertex set Drg[l : n), Dri[l : n], Dpg[l : n])

41

for all i, i € P(TR), in parallel do Drgli] = {k | b}[STRI[i]] < k < b[T R[i]], k € N}
Similarly, compute Drr[1 : n}, Dprll : n].
Step 4 (Finding of hinge vertices)
for all i, i € P(T'R), in parallel do
for vertices y, a, € DrRglil,
if (BR[i] = TR[i] and dgppryj;) < cy) or (BR[i] # TRli] and dgpy;) < ¢y)
then TR[i] is a hinge vertex.
for all i, i € P(TL), in parallel do
for vertices z, b, € Drr]i],
if (BL[i] = T'L[i] and d; < cgpg[i) or (BL[i] # TL[i] and d; < cp[3))
then T'L[i] is a hinge vertex.

for all i, i € P(BR), in parallel do

for vertices y, ¢, € DpRgli],
if (BR[i] = TR[i] and bgrgp;) < ay) or (BRJi] # TR[i] and brgy) < ay)
then T R[] is a hinge vertex.

End of Algorithm PHV

We shall describe details of algorithm PHV and analyze the complexity. Algorithm PHV finds all
hinge vertices of an interval graph based on the necessary and sufficient condition for a hinge vertex
described in Lemma 3.

In Step 1, we obtain the largest trapezoid T R[i] which intersects trapezoid T; in parallel for i,
1 <i <n. MTR[: n] is calculated in O(logn) time using O(n/logn) processors by applying
parallel prefix computation[5][7]. TR;[l..n] and T'Ry[1..n] are calculated in O(logn) time using O(n)
processors by applying binary sort in parallel, respectively.

In Step 2, we obtain represent vertex sets. The sorting in lexicographic order is realized by
executing the parallel sorting twice. The parallel sorting can be implemented in O(logn) time using
O(n) processors.

In Step 3, we obtain detect vertex sets. It can be implemented in O(log n) time with O(n/logn)
processors by applying Brent’s scheduling principle [5][7].

In Step 4, we decide whether T'R][i] is a hinge vertex or not by checking whether there exist some
common elements in detect vertex set Drg[i] and array a[l : n] for ¢ selected by Step 4. Binary search
can be applied in parallel by sorting a[l : n] in advance. A parallel sorting computation takes O(logn)
time with O(n) processors [8].

EREW PRAM is sufficient for achieving the complexity in Steps 1-(1) and 3. However, CRCW
PRAM is required for parallel binary search executed in Steps 1-(2) and 4, respectively. Therefore
Algorithm PHYV is implemented on CREW (Concurrent Read Exclusive Write) model. Hence we have

the following theorem.

42

Theorem 2 Given a trapezoid graph G, Algorithm PHYV finds the set of all hinge vertices of G in
O(logn) time using O(n) processors on CREW PRAM. D

4 Concluding remarks

In this paper, we proposed a parallel algorithm which runs in O(logn) time with O(n) processors
on CREW PRAM for finding all hinge vertices of a trapezoid graph. Extending the results to other

graphs is left for future research.

SEXM

[1] J.M. Chang, C.C. Hsu, Y.L. Wang and T.Y. Ho, Finding the Set of All Hinge Vertices for Strongly
Chordal Graphs in Linear Time, Information Sciences 99 (1997) 173-182.

[2] A.M. Farley and A. Proskurowski, Self-repairing networks, Parallel Processing Lett. 3 (1993)
381-391.

[3] T-Y. Ho, Y.-L. Wang and M.-T. Juan, A linear time algorithm for finding all hinge vertices of a
permutation graph, Inf. Process. Lett. 59 (1996) 103-107.

[4] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York
(1988).

[5] A. Gibbons and W. Rytter, Efficient parallel algorithms, Cambridge University Press (1988).

[6] H. Honma and S. Masuyama, A parallel algorithm for finding all hinge vertices of an Interval
graph, to appear in IEICE Trans. Information and Systems.

[7] J. J&J4, An Introduction to parallel algorithms, Addison-Wesley Publishing Company (1992).
[8] R. Cole, Parallel merge sort, SIAM J. Computing 17 (1988) 770-785.

[9] Y. D. Liang, Dominations in trapezoid graphs, Inf. Process. Lett. 52 (1994) 309-315

