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1Introduction

Given asimple undirected graph $G=(V, E)$ with vertex set $V$ and edge set $E$ , let $G-u$ be a

subgraph induced by the vertex set $V-u$ . We define the distance $d_{G}(x, y)$ as the length of the shortest

path between vertices $x$ and $y$ in $G$ . Chang et al.[l] defined that $u\in V$ is ahinge vertex if there exist

two vertices $x$ , $y\in V-\{u\}$ such that $d_{G-u}(x, y)>d_{G}(x, y)$ . Agraph without hinge vertices is called

aself-repair $.ng$ graph[2]. Farley et at. presented aconstructive characterization related to the class of

self-repairing graph. An articulation vertex is aspecial case of ahinge vertex in the sense that removal

of an articulation vertex $u$ changes the finite distance of some nonadjacent vertices $x$ , $y$ to infinity. For

the design and analysis of distributed networks, the computation of topological properties is avery

important research topic. The overall communication cost in anetwork is increased if acomputer

corresponding to ahinge vertex stalls. Therefore, finding the set of hinge vertices in agraph can be

used to identify critical nodes in an actual network. Anumber of studies concerning hinge vertices

have been made in recent years. There exists atrivial $O(n^{3})$ sequential algorithm for finding all hinge

vertices of asimple graph by aresult in Ref. [1], e.g., Theorem 1in this letter. In general, it is known

that more efficient sequential or parallel algorithms can be developed by restricting classes of graphs.

For instance, Chang et al. presented an $O(n+m)$ time algorithm for finding all hinge vertices of a
strongly chordal graph[l]. Ho et at. presented alinear time algorithm for finding all hinge vertices

of apermutation graph[3]. Recently, we presented aparallel algorithm which runs in $O(\log n)$ time

with $O(n)$ processors, for finding all hinge vertices of an interval graph[6]. In this paper, we shall

propose aparallel algorithm which runs in $O(\log n)$ time with $O(n)$ processors on CREW PRAM

(Concurrent-Read Exclusive-Write Parallel Random Access Machine) for finding all hinge vertices of

atrapezoid graph [3].
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2Definition

We first illustrate the trapezoid diagram before defining the trapezoid graph. There are two

horizontal lines, called the top channel and the bottom channel, respectively. Each channel is labeled

with consecutive integer values 1, 2, ..., $2n$ (where $n$ is the number of trapezoids). Atrapezoid $T_{i}$ is

defined by four corner points $[a_{i}, b_{i}, \mathrm{q}., d_{i}]$ where Oi, $b_{i}(a_{i}<b_{i})$ lie on the top channel and Ci, $d_{i}(c_{i}<d_{i})$

lie on the bottom channel, respectively. Without loss of generality, we assume that each trapezoid has

four corner points and all corner points are distinct[9]. The geometric representation described above

is called atrapezoid diagram $D[9]$ . We assume that trapezoids are labeled in increasing order of their

corner points $b_{:}$ ’s, i.e., $T_{\dot{\iota}}<Tj$ if $b_{i}<b_{j}$ .

{ $\mathrm{a})$ T’apezdd $\mathrm{d}\mathrm{b}\mathfrak{g}r\mathrm{a}\mathrm{m}$
$\mathrm{D}$ (b) $\mathrm{T}’\eta\cdot \mathrm{z}\mathrm{M}\mathfrak{g}\prime \mathrm{r}\mathrm{h}$ correspon ng to

Trapezoid daqmm $\mathrm{D}$

$\overline{\mathrm{B}}1$ :Trapezoid diagram $D$ and graph $G$

An undirected graph $G=(V, E)$ is called atrapezoid graph if there exists atrapezoid diagram $D$

satisfying

$V=$ { $i|$ vertex $i$ corresponds to trapezoid $T_{\dot{l}}$ },
$E=$ { $(i,j)|$ trapezoids $T_{\dot{l}}$ and $Tj$ intersect in trapezoid diagram $D$ }[9].

Fig. 1illustrates atrapezoid diagram $D$ and atrapezoid graph $G$ corresponding to $D$ . All hinge

vertices of this trapezoid graph are vertices 2,.5, 6, 7 and 10.

The class of trapezoid graphs includes two well-known classes, the class of interval graphs[4], and

that of permutation graphs[4]. The former is obtained by setting $a_{i}=c_{i}$ and $b_{:}=d_{\dot{l}}$ for alli, and the

latter is obtained by setting $a_{i}=b_{:}$ and $c_{t}=d$:for all $i$ , respectively. When $w$ has alarger vertex

(resp., trapezoid) number than that of vertex (resp., trapezoid) $v$ , then we say that $w$ is larger than

$v$ when no confusion may arise.

In the following, terminologies used in this paper are introduced.

Let $v$ be avertex in atrapezoid graph $G$ . Let $N(v)$ be $\{w|v, w\in V, (v, w)\in E\}$ .

$TR(v)$ (resp., ER(v)) is the largest vertex $w\in V$ satisfying $b_{w}>b_{v}$ (resp., $d_{w}>d_{v}$ ), where $T_{w}$

intersects with $T_{v}$ . Similary, $STR(v)$ (resp., $SBR(v)$ ) is the second-largest vertex $w$ under the same

condition as $TR(v)$ (resp., $BR(v)$ ). $TL(v)$ (resp., $BL(v)$ ) is the smallest vertex $w\in V$ satisfying
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$a_{w}<a_{v}$ (resp., $c_{w}<c_{v}$ ), where $T_{w}$ intersects with $T_{v}$ . Similary, $STL(v)$ (resp., $SBL(v)$ ) is the

second-smallest vertex $w$ under the same condition as $TL(v)$ (resp., $BL(v)$ ). When such avertex

does not exist for some definition, let e.g., $TR(v)=v$, $STR(v)=v,\ldots$ , $SBL(v)=v$ . We define

detect vertex sets as $D_{TR}(v).=\{i|b_{STR(v)}<i<b_{TR(v)}\}$ , $D_{TL}(v)=\{i|a_{TL(v)}<i<aSTL(v)\}$

and $D_{BR}(v)=\{i|d_{SBR(v)}<i<d_{BR(v)}\}$ , respectively. In addition, we define represent vertex

sets $P(TR)$ , $P(TL)$ , $P(BR)$ as follows. First, let $x_{1}<x_{2}<\ldots<x_{m}$ be different values among

$\mathrm{T}\mathrm{R}(\mathrm{v})$ , $v\in V$ and we divide $V$ into vertex sets $V_{1}$ , $V_{2}$ , $\ldots$ , $V_{m}$ , where $V_{j}=\{v|TR(v)=x_{j}\}$ . Next,

we find $v_{j}$ for each $V_{j}$ such that $|D_{TR(v_{j})}|\geq|D_{TR(v)}|$ , $\forall v\in Vj$ . Here, we do not select $vj$ such that

$D_{TR(v_{j})}=\emptyset$ . We define $P(TR)$ as aset consisting of all vertices Vj, $j=1,2$ , $\ldots$ , $m$ . $P(TL)$ , $P(BR)$ is

defined similarly. Represent vertex sets of $G$ in Fig. $1(\mathrm{b})$ are $P(TR)=\{1,2,5\}$ , $P(TL)=\{7,8,10\}$ ,

$P(BR)=\{1,4,5,7,8\}$ .

3Properties of the hinge vertices in atrapezoid graph

Theorem 1due to Chang et al. [1] characterizes the hinge vertices of asimple graph. We apply

this theorem for finding efficiently the hinge vertices of atrapezoid graph.

Theorem 1For a graph $G=(V, E)$ , a vertex $u\in V$ is a hinge vertex of $G$ if and only if there

exist two nonadjacent vertices $x$ , $y\in N(u)$ such that $u$ is the only vertex adjacent with both $x$ and $y$

in G. $\square$

When the condition in this theorem is satisfied, we say that $u$ is the hinge vertex of $x$ and $y$ . In the

following, we shall describe lemmas characterizing the hinge vertices on atrapezoid graph.

Lemma 1Let $u$ be a hinge vertex of a trapezoid graph G. Assume that $x$ , $y(x<y)\in N(u)$ are tnto

vertices satisfying $d_{G-u}(x, y)>d_{G}(x, y)$ . Then, the follow $ing$ three conditions hold.

(1) If $a_{y}<b_{u}$ , then $bSTR(v)<a_{y}<bTR\{x)$ , $i.e.$ , $a_{y}\in D_{TR}(x)$ .

(2) If $b_{u}<a_{y}$ and $a_{u}<b_{x}$ , then $aTL(v)<b_{x}<$ $STL(v)$ , $i.e.$ , $b_{x}\in D_{TL}(y)$ .

(3) If $b_{x}<a_{u}$ and $b_{u}<a_{y}$ , then $d_{SBR(x)}<c_{y}<d_{BR(x)}$ , $i.e.$ , $c_{y}\in D_{BR}(x)$ .

Lemma 2A vertex $u$ is a hinge vertex of $G$ if and only if there exist two vertices $x,y$ satisfying the

following condition.

(Case 1) $u=TR(x)$ , $a_{y}\in D_{TR}(x)$ :If $BR(x)=TR(x)$ , then $dSBR(x)<c_{y}$ . Other wise, $dBR(x)<c_{y}$ .

(Case 2) $u=TL(y)$ , $b_{x}\in STL(v)$ :If $BL(y)=TL(v)$ , then $d_{x}<c_{SBL(y)}$ . Othe rwise, $d_{x}<SBL(v)$ .

(Case 3) $u=BR(x)$ , $c_{y}\in$ $BR(x)$ :If $BR(x)=TR(x)$ , then $b_{STR(x)}<a_{y}$ . Othemise, $b_{TR(x)}<a_{y}$ .

Lemma 3Let $G=(V, E)$ be a trapezoid graph. For vertices $v$ , $w\in V$ , the following condition

holds.

(Case 1) $v\in P(TR),$ $w\in V$ :If $TR(v)=TR(v)$ , then $D\tau R(w)\subseteq D_{TR}(v)$ .
(Case 2) $v\in P(TL)$ , $w\in V$:If $TL(v)=TL(v)$ , then $D_{TL}(w)\subseteq D\tau L(v)$ .

(Case 3) $v\in P(BR)$ , $w\in V$:If $BR\{w$ ) $=BR(v)$ , then $D_{BR}(w)\subseteq D_{BR}(v)$ .
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Lemma 4Let $G=(V, E)$ be a trapezoid graph with $n$ vertices.

(1) $\sum_{v\in P(TR)}|D_{TR}(v)|\leq 2n$ .
(l) $\sum_{v\in P(TL)}|D_{TL}(v)|\leq 2n$ .
(S) $\sum_{v\in P(BR)}|D_{BR}(v)|\leq 2n$ .

Lemma 4-(1) implies that we need to search $a_{y}$ , $a_{y}\in D_{TR}(x)$ for deciding whether agiven vertex

$u=TR(x)$ is ahinge vetex or not. However, it suffices to consider only $x\in P(TR)$ , and the number

of times for searching is at most $2n$ .

Algorithm PHV

Input: The arrays of corner points $a[1..n]$ , $b[1..n]$ , $c[1..n]$ , $d[1..n]$ of trapezoids in the trapezoid

diagram corresponding to the given trapezoid graph.

Output: The set of hinge vertices.

Step 1(Construction of $TR[1$ : $n],\ldots,SBR[1$ : $n]$ )

(1) Make array $TR[1 : n]$

for all $i$ , $1\leq i\leq n$ , in parallel do $MTR[i]:= \min\{a[i], a[i+1], \ldots, a[n]\}$

(2) Make array $TR_{1}$ [1..n]

for all :, $1\leq i\leq n$ , in parallel do $TR_{1}[i]:=i$

for all $i$ , $1\leq i\leq n-1$ , in parallel do

if $b[i]>MTR[n]$ then $TR_{1}[i]:=n$

else $TR_{1}[i]:=j-1$ for the smallest $j(>i)$ such that $b[i]<MTR[j]$

(3) $\mathrm{R}\triangleright$-computation of array $MTR[1..n]$

for all $i$ , $1\leq i\leq n$ , in parallel do $MTR[i]$ $:= \min\{c[i], c[i+1], \ldots, \mathrm{c}[\mathrm{n}]\}$

(4) Make array $TR_{2}[1..n]$

for all $i$ , $1\leq i\leq n$ , in parallel do $TR_{2}[i]:=i$

for all $i$ , $1\leq i\leq n-1$ , in parallel do

if $d[i]>MTR[n]$ then $TR_{2}[i]:=n$

else $TR_{2}[i]:=j-1$ for the smallest $j(>i)$ such that $d[i]<MTR[i]$

(5) Make array $TR[1..n]$

for all $i$ , $1\leq i\leq n$ , in parallel do $TR[i]:= \max\{TR_{1}[i],$ $\mathrm{T}\mathrm{R}\mathrm{i}[\mathrm{i}]$

Similarly, compute $TL[1..n]$ , $BR[1..n]$ , $BL[1..n]$ , $STR[1 : n]$ , $STL[1..n]$ , $SBR[1..n]$ and $SBL$ [1..n].

Step 2(Construction of represent vertex sets $P(TR)$ , $P(TL)$ , $\mathrm{P}\{\mathrm{B}\mathrm{R}$) $)$

$P(TR)$ consists of elements index $i$ such that $TR[i]$ has different values. Here, if there exists some
$TR[i]’ \mathrm{s}$ which have the same value, select $i$ such that $STR[i]’ \mathrm{s}$ value is the minimum.

This Step is realized by applying sorting in lexicographic order for $TR[1..n]$ , $STR[1..n]$ .

Similarly, compute $P(TL)$ , $P(BR)$ .
Step 3(Construction of detect vertex set $D_{TR}[1$ : $n]$ , $D_{TL}[1$ : $n]$ , $D_{BR}[1$ : $n]$ )
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for all $i$ , $i\in P(TR)$ , in parallel do $D_{TR}[i]=\{k|b[STR[i]]<k<b[TR[i]], k\in \mathrm{N}\}$

Similarly, compute $D_{TL}[1 : n]$ , $D_{BR}[1 : n]$ .

Step 4(Finding of hinge vertices)

for all $i$ , $i\in P(TR)$ , in parallel do

for vertices $y$ , $a_{y}\in D_{TR}[i]$ ,

if ($TR[i]=TR[i]$ and $d_{SBR[\dot{|}]}<c_{y}$) or ($BR[i]\neq TR[i]$ and $d_{BR[\dot{|}]}<c_{y}$ )

then $TR[i]$ is ahinge vertex.

for all $i$ , $i\in P(TL)$ , in parallel do

for vertices $x$ , $b_{x}\in D\tau L[i]$ ,

if ($BL[i]=TL[i]$ and $d_{x}<c_{SBL[i]}$ ) or ($BL[i]\neq TL[i]$ and $d_{x}<c_{BL[\dot{l}]}$ )

then $TL[i]$ is ahinge vertex.

for all $i$ , $i\in \mathrm{P}(\mathrm{T}\mathrm{R})$ , in parallel do

for vertices $y$ , $c_{y}\in D_{BR}[i]$ ,

if ($TR[i]=TR[i]$ and $b_{STR[i]}<a_{y}$ ) or ($BR[i]\neq TR[i]$ and $b_{TR[i]}<a_{y}$ )

then $TR[i]$ is ahinge vertex.

End of Algorithm PHV

We shall describe details of algorithm PHV and analyze the complexity. Algorithm PHV finds all

hinge vertices of an interval graph based on the necessary and sufficient condition for ahinge vertex

described in Lemma 3.

In Step 1we obtain the largest trapezoid $TR[i]$ which intersects trapezoid $T_{i}$ in parallel for $i$ ,

$1\leq i\leq n$ . $MTR[1 : n]$ is calculated in $O(\log n)$ time using $O(n/\log n)$ processors by applying

parallel prefix computation[5][7]. $TR_{1}$ [1..n] and $TR_{2}$ [1..n] are calculated in $O(\log n)$ time using $O(n)$

processors by applying binary sort in parallel, respectively.

In Step 2, we obtain represent vertex sets. The sorting in lexicographic order is realized by

executing the parallel sorting twice. The parallel sorting can be implemented in $O(\log n)$ time using

$O(n)$ processors.

In Step 3, we obtain detect vertex sets. It can be implemented in $O(\log n)$ time with $O(n/\log n)$

processors by applying Brent’s scheduling principle $[5][7]$ .

In Step 4, we decide whether $TR[i]$ is ahinge vertex or not by checking whether there exist some

common elements in detect vertex set $D_{TR}[i]$ and array $a[1 : n]$ for $i$ selected by Step 4. Binary search

can be applied in parallel by sorting $a[1 : n]$ in advance. Aparallel sorting computation takes $O(\log n)$

time with $O(n)$ processors [8].

EREW PRAM is sufficient for achieving the complexity in Steps 1-(1) and 3. However, CRCW

PRAM is required for parallel binary search executed in Steps 1-(2) and 4, respectively. Therefore

Algorithm PHV is implemented on (Concurrent Read Exclusive Write) model. Hence we have

the following theorem
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Theorem 2 Given a trapezoid graph G, Algorithm PHV finds the set of all hinge vertices of G in

$O(\log n)$ time using $O(n)$ processors on CREW PRAM. $\square$

4Concluding remarks

In this paper, we proposed aparallel algorithm which runs in $O(\log n)$ time with $O(n)$ processors

on CREW PRAM for finding all hinge vertices of atrapezoid graph. Extending the results to other

graphs is left for future research.
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