
Digital Object Identifier (DOI) 10.1007/s10107-003-0481-8

Math. Program., Ser. A 100: 423–445 (2004)

Jens Lysgaard · Adam N. Letchford · Richard W. Eglese

A new branch-and-cut algorithm for the capacitated vehicle
routing problem

Received: March 18, 2003 / Accepted: September 24, 2003
Published online: November 21, 2003 – © Springer-Verlag 2003

Abstract. We present a new branch-and-cut algorithm for the capacitated vehicle routing problem (CVRP).
The algorithm uses a variety of cutting planes, including capacity, framed capacity, generalized capacity,
strengthened comb, multistar, partial multistar, extended hypotour inequalities, and classical Gomory mixed-
integer cuts.

For each of these classes of inequalities we describe our separation algorithms in detail. Also we describe
the other important ingredients of our branch-and-cut algorithm, such as the branching rules, the node selec-
tion strategy, and the cut pool management. Computational results, for a large number of instances, show
that the new algorithm is competitive. In particular, we solve three instances (B-n50-k8, B-n66-k9 and
B-n78-k10) of Augerat to optimality for the first time.

Key words. vehicle routing – branch-and-cut – separation

1. Introduction

The Capacitated Vehicle Routing Problem (CVRP), which can be traced back to [18],
is defined as follows. A complete undirected graph G = (V , E) is given, with V =
{0, . . . , n}. Vertex 0 represents a depot, the other vertices represent customers. The cost
of travel between vertices i and j is denoted by cij , and we assume that costs are sym-
metric, i.e., that cij = cji . A fleet of identical vehicles, each of capacity Q > 0, is
available. (A limit on the number of vehicles, or a fixed charge associated with hiring
a vehicle, may or may not be given.) Each customer i has an integer demand qi , with
0 < qi ≤ Q. Each customer must be served by a single vehicle and no vehicle can serve
a set of customers whose demand exceeds its capacity. The task is to find a set of vehicle
routes of minimum cost, where each vehicle used leaves from and returns to the depot.

The CVRP is strongly NP-hard, since it includes the Traveling Salesman Problem
as a special case. Nevertheless, small to medium-sized instances can be solved to proven
optimality. A variety of optimization approaches have been applied to the CVRP, see
[10, 27, 28, 42] for detailed surveys. Some of these are based on the use of graph theoret-
ical relaxations such as b-matchings [32] or K-trees [20]; others are based on dynamic
programming [26]; still others are based on set partitioning and column generation [2].

J. Lysgaard: Department of Management Science and Logistics, Aarhus School of Business, Denmark
e-mail: lys@asb.dk

A.N. Letchford: Department of Management Science, Lancaster University, Lancaster LA1 4YW, England
e-mail: A.N.Letchford@lancaster.ac.uk

R.W. Eglese: Department of Management Science, Lancaster University, Lancaster LA1 4YW, England
e-mail: R.Eglese@lancaster.ac.uk

424 J. Lysgaard et al.

However, at present, the most promising solution technique appears to be branch-and-
cut, in which valid linear inequalities are used as cutting planes to strengthen a linear
programming relaxation at each node of a branch-and-bound tree [5, 7, 12, 33, 37, 40].
These branch-and-cut algorithms are all based on the following so-called two-index
formulation of the CVRP.

Let xij represent the number of times a vehicle travels between vertices i and j .
(Because the problem is undirected, xij and xji represent the same variable.) Let Vc =
V \ {0} denote the set of customers. Given a set of customers S ⊆ Vc, let q(S) denote∑

i∈S qi , δ(S) denote the set of edges in G with exactly one end-vertex in S, E(S) denote
the set of edges in G with both end-vertices in S, and r(S) denote the minimum number
of vehicles required to serve the customers in S. That is, r(S) is the optimal solution to
the Bin Packing Problem (BPP) with bin capacity Q and item sizes given by the demands
of the customers in S. Finally, given an arbitrary F ⊆ E, x(F) will denote

∑
e∈F xe.

The integer programming formulation is then:

Minimize
∑

e∈E cexe

Subject to: x(δ({i})) = 2 (i = 1, . . . , n) (1)

x(δ(S)) ≥ 2r(S) (S ⊆ Vc, |S| ≥ 2) (2)

xij ∈ {0, 1} (1 ≤ i < j ≤ n) (3)

xij ∈ {0, 1, 2} (i = 0, j = 1, . . . , n). (4)

The degree equations (1) ensure that customers are visited exactly once. The capacity
inequalities (2) impose the vehicle capacity restrictions and also ensure that the routes
are connected. Calculating r(S) exactly is as hard as the BPP and is therefore strongly
NP-hard. However, the formulation remains valid if one replaces r(S) on the right-
hand side with the obvious lower bound k(S) = �q(S)/Q�, which yields the so-called
rounded capacity inequalities [33]. Finally, constraints (3) and (4) are the integrality
conditions. Note that the xij are permitted to take the value 2 when i = 0, to allow
routes in which a vehicle serves a single customer.

Some other variants of the CVRP can be easily incorporated into this framework.
If there is an upper bound K on the number of vehicles to be used, then the inequality
x(δ({0})) ≤ 2K can be added. This can be made into an equation if exactly K vehicles
must be used. Alternatively, if hiring a vehicle incurs a fixed cost C, then C/2 can be
added to the objective function coefficient of each edge incident on the depot. Finally,
if routes containing only one customer are forbidden, then all variables can be made
binary. Branch-and-cut algorithms can be used in all of these cases.

The valid inequalities used in branch-and-cut algorithms are drawn from studies of
the polytope associated with the above formulation, viz., the convex hull in R

|E| of
incidence vectors x satisfying (1) – (4) (see [34]). Valid inequalities for this polytope
(or closely related polyhedra) appear in [1, 7, 17, 22, 29, 30]. Also, in [3–5, 13], spe-
cial attention is given to the unit demand case, i.e., the special case where qi = 1 for
i = 1, . . . , n.

The purpose of the present paper is to describe a new branch-and-cut algorithm for
the CVRP. In Section 2 we present exact and heuristic algorithms for the separation of
various classes of inequalities. In Section 3, we describe some of the other components

A new branch-and-cut algorithm for the capacitated vehicle routing problem 425

Table 1. The CVRP instances.

Name Q loading UB
E-n22-k4 6000 .94 375*
E-n23-k3 4500 .75 569*
E-n30-k3 4500 .94 534*
E-n33-k4 8000 .92 835*
E-n51-k5 160 .97 521*
E-n76-k7 220 .89 682*
E-n76-k8 180 .95 735*
E-n76-k10 140 .97 830
E-n76-k14 100 .97 1021
E-n101-k8 200 .91 815*
E-n101-k14 112 .93 1071
M-n101-k10 200 .91 820*

F-n45-k4 2010 .90 724*
F-n72-k4 30000 .96 237*
F-n135-k7 2210 .95 1162*

of our branch-and-cut algorithm, including branching and node selection rules, and man-
agement of the cut pool. Computational results are given in Section 4 and concluding
comments are made in Section 5.

To avoid the risk of over-tuning of parameters in our branch-and-cut algorithm, we
used a small set of CVRP instances when coding and tuning the algorithm and a much
larger set when running the final algorithm. The smaller set of instances is shown in
Table 1. They are all Euclidean, with edge costs rounded to integers according to the
TSPLIB standard [41]. The name of the instance indicates the source of the instance,
the number of vertices, and the number of vehicles, which for all of these instances is
fixed at the minimum possible. For example, E-n22-k4 is taken from [15], and has 22
vertices and 4 vehicles. In Table 1 we also show the vehicle capacity Q, the ‘loading’
(which is the total demand divided by KQ) and the best known upper bound at the time
of writing, taken from [12, 33, 38, 40, 43]. (The upper bound of 1071 for E-n101-k14
was taken from www.tem.nctu.edu.tw/network and checked for feasibility.) The upper
bound is marked with a ‘*’ if it has been shown to be optimal.

2. Separation algorithms

The initial linear programming (LP) relaxation, consisting of the degree equations (1)
and the bounds on the variables implied by (3), (4), is easily solved. This generally gives
an extremely weak lower bound, which can then be strengthened by adding cutting
planes to the LP. To generate these cutting planes, separation algorithms are needed, see
[23, 34].An exact separation algorithm for a given class of inequalities is a routine which
takes as input an LP solution vector x∗ and outputs one or more violated inequalities in
that class (if any exist). A heuristic separation algorithm is similar, except that it may
fail to detect violated inequalities in the class.

In the following subsections we describe our exact and heuristic separation algo-
rithms for various classes of valid inequalities for the CVRP.

We will use the following notation throughout. For any LP solution vector x∗, we
denote the corresponding support graph by G∗ = (V , E∗), where E∗ = {e ∈ E :

426 J. Lysgaard et al.

x∗
e > 0}. Similarly, we let G∗

c = (Vc, E
∗
c) denote the graph obtained by removing the

depot from G∗. For two disjoint vertex sets S and T , we denote by E(S : T) the set of
edges with one end-vertex in S and the other in T . Finally, by checking an inequality we
mean that we generate it if it is violated.

2.1. Capacity inequalities

The separation of the capacity inequalities (2) is known to be strongly NP-hard, see
[7, 33]. Therefore we resort to heuristics. For the sake of computational tractability,
we replace r(S) by k(S) in (2), i.e., we separate rounded capacity inequalities (RCIs).
Altogether we use four heuristics for separating RCIs.

The first heuristic is a simple connected components heuristic that works as fol-
lows. First we compute the connected components S1, . . . , Sp of G∗

c . Then, for every
i = 1, . . . , p we check the RCI for Si as well as for Vc \ Si . Finally we check the RCI
for the union of those components which are not connected to the depot in G∗. We note
that this heuristic with certainty finds a violated RCI (if one exists) if x∗ is integer. Sim-
ilar heuristics based on finding connected components are used in other branch-and-cut
algorithms for the CVRP [7, 40].

If this heuristic fails, we proceed by using our last three heuristics, all of which take a
shrunk support graph as input. The idea of shrinking is well-known [36]. In our context
we iteratively choose a customer set S and shrink it to a single supervertex s having
demand q(S); an edge {s, j} in the shrunk graph is given the weight x∗(E(S : {j})).
Under certain conditions the shrinking is safe, which means that whenever there is a
violated capacity inequality in G∗, there exists a set of supervertices in the shrunk graph
whose union defines a capacity inequality with at least the same violation. It is well-
known that it is safe to shrink edges e satisfying x∗

e ≥ 1 ([7, 8, 40]). However, we have
generalized the condition for safe shrinking to cases where |S| > 2, as described in
proposition 1.

Proposition 1. For separation of capacity inequalities, it is safe to shrink a customer
set S if x∗(δ(S)) ≤ 2 and x∗(δ(R)) ≥ 2 ∀R ⊂ S.

Proof. Let T be a customer set which crosses S, i.e., such that T ∩S, T \S and S\T are all
non-empty. We show that the capacity inequality on S ∪T is violated by at least as much
as the capacity inequality on T . From the definition of the capacity inequalities this holds
if and only if x∗(δ(T))− x∗(δ(S ∪T))+ 2r(S ∪T)− 2r(T) ≥ 0. It is trivially true that
2r(S∪T)−2r(T) ≥ 0, so it suffices to show that x∗(δ(T))−x∗(δ(S∪T)) ≥ 0. It follows
from the submodularity of the cut function ([34], p. 660) that x∗(δ(T))−x∗(δ(S∪T)) ≥
x∗(δ(S ∩ T)) − x∗(δ(S)). Since x∗(δ(S ∩ T)) ≥ 2 and x∗(δ(S)) ≤ 2, we have that
x∗(δ(T)) − x∗(δ(S ∪ T)) ≥ 0. �
We note that the condition for safe shrinking in proposition 1 also applies to RCIs.

In our code we consider sets of the following types as candidates for shrinking (which
is done iteratively as long as possible):

• Sets of cardinality 2 or 3;
• Sets S with k(S) = 1 for which we have generated a capacity inequality;

A new branch-and-cut algorithm for the capacitated vehicle routing problem 427

• Sets S for which x(δ(S))=2 has been imposed during branching (see Subsection 3.2).

We let GS = (VS ,ES) denote the shrunk support graph obtained by this shrinking
procedure, and similarly we let GS c = (VS c,ES c) be the graph obtained by removing
the depot from GS . We will refer to each member of VS c as a supervertex, even if it
represents only one customer.

With our second heuristic, we separate the so-called fractional capacity inequali-
ties, which are obtained by replacing the right hand side of (2) with the lower bound
2q(S)/Q. As noted by several authors (see [33]), these weaker inequalities can be sepa-
rated in polynomial time by solving a max-flow problem in a suitably-defined weighted
graph. If a violated fractional capacity inequality is found, then the stronger RCI is of
course violated. We have modified the basic version of this separation routine so that
we are able to find not only one cut, but several different cuts identified by solving a
max-flow problem. The key idea is that, by changing the weights of certain arcs in the
above-mentioned max-flow problem to infinity, we can easily force any vertex to lie
either inside S or outside it. More precisely, let Tin and Tout be disjoint subsets of VS c.
Then by solving a max-flow problem we can find, among all sets S ⊂ VS c such that
Tin ⊆ S and Tout ∩ S = ∅, the one which minimizes the slack of the fractional capacity
inequality. By running the max-flow algorithm several times, each time with different
sets Tin and Tout , we can generate several different sets S.

The way that we choose Tin and Tout can be briefly outlined as follows. For s =
1, . . . , |VS c| we define a max-flow problem by letting Tin = {s} and by heuristically
determining Tout such that all previously generated cuts are effectively forbidden (we
call s the seed of the resulting cut). The procedure for determining Tout simply goes
back through the previously generated cuts, adding the seed of a cut to Tout if that cut
has not yet been prohibited. We have found that it is worthwhile to run more than one
round of |VS c| max-flow problems. Specifically, we run three rounds in total, where we
in subsequent rounds also prohibit cuts from earlier rounds.

Our third heuristic is a greedy construction heuristic, where we again consider each
supervertex of GSc as a seed. More formally, for s = 1, . . . , |VS c| we set S = {s} and
then iteratively expand S by one supervertex and check the RCI for the resulting set. The
supervertex j that we add to S is the one that minimizes the slack of the RCI for S ∪ {j}
subject to the restriction that we have not generated the set S ∪ {j} before. When we
cannot expand the current set without generating a previously generated set, we proceed
to the next seed.

Our fourth and last heuristic runs through all the RCIs that we have generated until
the latest LP reoptimization. For every such inequality, defined on customer set S, we
first replace S by the smallest set of supervertices in GS c which contains S. (In view of
proposition 1, this cannot lead to an increase in the slack of the RCI on S.) We then con-
sider the supervertices of this set in non-decreasing order of demand, and remove from
the set any supervertex whose removal decreases the slack of the RCI. From there we
iteratively add a supervertex to, or drop a supervertex from, or replace one supervertex
by another in the current set as long as the slack of the RCI decreases. Here we choose
that supervertex or pair of supervertices which decreases the slack of the RCI by the
largest amount. When this is no longer possible we check the RCI and proceed to the
next among the previously generated RCIs.

428 J. Lysgaard et al.

Table 2. Lower bounds using rounded capacity inequalities.

Name Aug. Our Time
E-n22-k4 375 375* 2
E-n23-k3 569 569* 2
E-n30-k3 508.5 508.5 2
E-n33-k4 833.5 833.5 4
E-n51-k5 514.524 514.524 4
E-n76-k7 661.299 661.358 7
E-n76-k8 711.17 711.201 10

E-n76-k10 789.416 789.441 19
E-n76-k14 — 947.983 27
E-n101-k8 796.314 796.414 12
E-n101-k14 — 1008.146 65
M-n101-k10 819.5 819.5 30

F-n45-k4 724 724 4
F-n72-k4 232.5 232.5 3

F-n135-k7 1158.25 1158.25 59

We invoke these four heuristics as follows. If the first heuristic generates one or more
inequalities, we do not invoke any of the last three heuristics. If the first heuristic fails,
we call the last three heuristics in the order mentioned. We restrict the second heuristic to
generate no more than min{n/2, 50} inequalities; moreover, we generate no more than
min{n, 100} inequalities in total.

Table 2 displays our results obtained by RCIs. The first column labelled ‘Aug.’
gives the best bound obtained using capacity separation heuristics only given in Augerat
et al. [7, 8]. (The figure is missing for two instances because they do not appear in those
papers.) Then we have ‘Our’, which is the bound obtained by our capacity separation
heuristics.

The last column shows our computing time in seconds. Throughout we will report
the computing time rounded to the nearest whole number of seconds. The hardware used
is a PC with a 700 MHz Intel Celeron processor and 256 MB of RAM running under
Microsoft Windows 98. We used the ILOG CPLEX 6.0 callable library and the Watcom
C/C++ compiler v. 11.0.

Our bounds are equal to or slightly better than those obtained in [7, 8]. Moreover, by
comparing with the bounds obtained by exact enumeration in [11] it can be concluded
that our bounds equal or are very close to the best possible bounds that can be obtained
by RCIs.

As shown in Table 2, two of the instances, namely E-n22-k4 and E-n23-k3 can
be solved using only RCIs.

2.2. Framed capacity inequalities

In [6], the following inequalities were presented, which have come to be known as framed
capacity inequalities [33]. For some S ⊆ Vc, let � = {S1, . . . , Sp} be a partition of S.
Now let r(S, �) equal the minimum number of vehicles needed to service S given that
the capacity inequality for each Si holds with equality. A good lower bound on r(S, �)

can be found by solving a BPP. Then the framed capacity inequality (FCI) is:

A new branch-and-cut algorithm for the capacitated vehicle routing problem 429

Table 3. Lower bounds using framed capacity inequalities.

Name Aug. Our Time
E-n30-k3 532.5 532.5 7
F-n72-k4 235 236.25 16

x(δ(S)) +
p∑

i=1

x(δ(Si)) ≥ 2r(S, �) + 2
p∑

i=1

r(Si). (5)

Intuitively, this inequality works as follows: if all of the capacity inequalities for the
sets Si are tight, then the summation on the left hand side equals the summation on the
right hand side, and therefore x(δ(S)) must be at least 2r(S, �), as required. Note that,
if any Si is a singleton, then the i’th terms in the summations can be omitted due to the
degree equations. In the special case where S = Vc, the inequality is referred to as a gen-
eralized capacity inequality in [7], which is slightly different from the weak generalized
capacity inequality defined in [33], where it is assumed that q(Si) ≤ Q holds for every
i = 1, . . . , p. Strictly speaking, the same condition applies to the FCI as defined in [33].
However, in our implementation we allow that the demand of a supervertex exceeds Q,
as we have found computationally that this is important for the strength of the FCIs. For
the sake of computational tractability, we replace r(Si) by k(Si) for i = 1, . . . , p in our
implementation.

It is easy to show that, if any FCI is violated, then there exists a most violated
FCI such that S equals or is a subset of one of the connected components in G∗

c . Thus
each component can be treated separately. For the sake of computational tractability, we
consider only whole components as candidates for S in (5).

We have implemented a depth-first tree search procedure for separating FCIs. From
node p with partition �p in the search tree we generate s descendant nodes, one for
each of the s edges in the shrunk graph at node p. The descendant nodes represent
partitions �

p
1 , . . . , �

p
s , where the k’th partition is obtained by shrinking the edge of

k’th largest weight in �p and by prohibiting shrinking of any of the k − 1 edges with
larger weights (ties are broken arbitrarily) in the subtree rooted at descendant node k.
We also perform induced shrinking of any newly formed edges with weights of one or
more.

For each partition we solve the corresponding BPP using the procedures in [31] and
check the FCI. Backtracking is performed if the FCI is violated, or has slack at least 2,
or if a prohibited shrinking is induced. We place a limit on the number of nodes that we
consider in the search tree (see Section 3).

The separation heuristics for FCIs in [7, 33] can be viewed as restricted versions of
our procedure. In fact, they correspond to examining only one path in our search tree.

With this separation procedure, together with the separation of RCIs, we obtain
the results displayed in Table 3. We find that the FCIs give an improvement over the
bounds obtained by RCIs on only two instances, which was also the conclusion reached
in [7]. However, for these two instances the improvement is substantial. Indeed, the
bound obtained for F-n72-k4 is sufficient to prove that the optimal solution is indeed
optimal.

430 J. Lysgaard et al.

2.3. Strengthened comb inequalities

The comb inequalities [24, 25] are a class of inequalities for the TSP which have proven
to be highly useful as cutting planes. Several authors have attempted to adapt them to
the CVRP [3, 7, 12, 29]. Here we follow the approach of [3].

We define a comb to be a vertex set H ⊂ Vc, called the handle, and t ≥ 2 other
vertex sets T1, . . . , Tt , called teeth, such that:

• H ∩ Tj �= ∅ and Tj \ H �= ∅ for j = 1, . . . , t ;
• for each pair {i, j} ⊂ {1, . . . , t}: Ti ∩ Tj ⊂ H or Ti ∩ Tj ∩ H = ∅.

This is more general than in the case of the TSP, because we allow teeth to intersect and
we do not require that the number of teeth be odd.

Now, for any set S ⊂ V , let r̃(S) equal r(S) if 0 /∈ S, and r(V \ S) otherwise. We
define the quantity:

S(H, T1, . . . , Tt) :=
t∑

j=1

(
r̃(Tj ∩ H) + r̃(Tj \ H) + r̃(Tj)

)
.

If S(H, T1, . . . , Tt) is odd, then the following strengthened comb inequality is valid for
the CVRP:

x(δ(H)) +
t∑

j=1

x(δ(Tj)) ≥ S(H, T1, . . . , Tt) + 1. (6)

(In fact, in [3] validity of this inequality is shown only for the special case in which teeth
do not intersect, but the proof of validity carries over easily to this more general case.)

The strengthened comb inequalities (6) can be shown to generalize and dominate the
comb inequalities given in [3, 7, 12, 29], with the exception of some special inequali-
ties mentioned in [3, 12], concerned with so-called large teeth. They reduce to ordinary
comb inequalities [24, 25] when S(H, T1, . . . , Tt) = 3t (the smallest possible value)
and teeth are not permitted to intersect. If, in addition, |Tj | = 2 for all j , we obtain the
2-matching inequalities of Edmonds [19].

Our separation heuristic for the strengthened comb inequalities is as follows. For
the sake of computational tractability, we replace r(S) by k(S) for any set S in our
implementation.

• First, we iteratively shrink sets S ⊂ Vc such that
– |S| ∈ {2, 3},
– x∗(δ(S)) = 2,

and such that at least one of the following conditions holds:
– x∗(E(S : {i})) = 1 for some i ∈ Vc \ S,
– x∗(E(S : {0})) = 1 and 2k(Vc \ S) = 2k(Vc) = x∗(δ({0})).

Using similar arguments to those in [36], it can be shown that a violated strengthened
comb inequality exists in the shrunk graph if and only if one existed in the original
graph.

A new branch-and-cut algorithm for the capacitated vehicle routing problem 431

Table 4. Lower bounds using comb inequalities.

Name Aug. Our Time
E-n51-k5 517.111 517.176 10
E-n76-k7 662.661 663.329 20
E-n76-k8 712.415 713.342 21
E-n76-k10 790.792 791.224 34
E-n76-k14 — 948.018 30
E-n101-k8 798.358 799.088 38
E-n101-k14 — 1010.043 88
F-n135-k7 1158.48 1158.825 124

• We identify a number of candidate handles using ideas similar to those in [36]. For
a given 0 < ε ≤ 1

2 we delete all edges from the shrunk graph apart from those with
ε ≤ x∗

e ≤ 1 − ε. Each connected component in the resulting graph, and each bicon-
nected component (block), is a candidate handle. In fact, we implicitly consider all
values of ε by introducing edges e into the shrunk graph in non-decreasing order of
|x∗

e − 1
2 | and checking at each stage if a new component or block has been created.

• For each candidate handle, we find (in the shrunk graph) the 2-matching inequality
with minimum slack. The teeth of the 2-matching inequality may intersect, but only
in the depot. This yields an ordinary comb inequality in the original graph.

• For each comb inequality found (violated or not), we try to modify the teeth in order
to find a violated strengthened comb inequality. This is a simple heuristic which
enlarges one tooth at a time by iteratively adding a vertex in a greedy way.

• If no violated inequality has yet been found, we run the polynomial-time exact sep-
aration algorithm for 2-matching inequalities, due to Padberg & Rao [35], on the
shrunk graph. This is not too time-consuming, as the shrunk graph is quite small.
This may produce candidate handles which have not yet been considered. For each
such handle, we apply the above-mentioned procedure in an attempt to find a violated
strengthened comb inequality.

With this separation procedure, together with the separation of RCIs, we obtain the
results displayed in Table 4. We find that the strengthened comb inequalities give an
improvement over the bounds obtained by RCIs on eight instances. Moreover it is clear
that our separation heuristic outperforms that of [7].

2.4. Multistar and partial multistar inequalities

Multistar inequalities were originally defined by Araque, Hall & Magnanti [4] for the
VRP with unit demands. These inequalities take the form

αx(E(N)) + βx(E(N : S)) ≤ γ, (7)

where N ⊂ Vc is the so-called nucleus, S ⊆ Vc \ N is the set of so-called satellites, and
α, β and γ are constants which depend on |N | and |S|. The same authors also introduced
the partial multistar inequalities, which take the form:

αx(E(N)) + βx(E(C : S)) ≤ γ, (8)

432 J. Lysgaard et al.

Table 5. Lower bounds using multistar inequalities.

Name LB Time
E-n33-k4 833.875 6
E-n51-k5 514.556 4
E-n76-k7 663.173 24
E-n76-k8 714.33 43
E-n76-k10 796.501 103
E-n76-k14 966.281 202
E-n101-k8 798.687 53

E-n101-k14 1023.787 363
M-n101-k10 820* 33
F-n135-k7 1159.586 152

where C ⊂ N is the set of so-called connector vertices, and, again, α, β and γ are
constants which depend on |N |, |S| and |C|.

In [30], we showed how to generalize these inequalities to the case of the general
CVRP, yielding the so-called homogeneous multistar and partial multistar inequalities.
We also gave reasonably effective separation heuristics for them. For the sake of space
we do not repeat the detailed description of the separation heuristics here. It suffices to
say that greedy methods are used to select the nucleus N , and then a greedy heuristic is
used to select the satellites S (and the connectors C in the case of partial multistars).

A related, but not identical, set of valid inequalities was proposed by Gouveia [22]
for the CVRP with general demands:

Qx(E(N)) +
∑

j∈Vc\N
qjx(E(N : {j})) ≤ Q|N | − q(N). (9)

These have come to be known as generalized large multistar inequalities [1, 30]. It
is well-known [12, 22, 30] that, although the GLM inequalities dominate the fractional
capacity inequalities (see Subsection 2.1), the separation problem for them can be solved
in polynomial time. For related results see [1, 12, 30].

Using our separation procedure for multistar (and partial multistar) inequalities,
together with the separation of RCIs, we obtain the results displayed in Table 5. We find
that the multistar inequalities give an improvement over the bounds obtained by RCIs
on ten instances. Moreover, this improvement is significant for the instances with a large
number of vehicles.

2.5. Hypotour inequalities

Let F ⊂ E be such that any feasible CVRP solution uses at least one edge from F . Then
the hypotour inequality is:

x(F) ≥ 1, (10)

which was introduced in the context of the CVRP in [6]. Several variations of (10) have
been proposed, including the extended hypotour inequality, which was also introduced
in [6]. Other variations are presented in [7].

A new branch-and-cut algorithm for the capacitated vehicle routing problem 433

We have considered only one of these variations, which we call a 2-edges extended
hypotour inequality (2EH). For a given W ⊂ Vc and two distinct edges e1, e2 ∈ δ(W),
the 2EH is:

x(δ(W)) + 2x(F) ≥ 2xe1 + 2xe2 , (11)

where F ⊂ E. Let ei = {ui, vi} for i = 1, 2 with v1, v2 �∈ W . In the following we call
v1, v2 the terminals of the 2EH.

The 2EH expresses that in any feasible CVRP solution with x(δ(W)) = 2 and
xe1 = xe2 = 1, at least one edge from F must be used. That is, any feasible route
visiting all customers in W ∪ {v1, v2} consecutively, beginning and ending at the given
terminals, must use at least one edge from F . The identification of F is essentially based
on the fact that this hamiltonian path through W ∪ {v1, v2} must be extended by two
paths to the depot, such that these paths are vertex disjoint except their intersection at the
depot, and such that the total demand on the created cycle does not exceed the vehicle
capacity.

Our separation procedure begins with generating a list of candidate sets each of which
can be used as S = W ∪ {v1, v2}. For this purpose we use a greedy search in the shrunk
graph that we use for capacity separation, where we try to keep the boundary of the set as
small as possible. Among all these candidate sets we remove some sets based on a (heu-
ristic) dominance criterion, which says that Si dominates Sj if x∗(δ(Si)) ≤ x∗(δ(Sj))

and Sj ⊂ Si . For each remaining candidate set S, we consider as terminals all those ver-
tex pairs v1, v2 ∈ S such that 2x∗

e1
+ 2x∗

e2
− x∗(δ(W)) > 0 (i.e., such that the inequality

is violated if x∗(F) = 0). For every such combination of W and pair of terminals, we
use the procedure described in the following.

Our separation procedure works on the subgraph of G∗ induced by the vertices in
V \ W . We denote this graph by D and its edge set by ED . Each edge {i, j} ∈ ED is
given the weight dij = (wi + wj)/2, where wi = 0 for i ∈ {0, v1, v2}, and wi = qi

otherwise.
Let an {i, j}-path denote any elementary path from i to j in D. We call two paths

customer disjoint if they have no customer in common. A key element of the separation
is to find two customer disjoint paths, a {0, v1}-path and a {0, v2}-path, of minimum
total weight in D. If their total weight exceeds Q − q(S), we have a violated 2EH.

The problem of finding such a pair of paths of minimum total weight can be defined
as a (linear) Assignment Problem (AP) using the edge weights in D. All non-existing
edges in D are given some large weight, except that we set dii = 0 for i ∈ V . Now,
by deleting rows v1, v2 and column 0 and by adding a copy of row 0 we obtain an
AP to which any feasible (integer) solution contains a {0, v1}-path and a {0, v2}-path,
intersecting only in 0. If v(AP) > Q − q(S), where v(AP) is the objective value of
the optimal assignment, the 2EH inequality with F = E \ ED is valid. (We will later
describe how we attempt to reduce F .)

For solving the AP, there immediately are |V \ W | − 2 allocations of zero value
available, so only two iterations of the Hungarian algorithm ([14]) remain.

If a violated inequality is found, we proceed to the next combination of S and pair of
terminals. Otherwise, we attempt to find a violated 2EH by deleting one or more edges
from ED , as we now describe.

434 J. Lysgaard et al.

Let Lij be the length of the shortest {i, j}-path for any two distinct vertices i, j . Note
that Lv10 + Lv20 ≤ v(AP). If we by deleting a certain set of edges from ED obtain that
Lv10 + Lv20 > Q − q(S), the inequality with F = E \ ED is valid, and the inequality
is violated if x∗(F) is kept at a sufficiently small value.

We consider in turn each of the two terminals. Let vi be the current terminal and vj

the other terminal, and let Lmax = Q−q(S)−Lvj 0. We attempt to delete a set of edges
with small x∗-value from ED such that Lvi0 > Lmax . This is done as follows.

Let P = {vi, 0}∪{p ∈ Vc \S : Lvip +Lp0 ≤ Lmax}. Any {vi, 0}-path whose length
does not exceed Lmax can visit only vertices in P . Further, let DP be the subgraph of
D induced by P . We compute the blocks in DP and check if the shortest {vi, 0}-path
visits more than one block. Suppose that the path is . . . , va, vb, vc, . . . , such that the two
edges {va, vb} and {vb, vc} are in different blocks, say block A and B, respectively. If all
edges adjacent to vb in block A are deleted, the result is Lvi0 > Lmax , as intended. The
edges adjacent to vb in block B are treated similarly. If the edges that are deleted have
sufficiently small x∗-value, the resulting 2EH is violated. As such, for each articulation
point in DP we may generate one or two inequalities. We treat the current terminal and
the depot in a way similar to the articulation points, except that at most one inequality
is generated for each of these two endpoints of the path.

If the above procedure does not generate any violated inequalities, we delete from
ED the edge of smallest x∗-value among those edges used in the AP solution and repeat
the procedure. This is done as long as the total x∗-value of the deleted edges is sufficiently
small to allow for a violated inequality.

Finally we describe how we attempt to reduce F once a violated inequality is found.
At this stage we have a D = (V , ED) such that the inequality with F = E \ ED is
valid. Let an in-path(i, j) denote any elementary path from i to j which uses only edges
in ED , and let an out-path(i, j) denote any elementary path from i to j which uses at
least one edge that is not in ED . Any pair of paths from the terminals to the depot whose
total length does not exceed Q − q(S) must satisfy the following disjunction: i) An
out-path(v1, 0) whose length is at most Q − q(S) is used, or ii) An in-path(v1, 0) (the
length of which is no smaller than Lv10) is used and an out-path(v2, 0) whose length is
at most Q − q(S) − Lv10 is used. Let F1, F2 ∈ E \ ED be such that every out-path in
i) uses at least one edge from F1, and every out-path in ii) uses at least one edge from
F2. Then F = F1 ∪ F2 gives a valid inequality. The sets F1, F2 are found as follows.

Let the two terminals be numbered such that Lv10 ≥ Lv20, and let q0 = 0. Regard-
ing the out-paths from v1 to 0, let R1 = {r ∈ Vc \ S : Lv1r + qr

2 ≤ Q − q(S)}.
Any path from v1 to 0 in ED cannot visit any customer outside R1 without accumu-
lating excessive demand. In any feasible solution, any out-path(v1, 0) whose length
does not exceed Q − q(S) must use an edge not in ED when leaving some customer
in v1 ∪ R1. That is, we set F 1

1 = {{v1, j} �∈ ED : j ∈ V \ S, qj ≤ Q − q(S)},
F 2

1 = {{i, j} �∈ ED : i ∈ R1, j ∈ V \S, Lv1i + qi

2 +qj ≤ Q−q(S)}, and F1 = F 1
1 ∪F 2

1 .
Based on similar arguments for v2, we set R2 = {r ∈ Vc \ S : Lv2r + qr

2 ≤ Q −
q(S)−Lv10}, F 1

2 = {{v2, j} �∈ ED : j ∈ V \S, qj ≤ Q−q(S)−Lv10}, F 2
2 = {{i, j} �∈

ED : i ∈ R2, j ∈ V \ S, Lv2i + qi

2 + qj ≤ Q − q(S) − Lv10}, and F2 = F 1
2 ∪ F 2

2 .
To our knowledge, this is the first published separation heuristic for hypotour in-

equalities of polynomial time complexity. Indeed, the individual calls of the Hungarian
algorithm, the blocking procedure, and the procedure for finding shortest paths in D,

A new branch-and-cut algorithm for the capacitated vehicle routing problem 435

Table 6. Lower bounds using hypotour inequalities.

Name Aug. Bla. & Hoch. Our Time
E-n30-k3 509.833 509.5 508.5 2
E-n33-k4 834.154 >834 834.353 12
E-n51-k5 515.96 517.8 516.794 8
E-n76-k7 663.261 663.705 663.423 53
E-n76-k8 712.578 713.153 712.908 34
E-n76-k10 793.089 794.154 794.249 81
E-n76-k14 — — 956.019 80
E-n101-k8 798.097 800.178 798.949 91
E-n101-k14 — — 1014.803 258
M-n101-k10 820* — 820* 31

F-n72-k4 233.6 232.558 232.5 3
F-n135-k7 1158.83 1159.25 1159.328 181

are all bounded by O(n2) time. Since we have only a polynomial number of each, the
overall polynomial time follows.

In terms of computational complexity, the advantage of our procedure is that we
avoid a complete path enumeration scheme, which may lead to excessive computing
times unless accompanied by certain stopping criteria, as in [7, 12].

Using our separation procedure for 2EHs, together with the separation of RCIs, we
obtain the results displayed in Table 6, which also displays the results obtained in [7,
12].

Our results are obtained after 25 calls to hypotour separation, after which the bounds
increase only very little. None of the three sets of results in Table 6 dominates the two
others. We conclude that our procedure gives competitive results in a reasonable time.

2.6. Gomory cuts

Due to the heuristic nature of many of our separation routines, it may happen that no
more violated cuts can be found, yet one or more such cuts actually exist. At that stage
we can of course resort to branching, but we have found it more useful to use a limited
number of Gomory mixed-integer cuts [21, 34] to cut off the current vector x∗. Although
the addition of these cuts to the LP does not normally lead to a significant increase in the
lower bound, we have found that it is an effective method for ‘perturbing’x∗, thus giving
the separation heuristics a second chance to succeed. However, the Gomory cuts tend
to be quite dense, so we only perform this ‘trick’ at the root node of the branch-and-cut
tree, and even then only once.

As in [9], we generate an entire round of Gomory cuts rather than only one at a time.
That is, for each j such that x∗

j is fractional, we find the associated row of the simplex
tableau, which will be of the form:

xj +
∑

i∈NB

αixi = x∗
j , (12)

436 J. Lysgaard et al.

where NB represents the set of non-basic variables. Then we generate the Gomory
mixed-integer cut:

∑

i∈NB

min

{
f (αi)

f (x∗
j)

,
1 − f (αi)

1 − f (x∗
j)

}

xi ≥ 1, (13)

where for any real r , f (r) := r − �r�. All of the resulting cuts are added to the problem
(after duplicates have been eliminated).

3. The branch-and-cut algorithm

3.1. Separation strategy

In order to design an efficient branch-and-cut algorithm, it is important not only to have
efficient separation algorithms, but also to decide which separation algorithms will be
called and when. We spent some time experimenting with various strategies, using only
the instances in Table 1. In the end it proved best to treat the root node differently to the
other nodes of the branching tree.

Our strategy for the root node is as follows. First we call capacity separation. If at
least one RCI is violated by more than 0.2, we reoptimize the LP. Otherwise we consider
separating framed capacity inequalities (FCIs). We call FCI separation only if there are
at least k(Vc) − 1 incompatible supervertices in the shrunk graph GSc, where two su-
pervertices are incompatible if their total demand exceeds Q. We allow at most 20000
nodes to be explored in the search tree for FCI separation. If at least one violated FCI is
found, we reoptimize the LP. Otherwise we proceed to the remaining classes of inequal-
ities. Among the three classes of multistar, comb, and hypotour inequalities we have
found it effective to dynamically change the order of separation. Specifically, we use a
cyclic ordering of the three classes, so that each individual class is the first to be called
every third time. If one of these classes does not find any inequality whose violation is
greater than a certain limit (0.05 for multistars, 0.1 for combs, and 0.1 for hypotours),
we proceed to the next class. Finally, as mentioned in Subsection 2.6, when tailing off
occurs for all of these classes for the first time, we generate a round of Gomory cuts.
When tailing off occurs for the second time, we finish separation at the root node.

Our strategy for the non-root nodes is simpler. We spend less time on separation
at these nodes, because we have found it to be more effective to branch earlier than to
spend much time on separation. First we call the connected components heuristic for
RCIs to ensure that the support graph is connected. Then we call all other separation
routines once (here we allow only 100 nodes in the search tree for FCI separation). All
violated inequalities found, regardless of their type, are added to the LP. The LP is then
reoptimized. Subsequently we separate RCIs only until no violated RCIs are identified.

3.2. Branching

If the separation algorithms tail off, and the solution is not integer, we branch. The
standard way to branch is to branch on edge variables, i.e., to select a fractional binary

A new branch-and-cut algorithm for the capacitated vehicle routing problem 437

variable x∗
e and impose the disjunction (xe = 0) ∨ (xe = 1). Another commonly found

technique [33] is to branch on cutsets: a set S is found for which 2 < x∗(δ(S)) < 4,
and the disjunction (x(δ(S)) = 2) ∨ (x(δ(S)) ≥ 4) is imposed. Note that this reduces
to standard edge branching when |S| = 2.

We choose several candidate sets S ⊂ Vc for which x∗(δ(S)) is close to 3 by a simple
greedy heuristic and sort them in non-decreasing order of |x∗(δ(S)) − 3|/q(S), giving
an ordered list of sets S1, S2, We proceed through the sets one by one. For a given
Si we compute the two lower bounds LB1

i , LB2
i which would be obtained at the two

descendant nodes if we used Si for branching. If one of the descendant nodes can be
fathomed, Si is chosen immediately. Otherwise we use the following rule.

Let LB−
i = min{LB1

i , LB2
i } and LB+

i = max{LB1
i , LB2

i }. We prefer Si to Sj if
�LB−

i � > �LB−
j �. In the case of ties, we prefer Si to Sj if �LB+

i � > �LB+
j �. If ties are

still present, we use the same conditions, but without the rounding up.
We stop working through the list when the last two sets have not yielded any improve-

ment. The best set found so far is then used for branching. That is, after having examined
some p ≥ 3 candidate sets S1, . . . , Sp in this order, we choose set Sp−2 for branching.

3.3. Node selection

Our branch-and-bound algorithm uses the best bound first node selection rule, so that the
node with the smallest lower bound is always processed next. This is known to always
lead to the smallest possible branch-and-bound tree, but it has the disadvantage that the
entire tree (i.e., all currently non-fathomed nodes) must be stored in memory.

In fact we use a slightly modified version of the best bound first rule, taking into
account the fact that, for our test instances, all objective coefficients are integer. Let the
smallest lower bound equal LB∗. If there are several subproblems whose lower bounds
are not greater than �LB∗�, we choose among them the subproblem at the deepest level
in the search tree.

3.4. Cut pool management

As usual in branch-and-cut algorithms [33, 37], we maintain a cut pool which contains
(some or all of) the cuts generated so far in the algorithm. One purpose of the cut pool
during branching is to keep the cuts which allow us to reconstruct the LP at any active
subproblem. Another purpose is to be able to separate faster (and possibly more effec-
tively, if the separation procedures are heuristic) using the cut pool instead of generating
new violated inequalities. However, the effort spent on managing a very large cut pool
may outweigh the advantages, i.e., when the cut pool has grown to a certain size, it may be
advantageous to permanently delete some cuts from the pool. After some experimenting,
we have found the following to give a reasonable trade-off.

At the root node, we keep all generated cuts, except those in the LP, in a cut pool.
Whenever the LP has been reoptimized, we first check all cuts in the cut pool, and reop-
timize the LP, if any violated cuts have been found. Only when no cuts in the cut pool
are violated do we call our separation routines for generating new violated inequalities.

438 J. Lysgaard et al.

We attempt to keep the LP small by storing cuts of positive slack in the cut pool. When
separation finishes at the root node, we permanently delete all cuts of positive slack.

At the non-root nodes, we use a somewhat different strategy. For a given LP, we call
a cut binding if its slack variable is non-basic in the optimal solution. For every 50 nodes
that have been processed in the search tree, we permanently delete from the cut pool
every cut which is not binding in at least one of the active nodes in the tree.

3.5. Basis reconstruction

As mentioned in [39], it is important to be able to reconstruct the LP solution at a given
subproblem in an efficient way. For this purpose we store at each subproblem informa-
tion on the set of binding cuts and on the structure of the optimal basis. This information
is obtained when the branching set at the parent node is chosen. Despite the additional
memory requirement involved, we have found this to give a considerable speed up of
the entire algorithm.

4. Computational experiments

In this section we show the performance of the entire algorithm. We give results not only
for the instances already mentioned, but also for two further ‘E’ instances, an additional
‘M’ instance, and all of the ‘A’, ‘B’, and ‘P’ instances (except one ‘P’ instance) produced
byAugerat [6].All of these instances are available on www.branchandcut.org. Moreover,
they are all (with the exception of E-n13-k4 and E-n31-k7) Euclidean, with integer
edge costs following the TSPLIB standard [41]. For the instances in the class ‘A’, both
customer locations and demands are random. The instances in class ‘B’, however, are
clustered instances. The instances in class ‘P’ are modified versions of instances from
the literature.

Table 7 shows the results for the instances of Christofides & Eilon [15]. The first
two columns give the instance name and the upper bound, as described in Section 1. The
next two columns give the lower bound obtained at the root node, using all separation

Table 7. Results for the E instances.

Root node Branch & cut
Instance UB LB Time Time (LB) Tree size
E-n13-k4 247* 247* 4 — —
E-n22-k4 375* 375* 2 — —
E-n23-k3 569* 569* 2 — —
E-n30-k3 534* 534* 14 — —
E-n31-k7 379* 377.028 11 28 10
E-n33-k4 835* 834.707 12 16 3
E-n51-k5 521* 519 24 59 17
E-n76-k7 682* 666.408 72 118683 8631
E-n76-k8 735* 717.852 136 (729) 2321
E-n76-k10 830 799.878 158 (816) 2209
E-n76-k14 1021 969.609 181 (986) 2081
E-n101-k8 815* 802.646 222 (811) 1621
E-n101-k14 1071 1026.94 555 (1040) 917

A new branch-and-cut algorithm for the capacitated vehicle routing problem 439

Table 8. Results for the F and M instances.

Root node Branch & cut
Instance UB LB Time Time Tree size
F-n45-k4 724* 724* 6 — —
F-n72-k4 237* 237 38 40 3
F-n135-k7 1162* 1160 155 3092 265

M-n101-k10 820* 820* 33 — —
M-n121-k7 1034 1017.422 979 (1025) 631

routines, and the time spent to obtain it (in seconds). The next column gives the total
time taken to solve the problem to optimality. When the code failed to find the optimum
in a reasonable amount of time, we give in parentheses the best lower bound obtained
after eight hours. The final column gives the total number of nodes generated in the
branch-and-cut tree, either to prove optimality or after eight hours.

The algorithm solved the first four instances at the root node, and the next three
instances were solved after a few branches. After running the code for about 33 hours
we obtained the optimal solution to E-n76-k7. The remaining five instances appear to
be extremely difficult, at least with the currently known classes of cutting planes. This
is in keeping with the experience of other authors [7, 12, 33, 40].

Table 8 gives results for the instances of Fisher [20] and two of the Christofides, Min-
gozzi & Toth [16] instances. Here, two were solved at the root node and two others were
solved spending a relatively short amount of time branching. The instance M-n121-k7
remained unsolved after eight hours.

Next, Table 9 shows the results for the ‘A’ instances of Augerat. The algorithm solved
17 out of the 27 instances in under an hour, and a further three were solved in a reasonable
amount of time. The remaining seven, however, remained unsolved.

In Table 10 we present the results for the ‘B’ instances of Augerat. The algorithm
solved 5 of the 23 instances at the root node, and a further 13 were solved with less than
an hour of branching. We were able to solve four of the remaining five in a reasonable
amount of time. As shown on the table, three of these (B-n50-k8, B-n66-k9 and
B-n78-k10) were solved to optimality for the first time in this paper. The optimal
solutions are included in the Appendix for other researchers to verify.

Finally, we present in Table 11 the results for the ‘P’ instances (except P-n55-k8,
in which the number of vehicles is not fixed at the minimum possible) of Augerat. The
algorithm solved 3 of the 23 instances at the root node, and a further 13 were solved
within a reasonable time.

All of the above results were obtained without giving any explicit upper bound to the
code as input. Further, we did not use any particular heuristic method in the branch-and-
cut process. Our only device for generating upper bounds was the LP itself, i.e., only
when an LP solution was feasible and integer did we obtain an upper bound. Of course,
any heuristic method (simulated annealing, tabu search, etc.) could be used to provide
a good upper bound, which could then be used to reduce the solution time and number
of tree nodes. In order to see the potential benefit of such a heuristic, we took some of
the instances with known optimal solutions, and ran the code again with the optimum
as input. We took only those which originally had more than 100 nodes in the branching
tree, making 26 instances in total.

440 J. Lysgaard et al.

Table 9. Results for the A instances.

Root node Branch & cut
Instance UB LB Time Time (LB) Tree size

A-n32-k5 784* 782.028 12 15 3
A-n33-k5 661* 658.444 12 23 7
A-n33-k6 742* 733.476 11 38 15
A-n34-k5 778* 768.03 11 27 8
A-n36-k5 799* 790.218 10 51 24
A-n37-k5 669* 665.497 11 25 8
A-n37-k6 949* 925.165 12 531 304
A-n38-k5 730* 717.2 7 116 60
A-n39-k5 822* 810.134 39 138 53
A-n39-k6 831* 817.253 13 109 57
A-n44-k6 937* 921.818 31 620 211
A-n45-k6 944* 930.002 19 157 62
A-n45-k7 1146* 1115.478 66 19414 4170
A-n46-k7 914* 912.063 40 50 3
A-n48-k7 1073* 1055.145 35 372 113
A-n53-k7 1010* 998.7 24 363 107
A-n54-k7 1167* 1135.312 30 7246 1643
A-n55-k9 1073* 1058.282 17 468 152
A-n60-k9 1354 1319.634 63 (1342) 4627
A-n61-k9 1034* 1010.211 45 68636 8608
A-n62-k8 1290 1251.68 231 (1282) 3197
A-n63-k9 1616 1580.667 117 (1608) 3411

A-n63-k10 1315 1266.619 64 (1304) 3911
A-n64-k9 1402 1351.619 132 (1381) 3511
A-n65-k9 1174* 1155.175 45 1324 253
A-n69-k9 1159 1114.373 79 (1147) 3189

A-n80-k10 1763 1709.645 201 (1734) 1773

Table 10. Results for the B instances.

Root node Branch & cut
Instance UB LB Time Time (LB) Tree size

B-n31-k5 672* 672* 8 — —
B-n34-k5 788* 784.25 12 36 19
B-n35-k5 955* 955* 5 — —
B-n38-k6 805* 801 10 37 21
B-n39-k5 549* 549* 9 — —
B-n41-k6 829* 827 9 42 24
B-n43-k6 742* 735.417 14 125 63
B-n44-k7 909* 909* 8 — —
B-n45-k5 751* 748.68 14 46 21
B-n45-k6 678* 673.801 18 299 159
B-n50-k7 741* 741* 11 — —
B-n50-k8 1313 1281.139 26 31026 (1312*) 5694
B-n51-k7 1032* 1025.571 7 209 122
B-n52-k7 747* 746 8 25 15
B-n56-k7 707* 705.018 20 46 14
B-n57-k7 1153* 1150.092 33 441 168
B-n57-k9 1598* 1589.23 49 1366 264
B-n63-k10 1496* 1481 31 6513 1752
B-n64-k9 861* 860.5 17 42 13
B-n66-k9 1318 1298.509 80 24424 (1316*) 4614
B-n67-k10 1032* 1024.805 28 3309 935
B-n68-k9 1275 1258.054 65 (1267) 5245
B-n78-k10 1221 1205.55 114 87408 (1221*) 8641

A new branch-and-cut algorithm for the capacitated vehicle routing problem 441

Table 11. Results for the P instances.

Root node Branch & cut
Instance UB LB Time Time (LB) Tree size
P-n16-k8 450* 449.587 8 10 3
P-n19-k2 212* 212* 5 — —
P-n20-k2 216* 215.08 11 15 3
P-n21-k2 211* 211* 3 — —
P-n22-k2 216* 216* 16 — —
P-n22-k8 603* 594.041 13 44 16
P-n23-k8 529* 519.095 10 69 26
P-n40-k5 458* 457.272 15 19 3
P-n45-k5 510* 505.094 12 76 35
P-n50-k7 554* 542.406 25 805 263
P-n50-k8 649 602.138 28 (625) 5241
P-n50-k10 696* 668.486 29 73016 12551
P-n51-k10 741* 716.107 46 82469 11731
P-n55-k7 568* 550.053 26 11178 2507
P-n55-k10 699 662.119 53 (684) 5081
P-n55-k15 — 906.7 36 (934) 4441
P-n60-k10 756 718.395 44 (739) 4257
P-n60-k15 1033 929.802 84 (949) 4008
P-n65-k10 792 767.094 54 (786) 3585
P-n70-k10 834 795.615 90 (812) 2607
P-n76-k4 593* 589.097 55 535 141
P-n76-k5 627* 617.52 92 10970 1530
P-n101-k4 681* 678.6 127 281 29

The results are shown in Table 12. The total solution time was decreased by around
33%, and the total number of nodes was decreased by around 38%. However, note
the anomalous behaviour on B-n50-k8 and B-n57-k9, where both figures have
increased. This is typical in branch-and-cut, where a small change can have counter-
intuitive effects. In this case, the cause is the branching rule in Subsection 3.2: if one
of the quantities LB1

i , LB2
i exceeds the optimum minus one, then the algorithm will be

immediately guided down the opposite branch, leading to different fractional solutions
than would have been encountered otherwise.

Finally we address the issue of relating our results to those of other groups. Both
analytical and computational results have been obtained by various groups working on
branch-and-cut for the CVRP. However, as remarked in [40], it is unclear to which
extent meaningful comparisons can be made between the computational results of var-
ious groups, not only due to differences in hardware and implementational details, but
also because of considerable limitations with respect to the set of instances for which
computational results are reported. (We believe that our inclusion of many more instances
than those normally used is a measure to remedy the latter difficulty, looking ahead to
yet unknown results of future groups.) Still another difficulty is that to the extent that
results are reported only for instances which also have been used for tuning of parame-
ters, it is doubtful whether the results reported are representative of those that would be
encountered on other yet unknown instances. The following comparisons are therefore
made with reservations.

A comparison with Blasum & Hochstättler ([12]) must be rather rudimentary, as they
display results for only ten instances. We note that they managed to solve E-n76-k7 in

442 J. Lysgaard et al.

Table 12. Results with the optimum as input.

Without Opt With Opt
Instance Opt Time Tree size Time Tree size
E-n76-k7 682* 118683 8631 81526 5824
F-n135-k7 1162* 3092 265 428 23
A-n37-k6 949* 531 304 385 139
A-n44-k6 937* 620 211 426 98
A-n45-k7 1146* 19414 4170 12518 2434
A-n48-k7 1073* 372 113 325 70
A-n53-k7 1010* 363 107 276 55
A-n54-k7 1167* 7246 1643 5503 997
A-n55-k9 1073* 468 152 475 129
A-n61-k9 1034* 68636 8608 46938 5245
A-n65-k9 1174* 1324 253 783 112
B-n45-k6 678* 299 159 130 42
B-n50-k8 1312* 31026 5694 34164 6035
B-n51-k7 1032* 209 122 164 66
B-n57-k7 1153* 441 168 182 47
B-n57-k9 1598* 1366 264 1572 269
B-n63-k10 1496* 6513 1752 3744 896
B-n66-k9 1316* 24424 4614 11460 1864
B-n67-k10 1032* 3309 935 2013 566
B-n78-k10 1221* 87408 8641 53272 4746
P-n50-k7 554* 805 263 514 125
P-n50-k10 696* 73016 12551 51493 7836
P-n51-k10 741* 82469 11731 45942 6239
P-n55-k7 568* 11178 2507 8785 1683
P-n76-k4 593* 535 141 280 50
P-n76-k5 627* 10970 1530 8340 1013

Total: 554717 75529 371638 46603

less than 8 hours on a slower (400 MHz) computer, and that they also solved the instance
E-n76-k8. Based on the few instances that are solved by both their code and our code,
none of the two codes dominates the other. A more rigorous conclusion seems not to be
reasonable, given their strongly limited set of test instances.

Ralphs et al. ([40]), who used hardware almost identical to ours, solved the instance
E-n76-k7 in about 80 hours, whereas we solved it in about 33 hours (or about 23 hours
if the optimal value is available initially as an upper bound). Using a parallel computer,
Ralphs et al. also solved the instances E-n76-k8 and E-n101-k8. They also mention
that they unsuccessfully tried to solve B-n50-k8, which is one of the instances that
was solved for the first time by our code. More generally, with respect to those instances
that are solved in [40] as well as by our code, the overall picture seems to be that the
code of [40] is faster on the easier instances, whereas our code is faster on the harder
instances. On this basis we consider our code to compare favourably with that of [40].

5. Conclusion

We have presented a new branch-and-cut algorithm for the CVRP. Our algorithm uses
several classes of valid inequalities as cutting planes, and we have described our sep-
aration algorithms for each class in detail. For a special kind of hypotour inequalities

A new branch-and-cut algorithm for the capacitated vehicle routing problem 443

we have presented a separation heuristic which runs in polynomial time. Moreover, we
have presented a separation heuristic for strengthened comb inequalities.

We have also given the results of computational experiments on a large number of
test instances, and shown that our algorithm is competitive with others. With our branch-
and-cut algorithm we were able to solve the three instances B-n50-k8, B-n66-k9,
and B-n78-k10 to proven optimality for the first time. We have also presented the best
known upper bound at the time of writing for each test instance, which may be of use to
other researchers.

In our view, the most pressing problem for research in this field is to understand why
certain instances (such as the ‘E’ instances with 76 vertices) are so difficult. It is possible
that there exists an unknown class of valid inequalities which would be effective for
these instances. Finding such a class and devising a suitable separation algorithm for it
remains a challenge.

Appendix

In Tables 13, 14 and 15 we give the optimal solutions to the three instances B-n50-k8,
B-n66-k9, and B-n78-k10, which are solved to proven optimality for the first time
by our algorithm. The vehicle capacity is 100 for each of these instances. In each case
we give, for each vehicle route in the solution, the sequence in which the customers are
visited, the total load (i.e., the sum of the demands serviced on that route), and the total
distance travelled.

Table 13. Optimal solution to B-n50-k8.

Route no. Sequence Load Distance
1 1 28 29 19 32 97 243
2 2 40 7 48 34 48 72
3 3 23 41 45 39 35 94 138
4 5 16 43 12 100 206
5 6 30 36 49 33 9 27 37 44 100 99
6 10 21 42 17 8 15 100 234
7 13 38 22 46 14 31 97 115
8 20 11 24 47 26 18 4 25 99 205

Total 735 1312

Table 14. Optimal solution to B-n66-k9.

Route no. Sequence Load Distance
1 1 7 35 19 38 57 11 23 18 100 113
2 6 2 10 26 46 63 25 99 162
3 24 36 21 4 60 15 3 29 39 14 27 99 267
4 32 58 40 8 65 33 75 162
5 41 17 20 53 54 52 91 42
6 42 5 9 12 49 98 153
7 45 31 13 56 22 43 34 51 100 115
8 47 59 44 64 30 55 100 155
9 50 28 16 62 48 37 61 99 147

Total 861 1316

444 J. Lysgaard et al.

Table 15. Optimal solution to B-n78-k10.

Route no. Sequence Load Distance
1 1 52 24 21 43 67 69 72 17 100 27
2 2 63 49 27 56 38 58 98 68
3 5 30 70 29 37 65 94 79
4 8 22 71 31 73 32 76 7 57 47 99 124
5 9 19 33 55 35 59 4 36 14 41 10 99 222
6 11 64 40 53 68 18 25 42 100 154
7 15 12 34 46 45 51 100 116
8 16 66 60 6 62 54 20 3 75 100 204
9 23 26 44 77 48 66

10 28 74 48 13 39 61 50 99 161
Total 937 1221

References

1. Achuthan, N.R., Caccetta, L., Hill, S.P.: “Capacitated vehicle routing problem: some new cutting planes”.
Asia-Pac. J. Oper. Res. 15, 109–123 (1998)

2. Agarwal, Y., Mathur, K., Salkin, H.M.: “A set-partitioning-based exact algorithm for the vehicle routing
problem”. Networks 19, 731–749 (1989)

3. Araque, J.R.: “Lots of combs of different sizes for vehicle routing”. Discussion paper. Center for Opera-
tions Research and Econometrics. Catholic University of Louvain, Belgium, 1990

4. Araque, J.R., Hall, L.A., Magnanti, T.L.: “Capacitated trees, capacitated routing and associated poly-
hedra”. Discussion paper. Center for Operations Research and Econometrics, Catholic University of
Louvain, Belgium, 1990

5. Araque, J.R., Kudva, G., Morin, T.L., Pekny, J.F.: “A branch-and-cut algorithm for the vehicle routing
problem”. Ann. Oper. Res. 50, 37–59 (1994)

6. Augerat, P.: Approche Polyèdrale du Problème de Tournées de Véhicules. PhD thesis, Institut National
Polytechnique de Grenoble, 1995

7. Augerat, P., Belenguer, J.M., Benavent, E., Corberán, A., Naddef, D., Rinaldi, G.:“Computational results
with a branch-and-cut code for the capacitated vehicle routing problem”. Research report RR949-M.
ARTEMIS-IMAG, France, 1995

8. Augerat, P., Belenguer, J.M., Benavent, E., Corberán, A., Naddef, D.: “Separating capacity constraints in
the CVRP using tabu search”. Eur. J. Opl. Res. 106, 546–557 (1998)

9. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: “Gomory cuts revisited”. Oper. Res. Lett. 19, 1–10 (1996)
10. Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L.: (eds.) Network Routing. Handbooks on

Operations Research and Management Science, 8. Amsterdam: Elsevier, 1995
11. Blasum, U.: “Anwendung des Branch & Cut Verfahrens auf das kapazitierte Vehicle-Routing Problem”.

PhD thesis, Universität zu Köln, 1999
12. Blasum, U., Hochstättler, W.: “Application of the branch-and-cut method to the vehicle routing problem”.

Technical report. Universität zu Köln, 2002
13. Campos,V., Corberán, A., Mota, E.: “Polyhedral results for a vehicle routing problem”. Eur. J. Opl. Res.

52, 75–85 (1991)
14. Carpaneto, G., Martello, S., Toth, P.:“Algorithms and codes for the assignment problem”. Ann. Oper. Res.

13, 193–223 (1988)
15. Christofides, N., Eilon, S.: “An algorithm for the vehicle dispatching problem”. Oper. Res. Quarterly 20,

309–318 (1969)
16. Christofides, N., Mingozzi, A., Toth, P.:“Exact algorithms for the vehicle routing problem based on the

spanning tree and shortest path relaxations”. Math. Program. 20, 255–282 (1981)
17. Cornuéjols, G., Harche, F.: “Polyhedral study of the capacitated vehicle routing problem”. Math. Program.

60, 21–52, (1993)
18. Dantzig, G.B., Ramser, R.H.: “The truck dispatching problem”. Manage. Sci. 6, 80–91 (1959)

A new branch-and-cut algorithm for the capacitated vehicle routing problem 445

19. Edmonds, J.: “Maximum matching and a polyhedron with 0–1 vertices”. J. Res. Nat. Bur. Standards. 69B,
125–130 (1965)

20. Fisher, M.L.: “Optimal solution of vehicle routing problems using minimum K-trees”. Oper. Res. 42,
626–642 (1994)

21. Gomory, R.E.: “An algorithm for the mixed-integer problem”. Report RM-2597, Rand Corporation, 1960
(unpublished)

22. Gouveia, L.: “A result on projection for the vehicle routing problem”. Eur. J. Opl. Res. 85, 610–624
(1995)

23. Grötschel, M., Lovász, L., Schrijver,A.J.: GeometricAlgorithms in Combinatorial Optimization. Springer,
1988

24. Grötschel, M., Padberg, M.W.: “On the symmetric travelling salesman problem I: inequalities”. Math.
Program. 16, 265–280 (1979)

25. Grötschel, M., Padberg, M.W.: “On the symmetric travelling salesman problem II: lifting theorems and
facets”. Math. Program. 16, 281–302 (1979)

26. Hadjiconstantinou, E., Christofides, N., Mingozzi, A.: “A new exact algorithm for the vehicle routing
problem based on q-paths and k-shortest paths relaxations”. Ann. Oper. Res. 61, 21–43 (1996)

27. Laporte, G.: “The vehicle routing problem: an overview of exact and approximate algorithms”. Eur. J.
Opl. Res. 59, 345–358, (1992)

28. Laporte, G.: “Vehicle routing”. In: Dell’Amico, Maffioli, Martello (eds.) Annotated Bibliographies in
Combinatorial Optimization. New York, Wiley, 1997

29. Laporte, G., Nobert, Y.: “Comb inequalities for the vehicle routing problem”. Methods of Oper. Res. 51,
271–276 (1984)

30. Letchford, A.N., Eglese, R.W., Lysgaard, J.: “Multistars, partial multistars and the capacitated vehicle
routing problem”. Math. Program. 94, 21–40 (2002)

31. Martello, S., Toth, P.: Knapsack Problems:Algorithms and Computer Implementations. Chichester: Wiley,
1990

32. Miller, D.L.: “A matching-based exact algorithm for capacitated vehicle routing problems”. ORSA J.
Comp. 7, 1–9 (1995)

33. Naddef, D., Rinaldi, G.: “Branch-and-cut algorithms for the capacitated VRP”. In: P.Toth, D.Vigo (eds.),
The Vehicle Routing Problem. SIAM Monographs on Discr. Math. Appl. 9, 2002

34. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. New York: Wiley, 1988
35. Padberg, M.W., Rao, M.R.: “Odd minimum cut-sets and b-matchings”. Math. Oper. Res. 7, 67–80 (1982)
36. Padberg, M.W., Rinaldi, G.: “Facet identification for the symmetric traveling salesman polytope”. Math.

Program. 47, 219–257 (1990)
37. Padberg, M.W., Rinaldi, G.: “A branch-and-cut algorithm for the resolution of large-scale symmetric

travelling salesman problems”. SIAM Rev. 33, 60–100 (1991)
38. Pereira, F.B., Tavares, J., Machado, P., Costa, E.: “GVR: a new genetic representation for the vehicle

routing problem”. In: M.O’Neill et al.(eds.), Proceedings of AICS 2002. Berlin: Springer-Verlag, 2002,
pp. 95–102

39. Ralphs, T.K.: “Parallel branch and cut for capacitated vehicle routing”. To appear in Parallel Computing
40. Ralphs, T.K., Kopman, L., Pulleyblank, W.R., Trotter, L.E.: “On the capacitated vehicle routing problem”.

Math. Program. 94, 343–359 (2003)
41. Reinelt, G.: “TSPLIB: A travelling salesman problem library”. ORSA J. Comp. 3, 376–384 (1991)

URL: http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
42. Toth, P., Vigo, D.: (eds.), The Vehicle Routing Problem. SIAM Monographs on Discr. Math. Appl. 9,

(2002)
43. Xu, J., Kelly, J.P.: “A network flow-based tabu search heuristic for the vehicle routing problem”. Trans-

portation Sci. 30, 379–393 (1996)

