🔥 Convolutional KANs: An alternative to CNNs 🔥 Building on the innovative Kolmogorov-Arnold Networks (KANs), I'm excited to announce our latest development: Convolutional Kolmogorov-Arnold Networks (Convolutional-KANs), in collaboration with Jack Spolski, Antonio Tepsich, Alexander Bodner! This advancement integrates learnable non-linear activation functions into Computer Vision by replacing traditional convolutions with Kan-Convolutions. Each element of the kernel is a learnable activation function modeled using B-Splines! Our preliminary results are promising. Convolutional-KANs achieve only a 0.04 reduction in accuracy compared to conventional 2-layer CNNs, but with nearly half the parameters, and 7 times fewer parameters than a 4-layer CNN. 🚀. We welcome contributions and constructive feedback to refine and enhance our implementation. Explore the GitHub repository! 🔗 https://lnkd.in/dxZT6ef4"
Excellent job!!
Amazing work!!
Estudiante de Ingenieria en Inteligencia Artificial en UdeSA y pasante en Molinos Rio de la Plata
6moFantastic idea