Building a Career in Data Science and Analytics: The Ultimate Guide
A career in data analytics or science is lucrative and rewarding. But the path to starting or advancing a data science or analytics career is not always linear. Unlike more traditional jobs, you don’t necessarily need a technical bachelor’s degree or a master’s degree to become a data science professional. You simply need the right skills and experience.
In this guide, you’ll learn the ins and outs of data science and analytics career pathways and skills. Plus, take away tips on how to decide which data science career is right for you.
Table of Contents
Why Build a Career in Data Science or Analytics? 3 Top Benefits of a Data Science Career
Over the past decade, the availability of data and demand for data science skills and data-driven decision making has skyrocketed. Pushed further into the spotlight by the drastic shift in business operations and consumer behavior caused by the COVID-19 pandemic, analytics and data science are now cemented as essential navigational tools across industries and functions.
“Data science is a 21st century job skill that everybody should have.”
“Data science is a 21st century job skill that everybody should have,” says Eric Van Dusen, curriculum coordinator for data science education at the University of California (UC), Berkeley. “Every field. I tell students, you all need to come out with this set of skills. You’re going to be a lot more powerful in whatever career you go into.”
A field in the spotlight, data science offers high salaries and big opportunities.
1. Earn a High Salary
According to data from Robert Half, the median starting salary for data scientists is $95,000, almost double the U.S. median salary average. At about $70,000, even the average salary for data analysts, a more entry-level role, is considerably higher than the median salary in the U.S.
According to a study by Burtch Works, work experience is the largest factor in data science salaries. Mid-career data science professionals who have at least seven years of experience can expect to earn an average of $129,000. Highly experienced data scientists who hold managerial roles can earn upwards of over $250,000. However, education, company size, and sector are also important factors when determining data science salaries.
2. Solve Complex Problems
If you enjoy solving complex, real-world problems, you’ll never be bored as a data science professional. The primary responsibility of your job is to find answers and insights by analyzing and processing vast amounts of raw data. A few examples of business problems that you’ll get to solve are:
“Being able to extract information from data is actually a very powerful position to be in.”
“The famous John Tukey said, ‘the best thing about being a statistician is that you get to play in everyone’s backyard,” said Philippe Rigollet, associate professor in the MIT mathematics department and Statistics and Data Science Center. “This is true of data science: whatever your field of interest is, I can assure you that there is data to make it better. Being able to extract information from data is actually a very powerful position to be in with data being collected in all aspects of society, ranging from marketing to health and even to sports and entertainment.”
3. Avoid Job Automation
Data science roles, particularly data analysts, are at very low risk for automation for a few reasons:
1. The demand for data science roles is growing at an average rate of 50%.
2. Very few platforms can produce sophisticated analyses.
3. Data scientists are the ones who are doing most of the automating.
Growing Your Data Science Career: From Analyst to Data Scientist
There are two primary ways you can use data science skills to grow data-centric careers: become a data science professional—pursuing jobs like data analyst, database developer, or data scientist—or transition into an analytics-enabled role like a functional business analyst or a data-driven manager. Both career paths require foundational skills and knowledge in data analytics, programming, data management, data mining, and data visualization.
Despite the two tracks, the evolving nature of the relatively new field means career paths are flexible. Data science professionals like data analysts can lean into a data science or data system developer role depending on where they deepen their expertise. By expanding knowledge in artificial intelligence, statistics, data management, and big data analytics, a data analyst can transition into a data scientist role. By building on existing technical skills in Python, relational databases, and machine learning, a data analyst can become a data system developer. Much of these skills can be learned either from work experience or independently through online data science courses. In this guide, we focus primarily on the data science jobs track.
Data Scientists vs. Data Analysts: What’s the Difference?
The skills and job responsibilities of entry-level data science roles and data analysts often overlap. Both roles require statistical knowledge and the ability to program. However, there is a clear difference in the focus.
What Does a Data Scientist Do?
Data scientists answer questions about the business from the context of data. They leverage data to create new product features and tend to do more modeling and open-ended research. They’ll spend a lot of time cleaning data to make sure that it is usable for their models and their machine learning algorithms. When you watch Netflix and see a personalized list of recommended shows, that’s machine learning algorithms and data science at work.
Recommended by LinkedIn
Additionally, a subset of data science work is predictive analytics. “Predictive data analysis involves more complexity, because, as the name suggests, it predicts what is likely to happen in the future based on data from the past, or based on doing a data crossover between multiple datasets and sources,” said Rafael Lopes, a Partner Solutions Architect at Amazon Web Services and instructor for Getting Started with Data Analytics on AWS. “In a nutshell, it tries to predict the future based on actions from the past. The use of neural networks, regression, and decision trees are very common in diagnostic analysis.”
“Predictive data analysis involves more complexity, because it predicts what is likely to happen in the future based on data from the past, or based on doing a data crossover between multiple datasets and sources.”
Core Data Science Skills
What Does a Data Analyst Do?
Data analysts are responsible for answering questions about data. Unlike data scientists, data analysts are not concerned with using data to find trends or figuring out the business’s future. Their job is to analyze historical data, create and run A/B tests in product, and even design systems. Data analysts need to be proficient at data storing, warehousing, and utilizing tools such as Tableau.
Core Data Analyst Skills
Which Data Science Career is Right For You?
Deciding whether a career in data science is right for you is more than asking if you like working with data or not. It’s about asking yourself if you like working on complex, ambiguous problems and figuring out if you have the aptitude and patience to build your skillset. To determine if a data science career is right for you, ask yourself:
If you said yes to at least three or more of the above questions, then you may have what it takes to succeed as a data science professional—but which type of role makes sense?
Are You a Data Analyst?
Data analysts are generalists, which means they get to work in different teams and roles. They enjoy working on clearly defined, structured problems. They use data to extract and produce reports that are valuable to a business. Successful data analysts generally enjoy some level of complexity, but not as much as data scientists. Here’s how you can tell if you are fit to become a data analyst:
Are You a Data Scientist?
Data scientists love complexity. They enjoy answering questions that are broad and amorphous. They thrive on project-based assignments, and get excited about delivering insights. Data scientists are less likely to work on a wide variety of assignments in comparison to data analysts. Therefore, you might be a good fit for a career as a data scientist if:
Are You a Data Engineer?
Data engineers are very technical. They essentially organize and give structure to raw data in order for the data scientists and data analysts to execute their work. A good data engineer enjoys building data pipelines and likes software development. They have an advanced understanding of programming languages such as Java, SQL, or SAS. Therefore, you’ll be an ideal candidate for data engineering if:
Start Building Your Data Science and Analytics Career
Data is more important than ever in a world full of uncertainty. As businesses continue to transform, they’ll be looking for employees with data science and analytical skills to help them optimize resources and make data-driven decisions. Whether you want to explore data science for the first time, gain valuable analytics skills that can be applied to careers in many industries, or earn a degree, there’s a path at QA for you.
Data Science Career FAQs
Register Here for Data Analytics Training (International Cohort)
______________________