Class 32 - DOCUMENT GPT 2.0 Notes from the AI Basic Course by Irfan Malik & Dr Sheraz Naseer (Xeven Solutions)
Class 32 - DOCUMENT GPT 2.0
Notes from the AI Basic Course by Irfan Malik & Dr Sheraz Naseer (Xeven Solutions)
Now, It's up to you, How fast you move in the world of AI.
Till now, we have reached to a point, where you can do anything that you want for yourself.
Today, we will go move advance in LangChain.
Asking Right Questions matters alot.
Because it is linked with your Thought Process.
Selling is Directly linked with Psychology.
Always Set a Bottom Limit & Upgrade it with time to time.
Langchain is the bridge b/w LLM and data source.
Features of LangChain include {Data Loading, Splitting, Embeddings}
Applications are {ChatBots, Q/A Systems, Text Summarization Tools}
Vector Stores have the ability of similarity Research.
What are Chains?
Chains are the core buidling block of LangChain applications.
A chain is a sequence of steps that are performed on a piece of text.
these steps can include:
1- Retrieval
2- Generation
3- Post-processing
In Tech, if you want to grow be a Practionier. Develop Applications, Deploy it.
Explore Tech World.
Pipeline has a major role in DevOps.
Chain Includes
1- LLM Chain (LLM - Large Language Model)
2- Q/A Chain (also called retrieval Q/A chain)
In conversation chain, model will remember the history.
But, Q/A chain is different from conversation chain.
QA with Source Document?
QA with source document chain is a specific type of QA chain that includes a step to return the source documents that were used to generate the answer.
Qdrant Introduction:
It is a open-source vector database that allows you to store, index & search high-dimensional vectors at scale. It is a highly perfomant & scalable solution for vector search applications, such as
1- Question answering
2- Recommendation systems
3- NLP (Natural Language Processing)
Code Google Drive Link:
import streamlit as st
import os
from PyPDF2 import PdfReader
import docx
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Qdrant
import random
from datetime import datetime
from langchain import PromptTemplate
from langchain.chains import RetrievalQA
import string
from qdrant_client import QdrantClient
from dotenv import load_dotenv
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from streamlit_chat import message
from langchain.callbacks import get_openai_callback
from langchain.docstore.document import Document
openapi_key = st.secrets["OPENAI_API_KEY"]
qdrant_url = st.secrets["QDRANT_URL"]
qdrant_api_key = st.secrets["QDRANT_API_KEY"]
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
# "with" notation
def main():
load_dotenv()
st.set_page_config(page_title="Q/A with your file")
st.header("Retrieval QA Chain")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "processComplete" not in st.session_state:
st.session_state.processComplete = None
with st.sidebar:
uploaded_files = st.file_uploader("Upload your file",type=['pdf'],accept_multiple_files=True)
openai_api_key = openapi_key
# openai_api_key = st.text_input("OpenAI API Key", key=openapi_key , type="password")
process = st.button("Process")
if process:
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()
text_chunks_list = []
for uploaded_file in uploaded_files:
file_name = uploaded_file.name
file_text = get_files_text(uploaded_file)
# get text chunks
text_chunks = get_text_chunks(file_text, file_name )
text_chunks_list.extend(text_chunks)
# create vetore stores
curr_date = str(datetime.now())
collection_name = "".join(random.choices(string.ascii_letters, k=4)) + curr_date.split('.')[0].replace(':', '-').replace(" ", 'T')
vectorestore = get_vectorstore(text_chunks_list, collection_name)
st.write("Vectore Store Created...")
# create qa chain
num_chunks = 4
st.session_state.conversation = get_qa_chain(vectorestore,num_chunks) #for openAI
st.session_state.processComplete = True
if st.session_state.processComplete == True:
user_question = st.chat_input("Ask Question about your files.")
if user_question:
handel_userinput(user_question)
# Function to get the input file and read the text from it.
def get_files_text(uploaded_file):
text = ""
split_tup = os.path.splitext(uploaded_file.name)
file_extension = split_tup[1]
if file_extension == ".pdf":
Recommended by LinkedIn
text += get_pdf_text(uploaded_file)
elif file_extension == ".docx":
text += get_docx_text(uploaded_file)
else:
pass
return text
# Function to read PDF Files
def get_pdf_text(pdf):
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_docx_text(file):
doc = docx.Document(file)
allText = []
for docpara in doc.paragraphs:
allText.append(docpara.text)
text = ' '.join(allText)
return text
def get_text_chunks(text, filename):
# spilit ito chuncks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=80,
chunk_overlap=20,
length_function=len
)
chunks = text_splitter.split_text(text)
doc_list = []
for chunk in chunks:
metadata = {"source": filename}
doc_string = Document(page_content=chunk, metadata=metadata)
doc_list.append(doc_string)
return doc_list
def get_vectorstore(text_chunks, COLLECTION_NAME):
# Using the hugging face embedding models
try:
# creating the Vectore Store using Facebook AI Semantic search
knowledge_base = Qdrant.from_documents(
documents = text_chunks,
embedding = embeddings,
url=qdrant_url,
prefer_grpc=True,
api_key=qdrant_api_key,
collection_name=COLLECTION_NAME,
)
except Exception as e:
st.write(f"Error: {e}")
return knowledge_base
def get_qa_chain(vectorstore,num_chunks):
# prompt_template = """
# You are trained to extract Answer from the given Context and Question. Then, precise the Answer in less than 20 words. If the Answer is not found in the Context, then return "N/A", otherwise return the precise Answer.
# Context: {context}
# Question: {question}"""
# mprompt_url = PromptTemplate(
# template=prompt_template, input_variables=["context", "question"], validate_template=False)
# chain_type_kwargs = {"prompt": mprompt_url}
# qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(model = "gpt-3.5-turbo"), chain_type="stuff",
# retriever=vectorstore.as_retriever(search_type="similarity",
# search_kwargs={"k": num_chunks}), chain_type_kwargs=chain_type_kwargs, return_source_documents=True)
qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(model = "gpt-3.5-turbo"), chain_type="stuff",
retriever=vectorstore.as_retriever(search_type="similarity",
search_kwargs={"k": num_chunks}), return_source_documents=True)
return qa
def handel_userinput(user_question):
with st.spinner('Generating response...'):
result = st.session_state.conversation({"query": user_question})
response = result['result']
source = result['source_documents'][0].metadata['source']
st.session_state.chat_history.append(user_question)
st.session_state.chat_history.append(f"{response} \n Source Document: {source}")
# Layout of input/response containers
response_container = st.container()
with response_container:
for i, messages in enumerate(st.session_state.chat_history):
if i % 2 == 0:
message(messages, is_user=True, key=str(i))
else:
message(messages, key=str(i))
if name == '__main__':
main()
}
In Qdrant, you can access upto 1GB free RAM.
Tomorrow, we will discuss LlamaIndex.
In VS Studio, Run this command on terminal
{pip install qdrant-client} to avoid qrdant_client error
#AI #artificialintelligence #datascience #irfanmalik #drsheraz #xevensolutions #openai #chatbot #streamlit #langchain #hamzanadeem