Creating your own dataset of MRI images to train a CNN model

Creating your own dataset of MRI images to train a CNN model

This involves several steps, including data collection, annotation, preprocessing, and augmentation. Here’s a step-by-step guide with a focus on preprocessing techniques:

 Step-by-Step Guide to Creating an MRI Image Dataset

Step 1: Collect MRI Images

Sources: Collect MRI images from medical databases, hospitals, research collaborations, or publicly available datasets such as the NIH Clinical Center or Kaggle.

Ethics: Ensure you have the necessary permissions and ethical approvals for using medical images.

Step 2: Annotate the Data

Labeling: Annotate the images based on the diagnosis or regions of interest. This might involve labeling images as 'tumor', 'no tumor', or specific types of conditions.

Tools: Use tools like LabelImg Link (labelImg · PyPI)  for image annotation, or specialized medical imaging tools like ITK-SNAP Link (ITK-SNAP Medical Image Segmentation Tool download | SourceForge.net) or 3D Slicer Link (3D Slicer image computing platform | 3D Slicer).

 Step 3: Organize the Data

Directory Structure: Organize images into directories based on their labels.

    dataset/

      tumor/

        image1.png

        image2.png

      no_tumor/

        image1.png

 image2.png

Step 4: Preprocess the Data

Preprocessing is crucial for ensuring that your model receives clean and standardized data. Here are some common preprocessing techniques for MRI images:

A. Resizing

Resize all images to a fixed size (e.g., 128x128, 224x224) to ensure uniformity.

    Python Link  (pillow · PyPI)

    from PIL import Image

   import os

    def resize_images(image_path, output_path, size=(128, 128)):

        for filename in os.listdir(image_path):

            if filename.endswith(".png"):

                img = Image.open(os.path.join(image_path, filename))

                img = img.resize(size)

                img.save(os.path.join(output_path, filename))


    resize_images('dataset/tumor', 'resized/tumor')

    resize_images('dataset/no_tumor', 'resized/no_tumor')

B. Normalization

Normalize pixel values to a range of 0 to 1 or standardize them to have zero mean and unit variance.

  python

    import numpy as np

    from tensorflow.keras.preprocessing.image import ImageDataGenerator

    datagen = ImageDataGenerator(rescale=1./255)

    Standardization (optional):

·         mean = np.mean(images, axis=(0,1,2,3))

·         std = np.std(images, axis=(0,1,2,3))

·         datagen = ImageDataGenerator(preprocessing_function=lambda x: (x - mean) / std)


C. Data Augmentation

Use augmentation techniques to artificially increase the size of your dataset and improve model generalization.

   python

    datagen = ImageDataGenerator(

        rotation_range=20,

        width_shift_range=0.2,

        height_shift_range=0.2,

        shear_range=0.2,

        zoom_range=0.2,

        horizontal_flip=True,

        fill_mode='nearest'

    )

D. Cropping and Padding

Crop or pad images to ensure consistent dimensions and focus on the region of interest.

    python

    def crop_center(image, cropx, cropy):

        y, x = image.shape[:2]

        startx = x//2 - (cropx//2)

        starty = y//2 - (cropy//2)

        return image[starty:starty+cropy, startx:startx+cropx]


    def pad_image(image, target_size):

        old_size = image.shape[:2]

        delta_w = target_size[1] - old_size[1]

        delta_h = target_size[0] - old_size[0]

        padding = ((delta_h//2, delta_h-(delta_h//2)), (delta_w//2, delta_w-(delta_w//2)), (0, 0))

        return np.pad(image, padding, mode='constant', constant_values=0)

E. Histogram Equalization

 Apply histogram equalization to improve the contrast of the images.

python

    import cv2

    def equalize_histogram(image_path, output_path):

        for filename in os.listdir(image_path):

            if filename.endswith(".png"):

                img = cv2.imread(os.path.join(image_path, filename), cv2.IMREAD_GRAYSCALE)

                equ = cv2.equalizeHist(img)

                cv2.imwrite(os.path.join(output_path, filename), equ)

    equalize_histogram('dataset/tumor', 'equalized/tumor')

    equalize_histogram('dataset/no_tumor', 'equalized/no_tumor')

Step 5: Split the Data

Divide your dataset into training, validation, and test sets. A common split is:

70% for training

20% for validation

10% for testing

Step 6: Train Your CNN Model

Use TensorFlow/Keras to define and train your CNN model:

`python

import tensorflow as tf

from tensorflow.keras import layers, models

model = models.Sequential([

    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)),

    layers.MaxPooling2D((2, 2)),

    layers.Conv2D(64, (3, 3), activation='relu'),

    layers.MaxPooling2D((2, 2)),

    layers.Conv2D(128, (3, 3), activation='relu'),

    layers.MaxPooling2D((2, 2)),

    layers.Flatten(),

    layers.Dense(128, activation='relu'),

    layers.Dense(1, activation='sigmoid')

])

model.compile(optimizer='adam',

              loss='binary_crossentropy',

              metrics=['accuracy'])

train_generator = datagen.flow_from_directory(

    'resized',

    target_size=(128, 128),

    color_mode='grayscale',

    batch_size=32,

    class_mode='binary'

)

history = model.fit(train_generator, epochs=10, validation_data=validation_generator)

Step 7: Evaluate Your Model

Evaluate the model's performance on the test set:

python

test_loss, test_acc = model.evaluate(test_generator)

print(f'Test accuracy: {test_acc}')

By following these steps and using these preprocessing techniques, you can create a robust MRI image dataset for training a CNN model. Preprocessing helps to standardize the data, enhance features, and improve the overall performance of the model.

#AI#MachineLearning#Technology#DataScience#Python#DeepLearning#NeuralNetworks#ComputerVision#ImageRecognition#CV#ComputerGraphics#CNN#Model#

To view or add a comment, sign in

Insights from the community

Others also viewed

Explore topics