Key Topics for Random Processes & Statistics and Probability
Comprehensive List of Topics for Random Processes:
1. Stochastic Processes
2. Markov Chains
3. Continuous-Time Markov Chains
4. Markov Decision Processes (MDPs)
5. Random Walks
6. Poisson Processes
7. Renewal Processes
8. Stationary Processes
9. Weak and Strong Stationarity
10. Autocorrelation Function
11. Autoregressive Processes (AR)
12. Moving Average Processes (MA)
13. ARMA and ARIMA Models
14. ARCH and GARCH Models
15. Ergodicity
16. Brownian Motion (Wiener Process)
17. Fractional Brownian Motion
18. Gaussian Processes
19. Lévy Processes
20. Martingales
21. Submartingales and Supermartingales
22. Random Fields
23. Spectral Analysis of Time Series
24. Power Spectral Density
25. Cross-Correlation and Cross-Spectrum
26. Queuing Theory
27. Random Walk Hypothesis
28. Mean Reversion
29. Wiener-Khinchin Theorem
30. Entropy and Information Theory
31. Fokker-Planck Equation
32. Kolmogorov Equations
33. Jump Processes
34. Semi-Markov Processes
35. Diffusion Processes
36. Stochastic Differential Equations (SDEs)
37. Ito’s Lemma
38. Langevin Equation
39. Filtering Theory (e.g., Kalman Filter)
40. Random Measures
41. Cox Processes
42. Birth-Death Processes
43. Time Series Analysis
44. Hidden Markov Models (HMM)
45. Self-Similar Processes
46. Long-Range Dependence
47. Hawkes Processes
48. Empirical Processes
49. Random Matrices
50. Random Graphs
Comprehensive List of Topics for Probability and Statistics:
1. Basic Probability Theory
2. Axioms of Probability
3. Random Variables
4. Probability Mass Function (PMF)
5. Probability Density Function (PDF)
6. Cumulative Distribution Function (CDF)
7. Joint, Marginal, and Conditional Distributions
8. Expected Value (Mean)
9. Variance and Standard Deviation
10. Covariance and Correlation
11. Skewness and Kurtosis
12. Moments and Moment Generating Functions
13. Chebyshev’s Inequality
14. Probability Generating Functions
15. Characteristic Functions
16. Law of Large Numbers
17. Central Limit Theorem
18. Convergence in Probability and Distribution
19. Bayes' Theorem
20. Bayesian Inference
21. Prior and Posterior Distributions
22. Hypothesis Testing
23. p-Values
24. Type I and Type II Errors
25. Confidence Intervals
Recommended by LinkedIn
26. Sampling Distributions
27. Point Estimation
28. Maximum Likelihood Estimation (MLE)
29. Method of Moments
30. Bayesian Estimation
31. Interval Estimation
32. Sampling Theory
33. Markov Property
34. Monte Carlo Methods
35. Bootstrap and Resampling Methods
36. Permutation Tests
37. Experimental Design
38. Analysis of Variance (ANOVA)
39. Factorial Designs
40. Regression Analysis
41. Linear Regression
42. Multiple Linear Regression
43. Logistic Regression
44. Polynomial Regression
45. Generalized Linear Models (GLM)
46. Mixed-Effects Models
47. Time Series Analysis
48. Non-parametric Statistics
49. Parametric vs. Non-Parametric Tests
50. Goodness-of-Fit Tests (e.g., Chi-Square Test)
51. Multivariate Statistics
52. Principal Component Analysis (PCA)
53. Factor Analysis
54. Discriminant Analysis
55. Canonical Correlation Analysis
56. Clustering (K-means, Hierarchical)
57. Classification Techniques
58. Decision Trees
59. Random Forests
60. Support Vector Machines (SVM)
61. Naive Bayes Classifier
62. Bayesian Networks
63. Hidden Markov Models (HMMs)
64. Time Series Forecasting
65. AR, MA, and ARIMA Models
66. Seasonal Decomposition
67. Exponential Smoothing
68. Cointegration and Error Correction Models
69. Time-Varying Volatility Models (ARCH/GARCH)
70. Survival Analysis
71. Reliability Theory
72. Extreme Value Theory
73. Risk Analysis
74. Quality Control and SPC
75. Experimental Design and RCTs
76. Empirical Bayes Methods
77. Robust Statistics
78. Statistical Learning Theory
79. Bootstrap Confidence Intervals
80. Empirical Likelihood
81. Kernel Density Estimation
82. Probability Inequalities (e.g., Jensen’s Inequality)
83. Asymptotic Theory
84. Sequential Analysis
85. Influence Functions
86. U-statistics
87. Sufficient Statistics
88. Exponential Families
89. Decision Theory
90. Game Theory
91. Utility Theory
92. Meta-Analysis
93. Statistical Computing
94. Missing Data Techniques
95. Spatial Statistics
96. Functional Data Analysis
97. Multilevel Models
98. Time-Varying Coefficient Models
99. Causal Inference
100. Propensity Score Matching