Maple: redefining fast food… to turn it into faster food!

Maple: redefining fast food… to turn it into faster food!

Maple, the New York restaurant co-owned by superchef David Chang, is redefining fast food standards, based on the core values of convenience and comfort, and making an extensive use of technology to focus on the essentials: the idea is to make fast food faster.

What makes Maple really different is that it is simply an app. Not a location app or a platform, but a means to control every aspect of the business, from the kitchen to the delivery, and focused on maximizing throughput, the number of orders it is able to process while maintaining its preset quality parameters. Until now, the undisputed leader in this field has been Chipotle, where the unwary diner can be easily fazed by the rows of assistants waiting to dispatch 300 orders per hour, an order every 12 seconds. Not an easy task to navigate when you go there for the first time!

Maple’s goal is to be three times faster than Chipotle, and dispatch at least 1,100 orders an hour. You order your food via the app, and it is then delivered by bicycle. There are no tables, no waiters, no cash registers, just a production line preparing pre-set menus that are cooked, plated up and sent out as quickly as possible. The whole thing is set up along optimum operational lines. Demand is estimated on machine learning based on estimates from the results of each dish, while the cooks use an app that tells them what to put in each bag, and the delivery team use an app that gives them the best route, wherever they are leaving from: they can return to any outlet, or pick up another delivery en route.

The kitchens are not much bigger than a typical Chipotle outlet. But by eliminating all inefficient processes, those used by customers, and doing everything by app, the possibilities for improvement are huge: the customer decides everything via the app, adding or subtracting ingredients, as well as inputting all delivery details. Around 20 people work in an average space of some 280 square meters (compared to 230 square meters in Chipotle), along with around 50 bike messengers. To get an idea of how efficient Maple is, it needs around 40 outlets to cover Manhattan below Central Park, while Maple is able to do so through between five and seven stores.

What’s particularly interesting about Maple is that its ultra-efficient use of technology isn’t at the expense of a workforce employed via sub-contracting. While Grubhub, Postmates, Hello Alfred, UberEats, DoorDash and others are simply deliverers of food from restaurants, Maple is a beautifully designed machine whose survival is based on constant internal coordination, along with the best possible optimization of its processes and its data architecture. Just take a look at its job offers

I haven’t seen a Maple case study at any business school yet, but it can only be a matter of time.


(En español, aquí)

Michael (Mike) Webster PhD

Franchise Growth Strategist | Co-Producer of Franchise Chat & Franchise Connect | Empowering Brands on LinkedIn

8y

This was interesting, so I shared it with our audience at Franchise-Info to get you more views.

Like
Reply
Kristina Lauzon

Certified Nutrition Manager/Culinary Scientist

8y

Wondering if they are "cooking" foods or just rehearing and serving... you have to respect the food and that food takes time to cook... once it's cooks there are ways to be better efficient for plating and delivery.. just have to wonder if the integrity of the finished product is being compromised for efficiency of service.

Like
Reply

Awesome! It's exciting to read about a food establishment using technology finally!

Like
Reply

To view or add a comment, sign in

More articles by Enrique Dans

  • El desastre del software y la automoción

    El desastre del software y la automoción

    GM se ve obligada a detener temporalmente las ventas de su Chevy Blazer EV después de detectar un sinnúmero de…

    11 Comments
  • El enésimo drama de la automoción tradicional: la interfaz

    El enésimo drama de la automoción tradicional: la interfaz

    Porsche acaba de anunciar que se une a toda la legión de empresas de automoción tradicionales y renuncia a tener una…

  • Poniendo a prueba a ChatGPT: consultores centauros o cyborgs

    Poniendo a prueba a ChatGPT: consultores centauros o cyborgs

    Un working paper de Harvard, «Navigating the jagged technological frontier: field experimental evidence of the effects…

    12 Comments
  • Suscripciones, tramos… y spam

    Suscripciones, tramos… y spam

    Elon Musk confirma sus intenciones de convertir la antigua Twitter, ahora X, en un complejo entramado de suscripciones…

  • El código abierto y sus límites

    El código abierto y sus límites

    Sin duda, el código abierto es la forma más ventajosa de crear software: cuando un proyecto de software toma la forma…

  • La gran expansión china

    La gran expansión china

    El ranking de apps más descargadas en el mundo en iOS y Android para el mes de septiembre de 2023 elaborado por…

    1 Comment
  • Starlink y las torres de telefonía en el espacio

    Starlink y las torres de telefonía en el espacio

    Starlink remodela su página web y añade una oferta de internet, voz y datos para smartphones provistos de conectividad…

    3 Comments
  • La fotografía con trampa

    La fotografía con trampa

    La presentación de los nuevos smartphones de Google, Pixel 8 y Pixel 8 Pro, y fundamentalmente de las funcionalidades…

  • Las consecuencias de reprimir los procesos de innovación

    Las consecuencias de reprimir los procesos de innovación

    Mi columna de esta semana en Invertia se titula «El mercado de trabajo y la innovación» (pdf), y previene sobre los…

  • We are on the verge of the most dangerous election in history

    We are on the verge of the most dangerous election in history

    In just a few days, on November 3rd, the US presidential elections will take place, the most dangerous in history, and…

    2 Comments

Insights from the community

Others also viewed

Explore topics