Taming the Sun: The challenges of Facade Solar Control
Sun is one of the most important natural resources that a building can harvest, but to do so efficiently, a sun control strategy along with specific shading devices must be applied, to have the desired result on the amount of sunlight and heat entering a building. For example, in warm, sunny climates we need to minimize the solar gains, as it results in excessive cooling loads. In cold and temperate climates, incident solar rays on the south oriented envelope contribute to active and passive solar heating. Additional to the above, control of the direct and diffuse daylight to eliminate glare is a major concern. In every building, sun control using the relevant shading devices is challenging and often results in different facade types per building orientation. In this post, we will present the basic principles of solar shading and the key idea before selecting the appropriate shading device for our needs.
Solar Geometry Basics
The design of effective shading devices will depend on the solar orientation of a particular building facade. To properly design shading devices, it is necessary to understand the position of the sun in the sky during the year. The position of the sun is expressed in terms of altitude and azimuth angles (along with many other angles too, but let’s keep in simple). The altitude angle is the angle of the sun above the horizon, achieving its maximum on a given day at solar noon – which slightly differs from 12pm o’ clock. The azimuth angle, also known as the bearing angle, is the angle of the sun’s projection onto the ground plane relative to the south for the northern hemisphere and to the north for the southern hemisphere. For any given location, the position of the sun is well known either by using old-school sun path diagrams or online tools like SunEarthTools.
Designing efficient shading systems
Architectural shading devices, either fixed or movable, can have a dramatic impact on building aesthetics. This impact sometimes is good, but in most of the cases is destroying the building’s architectural design intent, especially when applied to existing structures. For new developments, even if it’s still a major challenge, the earlier in the facade design process that shading devices are considered, the more likely they are to be sleek and well-integrated in the overall building envelope. In terms of quantification measures, the degree of window shading is a major consideration. Both the Projection Factor (PF – The ratio of the distance the overhang projects from the window surface to its height above the sill of the window it shades) for exterior shading and the Shading Coefficient (SC – The ratio of solar heat gain through a specific glazing system to the total solar heat gain through a single layer of clear, double-strength glass) of glass must be evaluated.
Shading Strategies for Exterior Shading Devices Exterior shading devices, either attached to the primary building skin or as a feature of the building skin itself, are typically more effective than interior devices and block solar heat gains more efficiently. Some key ideas for choosing the best shading devices are below:
Shading Strategies for Window Plane Systems It’s not only a battle between exterior and interior, as many systems applied on the window plane also has to be considered as an option in some cases. Some key ideas for choosing such devices are below:
Shading Strategies for Exterior Shading Devices
Interior shading alone has limited ability to control solar gains and are less effective than exterior ones because the sun has already entered the building. They also depend on occupants’ behavior, which can’t be patronized. Some of the strategies used for better results with interior shading are below:
Invest in a bespoke facade shading solution
There are numerous options and design possibilities in building envelopes that provide sun control and shading. For many architects and developers, conventional “off the shelf” solutions are not performing well and thus are not what is required. In these cases, bespoke development and engineering may be better suited to offer the desired results, either for a second building skin or new projects. Working with a specialist company with in-house design and engineering experts can deliver the ideal shading solution for your needs. Via Windows & Daylighting
Source: www.glasscon.com