Testing in Production: A Detailed Guide
When most firms employed a waterfall development model, it was widely joked about in the industry that Google kept its products in beta forever. Google has been a pioneer in making the case for in-production testing. Traditionally, before a build could go live, a tester was responsible for testing all scenarios, both defined and extempore, in a testing environment. However, this concept is evolving on multiple fronts today. For example, the tester is no longer testing alone. Developers, designers, build engineers, other stakeholders, and end users, both inside and outside the product team, are testing the product and providing feedback.
Today’s test environment, a product under test, underlying technologies, and test configurations (systems, platforms, browsers, and so on) are all pretty complex. The services perspective is quite strong; the days of a local setup to test the product are long gone. Cloud environments provide the size and simplicity of use required for sophisticated interface testing, but the production environment provides unique testing possibilities that cannot be completely integrated before release. And the restrictions that the test team faces, such as time, budget, and the availability of specialized testers, are more visible than ever before. With all of these variables at work, testing in production is unavoidable. However, rather than viewing testing in production as an option imposed on teams, if the underlying benefits are carefully considered, this activity may substantially aid in improving product quality. So, what exactly does it mean to test in production, what are some of the methods for doing so, and how does it help?
What is testing in production?
“Testing in production” was a frequent joke among software programmers around a decade ago. It was a shorthand way of saying something you would never do… until certain tools started enticing you to do just that. If you Google “testing in production,” you’ll quickly get your fill of “testing in production” memes.
Testing in production is a process in which the quality function of validating and verifying an application is performed in the live environment after release, either by the tester or by customers. Others who provide input to the product team may include tech people, marketing teams, or analysts. Testing in production provides more realistic testing chances, enhances application visibility between the core product team and consumers, and promotes continuous development through continuous testing. Testing in production is a critical strategy to incorporate into your testing process in today’s cloud environment.
Of course, faults reported from the field have a negative connotation: this simply means the testing efforts were less efficient. An issue reported from the field is given top attention and resolved as quickly as possible. While faults that arise in production might still reflect negatively on the team’s efforts, a test in-production endeavor now has a broader reach. Not only are reactive actions done in response to user-reported concerns performed, but also proactive planned testing activities are undertaken before the product is formally released.
Bonus information – It is associated with Right-shifting activity
Shift right is the practice of shifting certain testing later in the DevOps process to production testing. Real-world deployments are used in production testing to evaluate and measure an application’s behavior and performance. A shift-left test method is one way DevOps teams may increase velocity. Shifting left moves most testing earlier in the DevOps pipeline, reducing the time it takes for new code to reach production and function successfully. However, while many types of tests, such as unit tests, may readily shift left, other classes of tests cannot be executed without deploying a portion or the entirety of a solution. Although deploying to a QA or staging service can imitate a comparable environment, it is not a complete substitute for the production environment.
What Does Not Represent Production Testing?
Let’s be clear about what testing in production is NOT before we go any further with this topic. Clarifying this is especially crucial when taking into account what goes on in a production setting and the effects of poor production testing procedures. Continuous deployments and rollbacks are not part of production testing. It is also not being careless with what you expose. You should not employ real production data to guarantee that everything works when testing in production. That is still the purpose of the testing process in test environments, staging environments, and everywhere else your program is tested before it goes into production.
Production testing in your real production system is all about studying, making improvements, and informing your choices with the most up-to-date and accurate data available – after the code has already gone through the regular deployment process. Serving production traffic and actual users allows you to collect user data, test software modifications, and obtain monitoring indicators that you may use to determine whether what you give is what you anticipated.
Why production test?
Companies have always attempted to guarantee that the software they generate has been properly tested for defects in development, staging, and pre-production settings before it reaches customers in production. Early detection of bugs avoids customers from encountering mistakes, enhancing consumer trust and overall happiness with a brand and its goods.
It is, however, difficult to catch all defects in development and staging. Engineering and QA teams can spend a significant amount of time and effort developing unit tests, test suites, and test automation systems, attempting to simulate the production environment, or manually verifying user flows with mock user data and test cases to expose bugs, only to discover that a critical corner-case was overlooked. In the end, even after extensive testing throughout development, many consumers may encounter problematic software.
In many cases, completely simulating live, real-world systems in a test environment is impossible. With all of the dependencies inherent in current production systems, as well as the numerous potential edge cases, production testing has become an essential component of DevOps and software testing. Top software businesses like Google and Amazon frequently deploy new features to a subset of their traffic to gauge their impact.
Let’s look at some of the benefits of testing in production.
You’ll be more agile if you deploy more frequently. You may respond to customer requests more quickly, implementing updates as needed. Frequent deployments enable flag-driven development, which means that development will be done with the idea of having a feature flag (or a Toggle) that switches on the capability when applicable. If done effectively, this eliminates the need for a programmer to be concerned about functionality “leaking” into higher environments, even if the functionality isn’t ready.
Why Use Feature Flags (Toggling) in Production Testing?
Toggling, or feature flags, are crucial for efficient production testing. This is because they allow us to turn things on and off instantaneously against whatever condition we choose, without the complexity of a rollback or redeployment. Let’s look at what necessary capabilities feature flags provide in a production system that makes them so important:
Here is how it is described in Wikipedia:
“A feature toggle in software development provides an alternative to maintaining multiple feature branches in source code. A condition within the code enables or disables a feature during runtime. In agile settings the toggle is used in production, to switch on the feature on demand, for some or all the users. Thus, feature toggles do make it easier to release often. Advanced rollout strategies such as canary rollout and A/B testing are easier to handle.
Recommended by LinkedIn
Even if new releases are not deployed to production continuously, continuous delivery is supported by feature toggles. The feature is integrated into the main branch before it is completed. The version is deployed into a test environment once, the toggle allows you to turn the feature on, and test it. Software integration cycles get shorter, and a version ready to go to production can be provided.
The third use of the technique is to allow developers to release a version of a product that has unfinished features. These unfinished features are hidden (toggled) so that they do not appear in the user interface. There is less effort to merge features into and out of the productive branch, and hence allows many small incremental versions of software.”
As seen above, feature flags decrease the cost of production testing to almost nothing. They make production testing easier and faster.
Why test in production rather than staging?
You may be asking why it is preferable to test in production rather than after staging. After all, the staging testing environment exists for a reason: to allow you to quickly test your products and guarantee that all features are working properly before going live. However, you should be aware that various people interpret the staging environment differently. Staging testing is an important process in most organizations and serves as a preliminary to the formal launch of the product. Unfortunately, faults in the staging environment are not always detectable.
Two main aspects contribute to this:
Even though the staging environment is as near to production as possible, some forms of testing are just best done with real traffic. Soak testing, for example, is a type of deployment testing that involves assessing or monitoring the reliability and stability of a service over time (For example CPU utilization, memory leaks, and so on). This is always done during the production process. This is when production testing is necessary.
What kind of production testing are available?
There are a few strategies that may be employed; let’s go through the most important ones.
Scale/Volume Testing
Although high user traffic may be mimicked in a lower setting, volume testing in a production environment yields the most accurate findings. It gives data for every type of network load, browser responsiveness, and server performance when serving client requests.
A/B Testing
A/B testing is one of the testing procedures that can only be used in a live setting. It involves releasing two (or more) different versions of an application/software to see if real users prefer one over the other. It is a statistical activity in which we divide the user base into two groups, A and B. Then, show group A users the base version and group B users a slightly modified version. Finally, we may compare both sets of user groups to forecast application behavior so that we can make an informed decision about which version to push out in the upcoming release. Because A/B testing can only be successful with real users, it cannot be performed outside of the production environment. When implemented right, it delivers somewhat input to the business.
Monitoring And Evaluation
Continuous monitoring is another set of test methods in production that can assist uncover vulnerabilities that can only emerge in production. Organizations may uncover software faults that can only emerge in production by continuously monitoring a prod environment following software release. Identifying sluggish loading pages in a web application, for example, changes drastically in production. This is because a website may load quickly in staging with a smaller data set and less traffic. It’s a whole different tale in production. Monitoring how long it takes a proxy server to execute requests provides real-world data on what visitors may encounter when using the site. Slow page loading is detrimental to the user experience and should be addressed as soon as feasible.
Regression testing
One of the most significant characteristics of a new release is that it does not hurt the current components. As a result, we must guarantee that no new bugs are introduced during the deployment and that the newly released code integrates properly with the pre-existing code. Regression testing in production may be a significantly reduced version of the entire regression test suite, depending on how the deployment is set up inside the organization.
To summarize, you should run as many regression tests in production as necessary to ensure that the deployment went well and that no unexpected bugs were discovered during the release.
Challenges in Testing in Production
While testing in production provides plenty of flexibility and opportunity, it is not an encouragement for testers to put off their testing until after the release. Quality has evolved to require additional team members, such as developers, designers, and architects, to test in all circumstances, including live or staging environments. The genuinely dedicated tester will use this to free up cycles and take on greater and better challenges.
It may also be enticing to adopt testing at the organizational level to promote a faster time to market at a lower cost, but this approach should be avoided at all costs. Product quality, user loyalty, brand acceptance in the marketplace, and the general status of the test team may weaken.
When properly implemented, testing in production should be considered extremely valuable, but risky when trespassed upon unprepared. Testing in production, with well-defined limits and a clear value proposition, has a lot to offer in the next years, especially as the lines between the product team and end users become increasingly blurred.
Let’s have a look at some of the challenges you may face to test in production.
Thanks for reading! Like what you see? 🤩 Then go to LambdaTest Blogs for more! And Follow us on LinkedIn and never miss another update.