"Zoom-out, it all makes sense." Vol.7: A.I. is not I. because it is bounded by our own I.
There has been a recent hype again around General I.A. due to chatGPT. It makes sense, as it is very impressive from a user point of view (see Turing Test). It is a disruptive tool - no doubt. But... is it really disruptive from an academic point of view so that we can even consider the discussion around the I of the machines?
DataMAPs introduced in September 2022 a pending academic discussion that was later underpinned by Nature in January 2023: there is minimal disruption in research.
A major disruption is one that changes the seed of incremental innovation. We need to be bolder. (@satelena on Twitter)
Why? Well, in our view it is relatively easy to explain: try to publish a paper that is disruptive vs a paper that proposes an improvement in the third iteration of a trendy approach. You will soon go down the second route as it is overall best for you as an academic individual. But that behavior is precisely a rabbit hole for the entire society (similar to what happens with Digitalization at your company). Anybody's fault? Not quite - it is how the game has evolved. And players are just players - not super heroes. It took Marta Diez-Fernández and myself years to build and fund our own Centre of Excellence (CoE) precisely to enjoy the fun (and frustration) behind disruption.
In fact, we strongly believe CoEs will be at the core of the companies (rather than aside) which is probably the best news to unlock disruption's incentives (nothing new under the sun at a number of research-driven industries). But lets leave that discussion here (along with the one around whether Applied Science is Science or Science Applied is Applied Science, which I love) to use the hype of chatGPT as yet another example that explains why nowadays AI is still advanced statistics (with a lot of code) rather than intelligence.
How does chatGPT, which is in turn built upon GPT-3, works? Well, out of the myriad of details, I would highlight the following five:
Recommended by LinkedIn
Plus some extras around reinforcement learning and supervised learning that are very significant yet I wouldn't say they add too much eloquence here.
So, now you should have some intuition behind what to expect from the I in AI given chatGPT. It is a great incremental academic innovation and a probably disruptive tool. It accounts for errors because it is not looking at concepts or ideas but at overfitted detection of patterns upon those tokens (which are improvable). It looks smart because the data is smart - it is us!. And it won't update fast because the data has to be first crawled from all over the internet and calibration is expensive.
Interestingly enough, Turing's chase was a very good provocation to get us here after all these years but his test can be hacked with mere advanced statistics and a lot of code. And that is awesome, don't get me wrong. I love it and it is complex. But it is not intel, my friends.
Thanks for reading