

Grantham Research Institute on Climate Change and the Environment

Bridging the gap: improving the economic and policy framework for carbon capture and storage in the European Union

A policy brief by the Grantham Research Institute on Climate Change and the Environment (LSE) & the Grantham Institute (Imperial College)

Samuela Bassi, Rodney Boyd, Simon Buckle, Paul Fennell, Niall Mac Dowell, Zen Makuch and Iain Staffell

> Brussels, 16 June 2015 London, 24 June 2015

Grantham Research Institute on Climate Change and the Environment

This presentation

Aim and focus

CCS globally and in the EU

- Scenarios
- State of CCS

Key challenges

- Technology, infrastructure & storage
- Costs
- Finance
- Regulation & policy
- Policy recommendations
- Conclusions

Grantham Research Institute on Climate Change and the Environment

Aim and focus of the study

Aim of the study: Provide policy advice on how to make CCS more bankable in the EU

Focus on CCS - Why?

- Central in most energy scenarios & EU Energy Roadmap:
 - Essential in lowest cost technology portfolios
 - Can provide low-carbon electricity back up
 - Potential for negative emissions (BECCS)
 - Industrial applications
- Yet not progressing as fast as expected in the EU

Grantham Institute Climate Change and the Environment

An institute of Imperial College London

Grantham Research Institute on Climate Change and the Environment

CCS globally and in the European Union

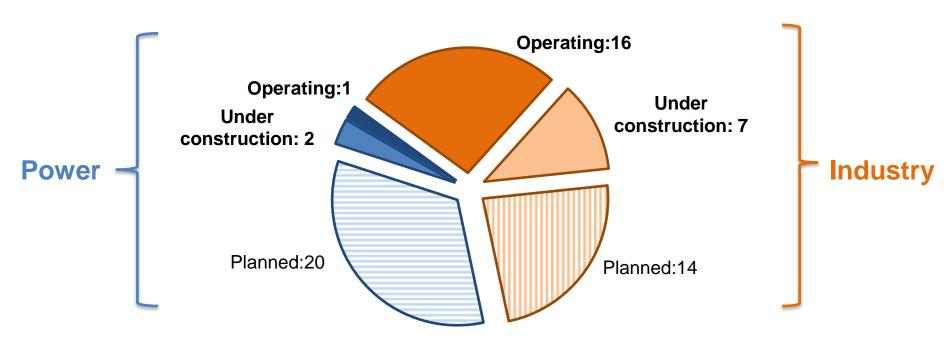
Grantham Institute Climate Change and the Environment An institute of Imperial College London

Grantham Research Institute on Climate Change and the Environment

Source	Scenario	CCS	% total	CCS
		generation	generation	capacity
World		TWh	%	GW
IEA	2DS base	6,299	15%	960
	2DS hiRen	2,945	7%	460
	2DS hiNuc	3,055	7%	470
	2DS no CCS	0	0%	0
Global Energy Assessment	Mix	18,158	35%	n/a
	Efficiency	9,441	22%	n/a
	Supply	11,761	20%	n/a
European Union				
EU Commission	Low nuclear	1,548	32%	248
	Diversified	1,189	24%	193
	High energy			
	efficiency	878	21%	149
	Delayed CCS	926	19%	148
	High RES	355	7%	53
Energy Modelling Forum (EMF28)	80% DEF	570	14%	n/a
	80%EFF	536	14%	0
	80% PESS	0	0%	0
	80% GREEN	0	0%	0
Global Energy Assessment	Mix	2,470	37%	n/a
	Supply	1,841	26%	n/a
	Efficiency	990	19%	n/a

CCS in 2C scenarios (2050)

- CCS up to 50% of electricity by 2050
- Some scenarios not feasible without CCS
- If feasible, more expensive (IPCC: +140%)


All scenarios in EU Energy Roadmap 2050 include CCS

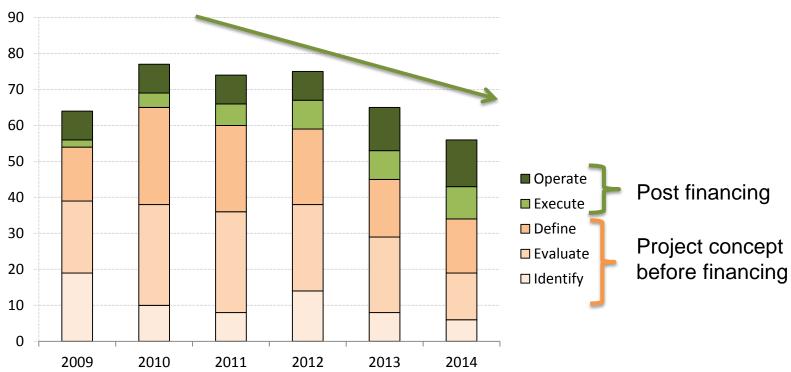
Grantham Research Institute on Climate Change and the Environment

State of world CCS projects

EU: 12 power plants expected by 2015 , however to date

0 operating/under construction

6 planned (power)


- **5 UK** (Peterhead; White Rose; Don Valley; C.GEN; Captain Clean)
- 1 Netherlands (ROAD)

Grantham Research Institute on Climate Change and the Environment

...and the pipeline of projects is drying out

Global CCS large scale integrated projects by development phase, 2009-2014

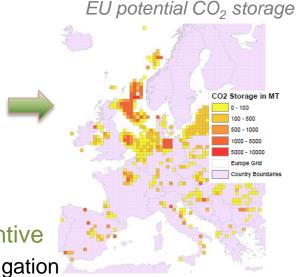
Source: Based on GCCSI (2014a, 2014b)

Grantham Institute Climate Change and the Environment

An institute of Imperial College London

Grantham Research Institute on Climate Change and the Environment

Key challenges

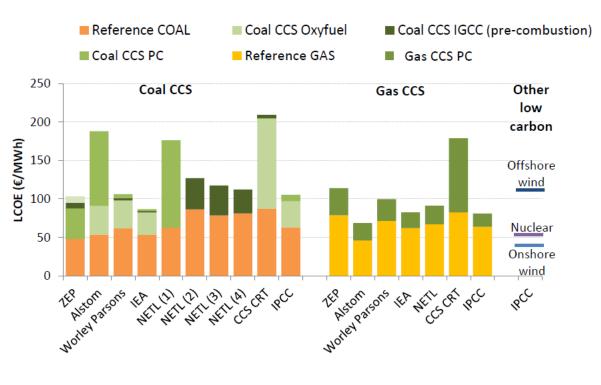


Grantham Research Institute on Climate Change and the Environment

Technology, infrastructure and storage

- Capture & infrastructure: technology is well known, low risk
 - \rightarrow More understanding needed on: integration, cost reductions, industrial CCS, BECCS
 - \rightarrow Pipelines require planning (especially for clustering) + regulation
- Storage: Potential bottleneck
 Storage shortage in some countries (e.g. central EU)
 → Further sites characterisation is crucial
 - EOR & utilisation (CCSU) Can provide near term incentive Some potential for EOR in North Sea; CCSU still under investigation → More research needed, likely not game changer

Grantham Research Institute on Climate Change and the Environment

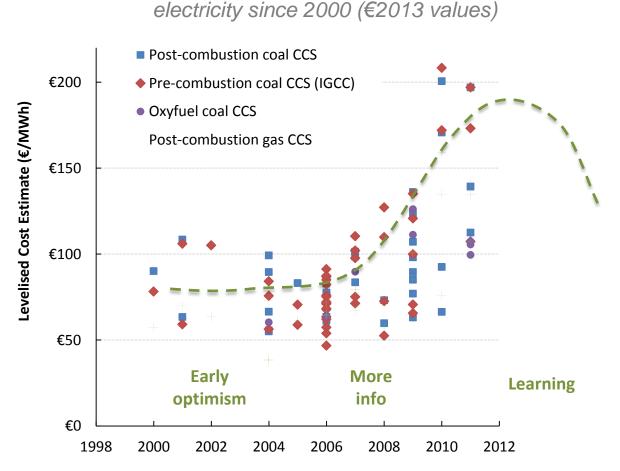

Costs

ELECTRICITY

- LCOE does not take into account back-up role of CCS
- Large variability of LCOE

 depends on theoretical assumptions
- CCS is currently 30-120% more expensive than unabated plants
- Some estimates within range of offshore wind

Levelised cost of electricity (LCOE), €2013 values



Grantham Research Institute on Climate Change and the Environment

...Costs evolve across time

- Cost estimates have gone up: + 15-30% compared to 2010
- But expected cost reductions as technology evolves:
 - 14-40% by 2030.

Boundary Dam: -30% if built again

Estimates of CCS levelised cost of

Estimated LCOEs based on the Boundary Dam project and assumptions on cost of capital

Grantham Research Institute on Climate Change and the Environment

Finance

275 240 250 225200180 175 142 evmm 150 Significant 125 impact on LCOE 100 75 50 25 0 14.5% 5.9% 9.5% Cost of capital **Estimate for** CAPEX **OPEX** FINEX **Boundary Dam** DECC Literature (publicly funded) average

CCS perceived high risk \rightarrow high cost of capital

Source: Authors

Grantham Research Institute on Climate Change and the Environment

Policy & regulation

Funding

- Limited EU funds (NER300, EEPR) €1.3 bn
- Almost no national funding programmes except UK €1.2 bn
- Uncertain size of future funds (e.g. NER400, cohesion funds), likely insufficient
- Low investment in CCS R&D (in 2012: EU €125 m; UK: €32 m)

Policy uncertainty

- No coordination across MS policies.
- Low commitment in EU 2030 framework & Energy Union

Regulatory issues especially on liability in case of leakage:

 Storage operators to cover leakage risk at (future) ETS prices: uncertain, potentially openended risk

Grantham Institute Climate Change and the Environment

An institute of Imperial College London

Grantham Research Institute on Climate Change and the Environment

Policy recommendations

- Policy incentives
- Coordination
- Regulation

Grantham Research Institute on Climate Change and the Environment

Policies to incentivise CCS investment

Carbon pricing alone is not enough:

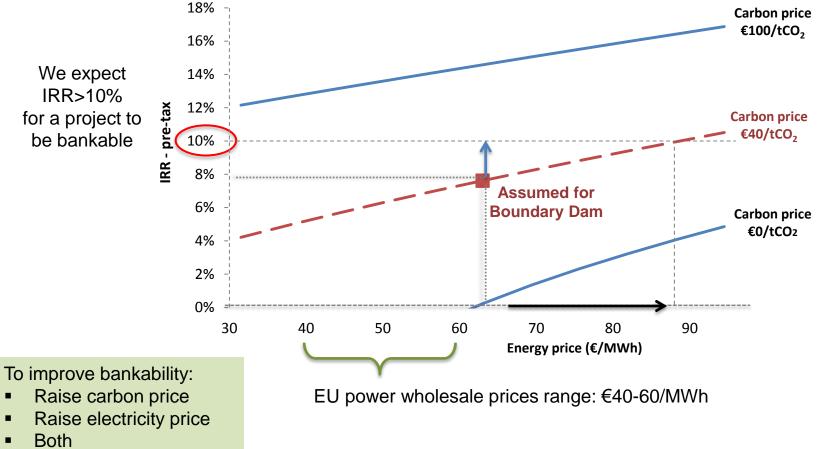
€40-60/t CO₂ for coal power plants; >€100/t CO₂ for gas \rightarrow unfeasible in next decade

Up to 2020:

- EU/national funds for CCS research & development (especially on BECCS)
- New funding mechanism for early stage projects (complementary to NER 400)

2020-2050:

- Carbon pricing &
- Financial incentives for CCS electricity generation
- Support from public financial institutions to leverage private investment to reduce cost of capital
- Mandatory targets
- Private sector fund
- Tailored incentives for industrial CCS



Grantham Research Institute on Climate Change and the Environment

...Bankability depends on electricity and CO₂ prices

Sensitivity of IRR to carbon and electricity prices – based on Boundary Dam (coal)

Source: Authors, based on Boundary Dam

Grantham Research Institute on Climate Change and the Environment

Ambitious and coordinated action

Piecemeal approach has failed to bring in 12 CCS plants by 2015:

Coordination at EU level or across 'coalition of willing' Member States.

Role for Member States:

• Assess own potential for CO₂ capture and for storage.

Role for European Commission (in collaboration with Member States):

- Ensure coherence across national CCS policies
- Facilitate **shared learning** on CCS innovation.
- Set **milestones** to measure progress
- Facilitate and support **infrastructure** planning and development

Grantham Research Institute on Climate Change and the Environment

Improved legislation

Increased certainty over size of liability for CO₂ **leakage:**

revision of CCS Directive or alternative legislation

- Initial cap on long-term liability for carbon dioxide leakage, to be reviewed as risks become better understood and private insurance mechanisms develop.
- **Financial mechanism for damage remediation**, such as a liability fund or private insurance.
- **Special treatment of demonstration projects** through a public liability scheme.
- Reliance on the Environmental Liability Directive, rather than the EU ETS, to determine the size of remediation costs caused by leakage from CO₂ storage sites.

Grantham Research Institute on Climate Change and the Environment

Conclusions

- CCS is crucial in the EU Energy Roadmap 2050
- Progress so far has been too slow
- Key barriers: costs (e.g. electricity), financing, infrastructure and technology, inadequate policy and regulation
- Way forward: a new EU strategy to incentivise, coordinate and better regulate CCS action

Grantham Institute Climate Change and the Environment

An institute of Imperial College London

Grantham Research Institute on Climate Change and the Environment

<image><section-header><section-header><section-header><section-header><section-header><section-header>

Thank you.

For additional information please contact:

Samuela Bassi, Policy Analyst: <u>s.bassi@lse.ac.uk</u> Rodney Boyd, Policy Analyst: <u>r.boyd@lse.ac.uk</u> Chris Duffy, Policy Communications Manager: <u>c.duffy@lse.ac.uk</u>

Paul Fennell, Reader in Clean Energy: p.fennell@imperial.ac.uk

Niall Mac Dowell, Lecturer in Energy and Environmental Technology and Policy: <u>n.mac-dowell06@imperial.ac.uk</u>

