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Abstract

In this paper, a numerical procedure for solving fuzzy Fredholm
integral equations of the second kind (FIEs) with arbitrary kernels
have been investigated and residual minimization method is given and
then the proposed algorithm is illustrated with solving some numerical
examples.
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1 Introduction

The concept of integration of fuzzy functions was first introduced by Dubois
and Prade [5]. The topics of numerical methods for solving fuzzy integral
equations have been rapidly growing in recent years and have been studies by
authors of [6]. The numerical methods for fuzzy differential equations have
been studied by S. Abbasbandy, T. Allahviranloo, [1, 2, 3] and others. Alter-
native approaches were later suggested by Goetschel and Vaxman [8], Kaleva
[10] and others. The structure of this paper is organized as follows:
In section 2, some basic definitions and results on fuzzy numbers, fuzzy inte-
gral and the fuzzy linear system is brought. In Section 3, we propose a general
method for solving fuzzy Fredholm integral equation of the second kind. In
Section 4, we illustrate algorithm by solving some numerical examples. The
conclusions are drawn in Section 5.

1Corresponding author, e-mail: tofigh@allahviranloo.com
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2 Preliminaries

Let us now introduce the notation needed in the rest of the paper. We will
place a bar over a symbol if it represents a fuzzy number so ã, b̃, c̃ are all fuzzy
numbers but a, b, c will denote real numbers. Parametric form of an arbitrary
fuzzy number is given in [4] as follows. A fuzzy number ũ in parametric form
is a pair (u, u) of functions u(r), u(r), 0 ≤ r ≤ 1, which satisfies the following
requirements:

1. u(r) is a bounded left continuous non-decreasing function over [0, 1],

2. u(r) is a bounded left continuous non-increasing function over [0, 1],

3. u(r) ≤ u(r), 0 ≤ r ≤ 1,

The set of all these fuzzy numbers is denoted by E. A crisp number α is simply
represented by u(r) = u(r) = α, 0 ≤ r ≤ 1. A popular fuzzy number is the
triangular fuzzy number ũ = (m, α, β) which

ũ(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−m
α

+ 1, m − α ≤ x ≤ m,

m−x
β

+ 1, m ≤ x ≤ m + β,

0, otherwise.

Its parametric form is

u(r) = m + α(r − 1), u(r) = m + β(1 − r).

By appropriate definitions the fuzzy number space {u(r), u(r)} becomes a
convex cone E1 which is then embedded isomorphically and isometrically into
a Banach space.
Definition 1. The n × n dual linear system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a11x̃1 + · · · + a1nx̃n = ỹ1 + b11x̃1 + · · · + b1nx̃n,
a21x̃1 + · · · + a2nx̃n = ỹ2 + b21x̃1 + · · · + b2nx̃n,
...

...
...

...
an1x̃1 + · · · + annx̃n = ỹn + bn1x̃1 + · · · + bnnx̃n,

(1)

where the coefficient matrix A = (aij) and B = (bij), 1 ≤ i, j ≤ n is a crisp
n × n matrix, x̃t = (x̃1, . . . , x̃n) be a n × 1 vector of fuzzy numbers x̃j and
ỹt = (ỹ1, . . . , ỹn) be a n × 1 vector of fuzzy numbers ỹi is called a dual fuzzy
linear system (DFLS).
For arbitrary fuzzy numbers x̃ = (x(r), x(r)), ỹ = (y(r), y(r)) and real number
k, we may define the addition and the scalar multiplication of fuzzy numbers
by using the extension principle as
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(a) x̃ = ỹ if and only if x(r) = y(r) and x(r) = y(r),

(b) x̃ + ỹ = (x(r) + y(r), x(r) + y(r)),

(c) kx̃ =

{
(kx, kx), k ≥ 0,
(kx, kx), k < 0.

Definition 2. A fuzzy number vector (x̃1, x̃2, ..., x̃n)t given by

x̃i = (xi(r), xi(r)), 1 ≤ i ≤ n, 0 ≤ r ≤ 1,

is called a solution of the fuzzy linear system (1) if⎧⎪⎨
⎪⎩

∑n
j=1 aijxj =

∑n
j=1 aijxj = y

i
=

∑n
j=1 bijxj =

∑n
j=1 bijxj ,

∑n
j=1 aijxj =

∑n
j=1 aijxj = yi =

∑n
j=1 bijxj =

∑n
j=1 bijxj .

If, for a particular i, aij > 0 and bij > 0, 1 ≤ j ≤ n, we simply get

n∑
j=1

aijxj = y
i
+

n∑
j=1

bijxj,

n∑
j=1

aijxj = yi +

n∑
j=1

bijxj .

The following theorem guarantees the existence of a fuzzy solution for gen-
eral case. Consider the dual fuzzy linear system (6), and transform its n × n
coefficient matrix A and B in to (2n) × (2n) matrices as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s11x1 + · · ·+ s1nxn + s1,n+1(−x1) + · · · + s1,2n(−xn) = y
1
+

t11x1 + · · · + t1nxn + t1,n+1(−x1) + · · ·+ t1,2n(−xn),
...
sn1x1 + · · ·+ snnxn + sn,n+1(−x1) + · · ·+ sn,2n(−xn) = y

n
+

tn1x1 + · · ·+ tnnxn + tn,n+1(−x1) + · · · + tn,2n(−xn),
sn+1,1x1 + · · · + sn+1,nxn + sn+1,n+1(−x1) + · · ·+ sn+1,2n(−xn) = −y1+

tn+1,1x1 + · · ·+ tn+1,nxn + tn+1,n+1(−x1) + · · ·+ tn+1,2n(−xn),
...
s2n,1x1 + · · · + s2n,nxn + s2n,n+1(−x1) + · · · + s2n,2n(−xn) = −yn+

t2n,1x1 + · · ·+ t2n,nxn + t2n,n+1(−x1) + · · · + t2n,2n(−xn),

where sij and tij are determined as follows:

aij ≥ 0 =⇒ sij = aij , si+n,j+n = aij ,
aij < 0 =⇒ si,j+n = −aij , si+n,j = −aij ,
bij ≥ 0 =⇒ tij = bij , ti+n,j+n = bij ,
bij < 0 =⇒ ti,j+n = −bij , ti+n,j = −bij ,

(2)
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and any sij and tij which is not determined by (2) is zero. Using matrix
notation we get

SX = Y + TX, (3)

therefore, we have:

(S − T )X = Y, (4)

where S = (sij) ≥ 0 and T = (tij) ≥ 0, 1 ≤ i, j ≤ 2n, and

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
...
xn

−x1
...

−xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
1

...
y

n−y1
...

−yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

For example:
Consider the dual fuzzy linear system{

x̃1 − x̃2 = ỹ1 + 2x̃1 + x̃2,
x̃1 + 2x̃2 = ỹ2 + x̃1 − 2x̃2.

(6)

Let y
1

= r, y1 = 2− r and y
2

= 4 + r, y2 = 7− 2r, the extended 4× 4 matrices
are

S =

⎡
⎢⎢⎣

1 0 0 1
1 2 0 0
0 1 1 0
0 0 1 2

⎤
⎥⎥⎦ , T =

⎡
⎢⎢⎣

2 1 0 0
1 0 0 2
0 0 2 1
0 2 1 0

⎤
⎥⎥⎦ ,

and

Y =

⎡
⎢⎢⎣

r
4 + r
r − 2
2r − 7

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎣

x1

x2

−x1

−x2

⎤
⎥⎥⎦ .

We obtain that the system (6) is equivalent to the function equation system

SX = Y + TY.

Consequently,⎡
⎢⎢⎣

1 0 0 1
1 2 0 0
0 1 1 0
0 0 1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

−x1

−x2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r
4 + r
r − 2
2r − 7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

2 1 0 0
1 0 0 2
0 0 2 1
0 2 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

−x1

−x2

⎤
⎥⎥⎦ .
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Also,

(S − T )X = Y.

The structure of S and T implies that:

S =

(
C D
D C

)
, T =

(
E F
F E

)
,

where C and E contains the positive entries of A and B respectively, and D
and F the absolute values of the negative entries of A and B, i.e. A = C − D
and B = E − F . Therefore

S − T =

(
C − E D − F
D − F C − E

)
,

Theorem 1. The matrix S − T is nonsingular if and if the matrix (C + D)−
(E + F ) and (C + F ) − (E + D) are both nonsingular.
Proof. The same as the proof of Theorem 1 in [7].
Assuming that S − T is nonsingular we obtain of the Eq. (4)

X = (S − T )−1Y (7)

Theorem 2. If (S − T )−1exists it must have the same structure as S, i.e.

(S − T )−1 =

(
G H
H G

)
,

and

G =
1

2

[
((C + D) − (E + F ))−1 + ((C + F ) − (E + D))−1

]
,

H =
1

2

[
((C + D) − (E + F ))−1 − ((C + F ) − (E + D))−1

]
,

Proof. see [7].
Theorem 3. The unique solution X of Eq. (7) is a fuzzy vector for arbitrary
Y if and only if (S − T )−1 is nonnegative, i.e.

((S − T )−1)ij ≥ 0, 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n.

Proof. The same as the proof of Theorem 3 in [7].
Definition 3. Let X = {(xi(r), xi(r)), 1 ≤ i ≤ n} denotes the unique solution
of (3), if y

i
(r), yi(r) are linear functions of r, then the fuzzy number vector

U = {(ui(r), ui(r)), 1 ≤ i ≤ n} defined by

ui(r) = min{xi(r), xi(r), xi(1)},
ui(r) = max{xi(r), xi(r), xi(1)}.
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is called the fuzzy solution of (3). If (xi(r), xi(r)), 1 ≤ i ≤ n, are all fuzzy
numbers then ui(r) = xi(r), ui(r) = xi(r), and then U is called a strong fuzzy
solution. Otherwise, U is a weak fuzzy solution.
We will next define a metric D in E1 and the fuzzy function notation [8].
Definition 4. For arbitrary fuzzy numbers ũ = (u, u) and ṽ = (v, v) the
quantity

D(ũ, ṽ) = sup0≤r≤1{max[|u(r) − v(r)|, |u(r) − v(r)|]} (8)

is the distance between ũ and ṽ. It is shown [11] that (E1, D) is a complete
metric space.
Definition 5. Let Ũ = (ũ1, . . . , ũn) and Ṽ = (ṽ1, . . . , ṽn), Ḋ(Ũ , Ṽ ) is:

Ḋ(Ũ , Ṽ ) =

⎡
⎢⎣

D(ũ1, ṽ1)
...
D(ũn, ṽn)

⎤
⎥⎦ (9)

Definition 6. A function f̃ : R
1 −→ E1 is called a fuzzy function. If for

arbitrary fixed t0 ∈ R
1 and ε > 0, a δ > 0 such that

| t − t0 |< δ =⇒ D[f̃(t), f̃(t0)] < ε (10)

exist, f is said to be continuous.

3 Fuzzy integral equations

The Fredholm integral equation of the second kind is

x(s) = f(s) + λ

∫ b

a

k(s, t)x(t)dt (11)

where λ > 0, k(s, t) is an arbitrary kernel function over the square a ≤ s, t ≤ b
and f(t) is a function of t : a ≤ t ≤ b, [9]. If f(t) is a crisp function then the
solution of Eqs. (11) is crisp as well. However, if f(t) is a fuzzy function this
equation may only possess fuzzy solution. Therefore, we have

x̃(s) = f̃(s) + λ

∫ b

a

k(s, t)x̃(t)dt. (12)

Sufficient conditions for the existence of a unique solution to the fuzzy
Fredholm integral equation of the second kind, i.e. to Eq. (12) where f̃(t) is
a fuzzy function, are given in [12].
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We consider now the numerical solution of fuzzy Fredholm integral equa-
tions of the second kind Eq. (12), which we write in the form:

x̃ = f̃ + λKx̃. (13)

The exact solution of integral equation Eq. (12) is:

x̃(s) =

∞∑
i=1

ãihi(s) (14)

in truncated form

x̃(s) ≈ x̃n(s) =
n∑

i=1

ãihi(s), (15)

where the set {hi} is complete and orthogonal in �2(a, b) (see [?]). For finding
approximation solution we must indicate coefficients ãi.

From Eq. (15) we obtain

n∑
j=1

ãjhj(s) = f̃(s) + λ

n∑
j=1

ãj

∫ b

a

k(s, t)hj(t)dt. (16)

We have n unknown parameters in the form ã1, ã2, . . . , ãn which for finding
them, we need to n equation, so by using n point s1, s2, . . . , sn in interval [a, b]:

n∑
j=1

hj(si)ãj = f̃(si) + λ

n∑
j=1

∫ b

a

k(si, t)hj(t)dtãj i = 1, · · · , n (17)

therefore we have:

Aã = f̃ + Bã, (18)

where the coefficients matrix A = (aij), 1 ≤ i, j ≤ n, and B = (bij), 1 ≤ i, j ≤
n, are crisp and f̃ = (f̃i), 1 ≤ i ≤ n, is an arbitrary fuzzy number vector, where

aij = hj(si), bij = λ

∫ b

a

k(si, t)hj(t)dt, i, j = 1, · · · , n

3.1 Residual minimization method

The simplest method conceptually again appeals to approximation theory. We
write the integral equation in the form (again we set λ = 1)

Lx̃ = f̃ , L = I − K, (19)
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and introduce the residual function rn and error function εn

rn = Ḋ(f̃ , Lx̃n), (20)

εn = Ḋ(x̃, x̃n). (21)

To compute rn requires no knowledge of x̃ but, since Ḋ(f̃ , Lx̃) = 0, we have
the identity:

rn = Ḋ(f̃ , Lx̃n) − Ḋ(f̃ , Lx̃) = LḊ(x̃n, x̃) = Lεn. (22)

From (19) and (22) we have at once

‖ rn ‖≤ (1+ ‖ K ‖) ‖ εn ‖ . (23)

That is,

‖ εn ‖≥ ‖ rn ‖
1+ ‖ K ‖ . (24)

Thus a small residual is a necessary condition for a small error. We would
rather have an upper bound on εn of course; this is harder to provide in
general and we content ourselves for now with the following. We rewrite (22)
as

εn = rn + Kεn

whence

‖ εn ‖≤‖ rn ‖ + ‖ K ‖ . ‖ εn ‖ and hence if ‖ K ‖< 1 (25)

‖ εn ‖≤ ‖ rn ‖
1− ‖ K ‖ . (26)

4 Numerical examples

Example 1. Consider the fuzzy integral equation (12) where

f(s; r) = s3(r2 + r),

f(s; r) = s3(4 − r3 − r),

and kernel

k(s, t) = s + 1, −1 ≤ s, t ≤ 1.
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and a = −1, b = 1. The exact solution in this case is given by

x(s; r) = s3(r2 + r),

x(s; r) = s3(4 − r3 − r).

Let

h1(s) = 1, h2(s) = s3,

and

s1 = −1, s2 = 1.

From the Eqs. (17) and (18):

[
1 −1
1 1

] [
ã1

ã2

]
=

[
f̃(s1)

f̃(s2)

]
+

[
0 0
4 0

] [
ã1

ã2

]
,

the Extended 4 × 4 matrices are

S =

⎡
⎢⎢⎣

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥⎥⎦ , T =

⎡
⎢⎢⎣

0 0 0 0
4 0 0 0
0 0 0 0
0 0 4 0

⎤
⎥⎥⎦

and the solution of Eq. (7) is:

⎡
⎢⎢⎣

a1

a2

−a1

−a2

⎤
⎥⎥⎦ = (S − T )−1F =

⎡
⎢⎢⎢⎣

−r3

4
− r2

4
− r

2
+ 1

−3
4
r3 + r2

4
− r

2
+ 3

−r3

4
− r2

4
− r

2
+ 1

r3

4
− 3

4
r2 − r

2
− 1

⎤
⎥⎥⎥⎦ . (27)

The fact that ã1 and ã2 are not fuzzy numbers. Therefore the fuzzy solution
of the Eq. (27) is a weak fuzzy solution. The fuzzy approximate solution in
this case is given by

x̃(s) ≈ x̃2(s) =

2∑
i=1

˜́aihi(s)

where
˜́a1 = ( r3

4
+ r2

4
+ r

2
− 1,−r3

4
− r2

4
− r

2
+ 1)

˜́a2 = (− r3

4
+ 3

4
r2 + r

2
+ 1,−3

4
r3 + r2

4
− r

2
+ 3).
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Example 2. Consider the fuzzy integral equation (12) where

f(s; r) = (
s

2
− 1

3
)r,

f(s; r) = (
s

2
− 1

3
)(2 − r),

and kernel

k(s, t) = s + t, 0 ≤ s, t ≤ 1.

and a = 0, b = 1. The exact solution in this case is given by

x(s; r) = sr,

x(s; r) = s(2 − r).

Let

h1(s) = s, h2(s) = s3, h3(s) = s5,

and

s1 = 0, s2 =
1

2
, s3 = 1.

From the Eqs. (17) and (18):

⎡
⎣ 0 0 0

1
2

1
8

1
32

1 1 1

⎤
⎦

⎡
⎣ ã1

ã2

ã3

⎤
⎦ =

⎡
⎣ f̃(s1)

f̃(s2)

f̃(s3)

⎤
⎦ +

⎡
⎢⎢⎢⎢⎣

1
3

1
5

1
7

7
12

13
40

19
84

5
6

9
20

13
42

⎤
⎥⎥⎥⎥⎦

⎡
⎣ ã1

ã2

ã3

⎤
⎦ ,

the Extended 6 × 6 matrices are

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1
2

1
8

1
32

0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1

2
1
8

1
32

0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3

1
5

1
7

0 0 0
7
12

13
40

19
84

0 0 0
5
6

9
20

13
42

0 0 0
0 0 0 1

3
1
5

1
7

0 0 0 7
12

13
40

19
84

0 0 0 5
6

9
20

13
42

⎤
⎥⎥⎥⎥⎥⎥⎦

and the solution of Eq. (7) is:
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⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

−a1

−a2

−a3

⎤
⎥⎥⎥⎥⎥⎥⎦

= (S − T )−1F =

⎡
⎢⎢⎢⎢⎢⎢⎣

r
0
0
−2 + r
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (28)

i.e.
ã1 = (r, 2 − r)
ã2 = (0, 0)
ã3 = (0, 0).

Here a1 ≤ a1, a2 ≤ a2, a3 ≤ a3 are monotonic decreasing functions. There-
fore the fuzzy solution of the Eq. (28) is a strong fuzzy solution. The fuzzy
approximate solution in this case is a approximate solution given by

x̃(s) ≈ x̃3(s) =

3∑
i=1

ãihi(s)

Example 3. Consider the fuzzy integral equation (12) where

f(s; r) = −2

π
cos s(r2 + r),

f(s; r) = −2

π
cos s(3 − r),

and kernel

k(s, t) = cos(s − t), λ =
4

π
,

and a = 0, b = π
2
. The exact solution in this case is given by

x(s; r) = sin s(r2 + r) = (s − s3

3!
+

s5

5!
− . . . )(r2 + r),

x(s; r) = sin s(3 − r) = (s − s3

3!
+

s5

5!
− . . . )(3 − r).

Let

h1(s) = s, h2(s) = s3, h3(s) = s5,

and

s1 = 0, s2 =
π

4
, s3 =

π

2
− 0.01.
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From the Eqs. (17) and (18):

⎡
⎣ 0 0 0

π
4

(π
4
)3 (π

4
)5

π
4
− 0.01 (π

4
− 0.01)3 (π

4
− 0.01)5

⎤
⎦

⎡
⎣ ã1

ã2

ã3

⎤
⎦ =

⎡
⎣ f̃(s1)

f̃(s2)

f̃(s3)

⎤
⎦ +

⎡
⎣ 0.726765132 0.574239947 0.6913436

1.4142126 1.668453 2.6463
1.2805 1.791 3.0578

⎤
⎦

⎡
⎣ ã1

ã2

ã3

⎤
⎦ ,

the Extended 6 × 6 matrices are

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
π
4 (π

4 )3 (π
4 )5 0 0 0

π
4 − 0.01 (π

4 − 0.01)3 (π
4 − 0.01)5 0 0 0

0 0 0 π
4 (π

4 )3 (π
4 )5

0 0 0 π
4 − 0.01 (π

4 − 0.01)3 (π
4 − 0.01)5

0 0 0 π
4 − 0.01 (π

4 − 0.01)3 (π
4 − 0.01)5

⎤
⎥⎥⎥⎥⎥⎥⎦

,

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.726765132 0.574239947 0.6913436 0 0 0
1.4142126 1.668453 2.6463 0 0 0
1.2805 1.791 3.0578 0 0 0
0 0 0 0.726765132 0.574239947 0.6913436
0 0 0 1.4142126 1.668453 2.6463
0 0 0 1.2805 1.791 3.0578

⎤
⎥⎥⎥⎥⎥⎥⎦

and the solution of Eq. (7) is:

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

−a1

−a2

−a3

⎤
⎥⎥⎥⎥⎥⎥⎦

= (S − T )−1F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0112r2 + 1.012r
−0.196r2 − 0.196r
0.0192r2 + 0.0192r
1.012r − 3.036
0.587 − 0.196r
0.00481r − 0.057

⎤
⎥⎥⎥⎥⎥⎥⎦

. (29)

i.e.
ã1 = (1.0112r2 + 1.012r,−1.012r + 3.036)
ã2 = (−0.196r2 − 0.196r,−0.587 + 0.196r)
ã3 = (0.0192r2 + 0.0192r,−0.00481r + 0.057).

The fact that ã2 is not a fuzzy number. Therefore the fuzzy solution of the
Eq. (29) is a weak fuzzy solution. The fuzzy approximate solution in this case
is a approximate solution given by

x̃(s) ≈ x̃3(s) =
3∑

i=1

˜́aihi(s)
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where
˜́a1 = (1.0112r2 + 1.012r,−1.012r + 3.036)
˜́a2 = (−0.587 + 0.196r,−0.196r2 − 0.196r)
˜́a3 = (0.0192r2 + 0.0192r,−0.00481r + 0.057).

5 Conclusions

In this paper, we proposed a numerical method for solving fuzzy Fredholm
integral equation of the second kind. The resulted approximate solutions from
expansion method may be a strong or weak fuzzy solutions.
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