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Abstract

In this work we analyze market payoffs of Credit Default Swaps (CDS) and we
derive rigorous standard market formulas for pricing options on CDS. Formulas are
based on modelling CDS spreads which are consistent with simple market payoffs,
and we introduce a subfiltration structure allowing all measures to be equivalent to
the risk neutral measure.

Then we investigate market CDS spreads through change of measure and con-
sider possible choices of rates for modelling a complete term structure of CDS
spreads. We also consider approximations and apply them to pricing of specific
market contracts. Results are derived in a probabilistic framework similar to that
of Jamshidian (2004).

∗Speaker. We are grateful to Massimo Masetti for his help with the CMCDS examples.
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1 Introduction

The importance of the credit derivatives market has increased remarkably during re-
cent years. According to the 2004 survey of Merrit et al., the outstanding notional has
reached $3 trillion, increasing by 71% in one year. In particular, Credit Default Swaps
(CDS) have a clear prominence among all credit derivatives. The market of CDS rep-
resents almost two thirds ($1.9 trillion) of the global credit derivatives outstanding. It
increased by 100% from the end of 2002. Along with this impressive development of
the CDS market, also options on CDS are becoming a more popular product.

In spite of this development of the market, no standard market model has emerged
yet. With reference to the other, long-established financial markets, a standard market
model for options is commonly intended to be a model enabling to define the implied
volatility of a market option, positing a lognormal dynamics of the underlying under
an equivalent pricing measure. The seminal example is the Black and Scholes (1973)
model for the equity market. Another example is the Black (1976) model for commod-
ity options, used for years by market operators also as a pricing formula for interest
rates options. By the work of Jamshidian (1997) and Brace, Gatarek and Musiela
(1997), the formula was embedded into rigorous models of the term structure, called
Swap Market Model (SMM) and Libor Market Model (LMM). These models, based
on lognormality of the underlying under a natural equivalent measure, allow pricing
reference options by Black and Scholes market valuation formulas and therefore allow
for rigorous definition and computation of implied volatility. In addition, by providing
also the joint dynamics of different underlying rates under a common pricing measure,
they can be consistently used for more advanced products.

A first important contribution to the development of models of this kind for credit
derivatives is given in Schonbucher (1999). The model allows for Black and Scholes
formulas but differs from standard market models, since it is based on using probability
measures which are not equivalent to the risk neutral probability measure.

In Hull and White (2003) Black and Scholes formulas for CDS options are tested on
market data, and the importance of the development of a market model for improving
liquidity of the CDS options market is further pointed out.

In a similar context Wu (2005) considers an alternative definition of fundamental
bond prices, including recovery.

A very important theoretical advance in this trail is given in Jamshidian (2004).
This work develops a probabilistic framework that naturally lends itself to the devel-
opment of standard market models based on probability measures equivalent to the
risk neutral probability measure. Yet in this work standard (Black and Scholes) market
formulas are considered only as possible approximations.

Brigo (2005) on the other hand develops, starting from market definition of CDS,
an exact standard market pricing formula for CDS options under an equivalent change
of measure in a Cox process setting. This is a fundamental result and a natural starting
point for the development of a candidate market model.

In this work we analyze market payoffs of Credit Default Swaps (CDS) and we
derive rigorous standard market formulas for pricing options on CDS, in a more general
setting than Cox processes. Formulas are based on modelling CDS spreads which
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are consistent with simple market payoffs, and we introduce a subfiltration structure
allowing all measures to be equivalent to the risk neutral measure.

Then we investigate market CDS spreads through change of measure and consider
possible choices of rates for modelling a complete term structure of CDS spreads. We
apply the model to pricing specific market contracts (Constant Maturity CDS) and
consider approximations allowing to increase tractability of pricing formulas. Results
are derived in a probabilistic framework similar to that of Jamshidian (2004). We point
out under which conditions pricing formulas are equivalent to that of Brigo (2005).

In Section 2 we present foundations on CDS pricing in a market model context. In
Section 3 we derive standard market pricing formulas. In Section 4 we illustrate how
the definition of CDS rates can be expressed via change of measure and consider pos-
sibilities for a term structure model. In Section 5 a term structure market model and its
dynamics are presented and applied to the valuation of Constant Maturity CDS. Then
we illustrate a model based on a different payoff definition and point out relations and
differences with previous literature, before concluding. Some theorems and properties
are proved in the Appendix.

2 Credit Default Swaps and Options

A Credit Default Swapis an agreement between two parties, called the protection buyer
and the protection seller, typically designed to transfer to the protection seller the finan-
cial loss that the protection buyer would suffer if a particular default event happened to
a third party, called the reference entity.

The protection buyer pays rateR at timesTa+1, . . . , Tb, ending payments in case of
default. The protection seller agrees to make a single protection paymentLGD in case
the pre-specified default event happens betweenTa andTb. These contracts, with some
possible variations in the exact definition of the payoff, represent by far the most liquid
credit derivative market. It is natural to define a market model in credit risk starting
from a conventional definition of CDS.

The initial steps for a rigorous and market motivated derivation of a market model
for Credit Default Swaps are close to the steps one follows to define the Swap Market
Model of Jamshidian (1997). The main goal in the latter case is pricing swaptions.
Swaptions are options on interest rate swaps. One starts from one specification of the
payoff and the price of the swap to detect the value of the fixed rate making the swap
fair. This defines the swap rate which is also the underlying of the swaption. Then one
has to detect the probability measure under which the swap rate is a martingale and
the pricing formula simplifies. With deterministic percentage volatility assumptions
for the underlying swap rate one recovers the standard market Black formula. This is
the approach in Brigo (2004), a fundamental point for then developing a model of the
entire term structure model to be consistent with this pricing formula.
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2.1 Par CDS spread

Indicate the default time byτ , the year fraction betweenTi−1 andTi with αi, and the
bank-account byBt, so that the usual bank-account discount factor is

D (t, T ) =
Bt

BT
.

The general buyer CDS discounted payoff, with unit notional and protection payment
LGD, is att ≤ Ta

1{Ta<τ≤Tb}D(t, τ)LGD−
b∑

i=a+1

D(t, Ti)αiR1{τ>Ti}−D(t, τ)(τ−Tβ(τ)−1)R1{Ta<τ<Tb}

whereTβ(τ) is the first of theTi’s following τ . Modifications to this basic structure are
then possible, for example the protection buyer can pay an upfront fee.

For developing a market model a conventional definition of the payoff must be
considered. Brigo (2004) analyzes different possible market specifications of the CDS
payoff. Following Brigo (2004) we mainly consider the payoff

CDSΠt (R) = LGD

b∑

i=a+1

D (t, Ti)1{Ti−1<τ≤Ti}−
b∑

i=a+1

D(t, Ti)αi1{τ>Ti}R, (1)

which is simple enough for developing a market model but realistic enough for practical
applications. Here the protection payment is made at the firstTi following default and
there is no payment of the protection buyer for the periodTi−1 - Ti when default
happens. The payment dates remain the same for all multiperiod CDS throughout the
paper, therefore we do not indicate them in the symbols for payoffs and prices.

A payoff from and approximation . Also payoffs which do not correspond to viable
real world CDS payoffs can be considered for modelling purposes. We illustrate be-
low an approximated payoff which takes into account that, when a contract provides
protection payment at default andτ is much closer toTβ(τ)−1 than toTβ(τ), then the
postponement of the protection payment can have a relevant impact. In such a case a
better approximation for the discounted protection leg is

LGD

b∑

i=a+1

D (t, Ti−1)1{Ti−1<τ≤Ti},

while whenτ is closer toTβ(τ) the discounted protection leg

LGD

b∑

i=a+1

D (t, Ti)1{Ti−1<τ≤Ti}

is better. Thus, for suitableεi, a generally good approximation is
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LGD
∑b

i=a+1

[
D (t, Ti−1)1{Ti−1<τ≤Ti−1+εi} + D (t, Ti)1{Ti−1+εi<τ≤Ti}

]
=

LGD
∑b

i=a+1

[
D (t, Ti−1)1{τ>Ti−1} + 1{τ>Ti−1+εi} (D (t, Ti)−D (t, Ti−1))−D (t, Ti)1{τ>Ti}

]

≈ LGD

b∑

i=a+1

[
D (t, Ti−1)1{τ>Ti−1} −D (t, Ti)1{τ>Ti}

]
=: CDSΠS

t (R) (2)

where the final approximation amounts to assumingD (t, Ti)−D (t, Ti−1) to be negli-
gible. Differently from the above payoffs,CDSΠS

t (R) is not a real world CDS payoff,
but it can sometimes represent a good approximation of a general CDS payoff. We will
see in Section 5.4 that, when considering one single period contracts,CDSΠS

t (R)
leads to a definition of the CDS par spread which resembles the definition of the de-
faultable forward rate in Schonbucher (1999).

As usual in no-arbitrage pricing the price of a CDS is given by the risk neutral
expectation of its discounted payoff. Considering our reference payoff

CDSt (R) = EQ [CDSΠt (R) |Ft] (3)

whereQ is the risk-neutral equivalent martingale measure and the filtrationFt repre-
sents all available information up tot. Default is modelled as anFt-stopping time.

Subfiltration Structure. In credit risk valuation it is often convenient to express prices
making use of asubfiltration structure. Following Jeanblanc and Rutkowski (2000) we
defineFt = Fτ

t ∨Ht, where

Fτ
t = σ ({τ > u} , u ≤ t) ,

basically the subfiltration generated byτ , whileHt is a subfiltration representing the
flow of all information except default itself (default-free information).1 A market op-
erator observing only this second filtration can have information on the probability of
default but cannot say exactly when, or even if, default has happened. This structure is
typical for instance of the Cox process setting, where default is defined as the first jump
of a Cox Process. The definition of Cox Process hinges on assuming default intensity
λt of τ to beHt-adapted. In fact, if for instance the intensity dropped to zero after
default, the default jump process conditional on the path followed byλt would not be
an inhomogeneous Poisson Process, since the time of its first jump would be known.

This subfiltration structure allows to define pricing formulas in terms of conditional
survival probabilityQ (τ > t|Ht) which can be assumed to be strictly positive in any
state of the world. This is the assumption we make in this work (so excluding standard
structural models, in which default is a predictable stopping time). The subfiltration
structure is useful also in settings more general than intensity models, for instance when
the conditional default probability is not necessarily absolutely continuous but it is
allowed to be a general semimartingale. We will see below examples of the advantages
yielded by considering a subfiltration structure.

1We adopt Jamshidian (2004) notation. Notice thatFt is calledGt in Brigo (2004, 2005, 2005b) while
Ht is calledFt.
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With subfiltrations as in Jeanblanc and Rutkowski (2000), using the definition of
conditional expectation and recalling thatCDSΠt (R) = 1{τ>t}CDSΠt (R), the
price of the above CDS can be expressed as

CDSt (R) =
1{τ>t}

Q (τ > t|Ht)
EQ [CDSΠt (R) |Ht] . (4)

Following the standard SMM case, we set expression (4) of the price to zero and solve
in R to derive the expression for the fair rateRa,b (t), also called fair or par CDS spread,
which will be also the underlying of the CDS option. For the rest of this section we
follow Brigo (2004).

Par CDS Spread

Ra,b (t) = LGD

∑b
i=a+1 EQ

[
D (t, Ti)1{Ti−1<τ≤Ti}|Ht

]
∑b

i=a+1 αiEQ
[
D (t, Ti)1{τ>Ti}|Ht

]

= LGD

∑b
i=a+1 EQ

[
D (t, Ti)1{Ti−1<τ≤Ti}|Ht

]
∑b

i=a+1 αiQ (τ > t|Ht) P̄ (t, Ti)
,

P̄ (t, T ) =
EQ

[
D (t, T )1{τ>T}|Ht

]

Q (τ > t|Ht)
.

Remark 1 Notice thatP̄ (t, T ) coincides before default with the price of aT -maturity
zero-coupon defaultable bond

EQ
[
D (t, T )1{τ>T}|Ft

]
= 1{τ>t}P̄ (t, T ) .

Remark 2 Notice a specific advantage of using the subfiltrationHt in our setting.
Using expectation conditional on informationFt including the default time, the de-
nominator of the par spread may jump to zero at default, so that the spread definition
would not be valid in all states of the world. Instead, by expressing prices in terms of
partial informationHt, our definition holds globally.

2.2 Pricing a CDS Option

Now we can consider CDS options. The CDS option to enter a CDS with fixed rateK
at future timeTa has discounted payoff

D (t, Ta) [CDSTa (K)]+ = D (t, Ta)


CDSTa (K)− CDSTa (Ra,b (Ta))︸ ︷︷ ︸

0




+
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which from (1) inserted in (4) is

CDSOptionΠt (K) =

= D (t, Ta)
1{τ>Ta}

Q (τ > Ta|HTa)
EQ

[
b∑

i=a+1

αiD(Ta, Ti)1{τ>Ti}|HTa

]
(Ra,b (Ta)−K)+

= D (t, Ta)
1{τ>Ta}

Q (τ > Ta|HTa
)

{
b∑

i=a+1

αiQ (τ > Ta|HTa) P̄ (Ta, Ti)

}
(Ra,b (Ta)−K)+ .

= D (t, Ta)1{τ>Ta}

{
b∑

i=a+1

αiP̄ (Ta, Ti)

}
(Ra,b (Ta)−K)+

Using the pricing formula conditional onHt

CDSOptiont (K) =

=
1{τ>t}

Q (τ > t|Ht)
EQ

[
D (t, Ta)1{τ>Ta}

{
b∑

i=a+1

αiP̄ (Ta, Ti)

}
(Ra,b (Ta)−K)+

∣∣∣∣∣Ht

]

=
1{τ>t}

Q (τ > t|Ht)
EQ

[
EQ

[
D (t, Ta)1{τ>Ta}

{
b∑

i=a+1

αiP̄ (Ta, Ti)

}
(Ra,b (Ta)−K)+

∣∣∣∣∣HTa

]∣∣∣∣∣Ht

]

=
1{τ>t}

Q (τ > t|Ht)
EQ

[
D (t, Ta)

{
b∑

i=a+1

αiP̄ (Ta, Ti)

}
(Ra,b (Ta)−K)+ EQ

[
1{τ>Ta}

∣∣HTa

]
∣∣∣∣∣Ht

]

=
1{τ>t}

Q (τ > t|Ht)
EQ

[
D (t, Ta)

{
b∑

i=a+1

αiQ (τ > Ta|HTa) P̄ (Ta, Ti)

}
(Ra,b (Ta)−K)+

∣∣∣∣∣Ht

]
.

(5)
This rather complicated formula can be reduced to a simple standard formula by chang-
ing the numeraire. This issue is analyzed in the next section.

3 Standard Market Formula for CDS

In this section we obtain standard market formulas under a general probabilistic frame-
work analogous to part of Jamshidian (2004).

In this context we are in a complete filtered probability space(Ω,F , P,Ft), where
filtration Ft satisfies the usual hypothesis and we setF0 = (Ω, ∅) andF = F T̄ for a
terminal dateT̄ . Ht is a subfiltration ofFt satisfying the usual hypothesis and we set
H0 = (Ω, ∅) andH = HT̄ .

Given the standard bank-account numeraire with price processBt and an equivalent
risk neutral measureQ ∼ P , we define a claimX as anF-measurable random variable
such thatXB isQ-integrable, writingB for BT̄ . The price process of any claim is given
by

Xt = BtEQ

[
X

B
|Ft

]

7



Any different numeraireβ is a claim such thatβ > 0 almost surely. The measureP β

associated with numeraireβ is defined by the Radon-Nikodym derivative

dP β

dQ
=

B0β

β0B

so that we have the standard change of numeraire formula

X0 = B0EQ

[
X

B

]
= EQ

[
Xβ0

β

dP β

dQ

]
= β0Eβ

[
X

β

]
.

extended as usual to pricesXt (see Appendix).

3.1 A numeraire for CDS

The quantity of interest in (5) is obviously the quantity between curly brackets, that we
call Ca,b (Ta) according to

Definition 3

Ca,b (t) :=
b∑

i=a+1

αiQ (τ > t|Ht) P̄ (t, Ti) =
b∑

i=a+1

αiEQ
[
D (t, Ti)1{τ>Ti}|Ht

]
.

Before default this coincides with the price of a portfolio of defaultable bonds called
defaultable present value per basis point.

The accrued value

Ca,b = Ca,b (Ta)
B

BTa

is a claim andCa,b > 0 almost surely2, therefore it is a numeraire associated to a

measurēQa,b := PC
a,b

. Notice thatCa,b
t = BtEQ

[
Ca,b

B |Ft

]
.

In (5) we change measure tōQa,b and we obtain

CDSOptiont (K) =
1{τ>t}

Q (τ > t|Ht)
Ca,b

t Ēa,b
[
(Ra,b (Ta)−K)+

∣∣∣Ht

]
. (6)

This formula is similar but not equivalent to that in Brigo (2005), since in Brigo (2005)
Ca,b

t is replaced byCa,b (t). Namely there aHt conditioning replaces our iterated
HTa ,Ft conditioning in the numeraire price. The formula of Brigo (2005) holds in the
particular setting of that work, the setting of Cox Processes, while (6) is valid under
the more general hypothesis of this work.

We recall now the definition ofconditional independence for subfiltrations(Jamshid-
ian (2004)), a property called martingale invariance in Jeanblanc and Rutkowski (2000).
Given the numeraireβ,Ht is aP β-conditionally independent subfiltration ofFt if un-
derP β every process which is a martingale when conditioning onHt is a martingale

2This fact is proven in the Appendix.
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also when conditioning onFt. For our CDS pricing, the most relevant way of express-
ing this property is the following: forX bounded andH-measurable,

Eβ [X|Ht] = Eβ [X|Ft] , ∀t.
Therefore we also have

Ca,b
t = BtEQ

[
1
B

Ca,b (Ta)
B

BTa

|Ft

]
= EQ

[
Bt

BTa

Ca,b (Ta) |Ft

]

= EQ

[
Bt

BTa

Ca,b (Ta) |Ht

]

= EQ

[
D (t, Ta)EQ

[
b∑

i=a+1

αiD (Ta, Ti)1{τ>Ti}|HTa

]
|Ht

]

= EQ

[
b∑

i=a+1

αiD (t, Ti)1{τ>Ti}|Ht

]

= Ca,b (t) .

Hence ifHt isQ-conditionally independent (6) simplifies to

CDSOptiont (K) = 1{τ>t}
b∑

i=a+1

αiP̄ (t, Ti) Ēa,b
[
(Ra,b (Ta)−K)+

∣∣∣Ht

]
. (7)

which is equivalent to the formula in Brigo (2005). Yet notice that we are not con-
strained to assume the conditional survival probability to be absolutely continuous and

given byexp
(
− ∫ t

0
λsds

)
for aHt-adapted intensity processλt. The formula is valid

in the more general context of conditionally independent subfiltration, of which Cox
Processes are a special case. Analogously, in developing the Swap Market Model the
existence of an instantaneous spot interest rate process is not required.

Remark and Assumption 4 In financial terms, the assumption thatHt isQ-conditionally
independent implies that, if a claim (or a terminal payoff) can be known based only on
total (terminal) default-free information, its current price can be computed based only
on current default-free information. Although, as Jamshidian (2004) correctly remarks,
“this somewhat degrades the role played by subfiltrationHt, for all Ht conditional ex-
pectations ofH-measurable random variable become replaceable with corresponding
Ft-conditional expectations”, it appears to us that this property makes the financial
meaning of a subfiltration setting more clear and understandable. Considering also
the computational (and notational) ease it can grant,from now on we assume condi-
tional independence to hold.

3.2 The dynamics of the underlying spread

Obviously formula (7) will be specified by giving a dynamics forRa,b (t) underQ̄a,b.
In the next computationsLGD= 1 for easing notation. Notice first that

Ra,b (t) =
∑b

i=a+1 EQ
[
D (t, Ti)1{Ti−1<τ≤Ti}|Ht

]

Ca,b (t)
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coincides before default with the price of a CDS payed upfront, with a single initial
payment, divided by the numeraire.
Consider the claim

RC =
b∑

i=a+1

EQ
[
D (Ta, Ti)1{Ti−1<τ≤Ti}|HTa

] Ca,b

Ca,b (Ta)
.

At time t ≤ Ta

RC
t = Ca,b (t) Ēa,b

[
RC

Ca,b

∣∣∣∣Ft

]

= Ca,b (t) Ēa,b

[ ∑b
i=a+1 EQ

[
D (Ta, Ti)1{Ti−1<τ≤Ti}|HTa

]

Ca,b (Ta)

∣∣∣∣∣Ft

]

= Ca,b (t) Ēa,b [Ra,b (Ta)| Ft] .

Furthermore

RC
t = BtEQ

[
RC

B

∣∣∣∣Ft

]
=

= BtEQ




∑b
i=a+1 EQ

[
D (Ta, Ti)1{Ti−1<τ≤Ti}|HTa

]
Ca,b (Ta) B

BTa

B Ca,b (Ta)

∣∣∣∣∣∣
Ft




= BtEQ

[ ∑b
i=a+1 EQ

[
D (Ta, Ti)1{Ti−1<τ≤Ti}|HTa

]

BTa

∣∣∣∣∣Ft

]

= BtEQ

[
b∑

i=a+1

EQ

[
1{Ti−1<τ≤Ti}

BTi

|HTa

]∣∣∣∣∣Ft

]
.

WhenHt isQ-conditionally independent,

RC
t = BtEQ

[
b∑

i=a+1

EQ

[
1{Ti−1<τ≤Ti}

BTi

|HTa

]∣∣∣∣∣Ht

]

= BtEQ

[
b∑

i=a+1

1{Ti−1<τ≤Ti}
BTi

∣∣∣∣∣Ht

]

=
b∑

i=a+1

EQ
[
D (t, Ti)1{Ti−1<τ≤Ti}|Ht

]
= Ra,b (t)Ca,b (t) .

Thus we have that
Ra,b (t) = Ēa,b [Ra,b (Ta)| Ft] ,

andRa,b (t) is anFt-martingale under̄Qa,b for t ≤ Ta. SinceHt is Q̄a,b-conditionally
independent as well,3 Ra,b (t) is also anHt-martingale under̄Qa,b for t ≤ Ta

3That this actually holds is proven in the Appendix.
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Assumption 5 We assume that, as in standard market models, the instantaneous per-
centage volatility is deterministic

dRa,b (t) = σ̄a,bRa,b (t) dV a,b, t ≤ Ta

whereV a,b is a brownian motion under̄Qa,b.

Then
Standard Market Formula for CDS Options

CDSOptiont = 1{τ>t}
b∑

i=a+1

αiP̄ (t, Ti) Black
(
Ra,b (t) , K, σ̄a,b

√
Ta − t

)
, (8)

Black (F, K, v) = F N(d1(F,K, v))−K N(d2(F, K, v))

d1(F, K, v) =
ln( F

K ) + 1
2v2

v
, d2(F,K, v) =

ln( F
K )− 1

2v2

v
.

Remark 6 The distributional assumption is obviously inspired by the analogy with
standard market models in equity and interest rate markets. However, this assumption
for the CDS market is specifically underpinned by the empirical analysis in Schon-
bucher (2004).

3.3 Empirical application

When the market is not very liquid, a market model is not easily calibrated to market
quotations to be used for pricing, although it plays an important role. It allows to trans-
late the prices of different options into implied volatilities, making the understanding
of quotations much better. Compare the tables below

Ra,b (0) K Mid Opt quote
Option 1 61 60 32.5
Option 2 43.4 43 24.5

Ra,b (0) K Mid implied σa,b

Option 1 61 60 62.16%
Option 2 43.4 43 63.71%

The possibility to compute implied volatility also allows to assess the implications of
different models on the classic strike volatility curve (smile or skew). And the nu-
meraire martingale framework is general and we can assume forRa,b(t) an alternative
local or stochastic volatility dynamics

dRa,b(t) = νa,bR
PR
a,b (t)dW a,b(t)

as it may be required in the market.
Now we show some examples of CDS implied volatilities, to see how they change

when modifying some inputs or assumptions. The corporates considered are:
C1 = Deutsche Telecom; C2 = Daimler Chrysler; C3 = France Telecom.
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The data are Euro market CDS options quotes as of March 26, 2004;REC = 0.4;
Ta =June 20, 2004 andT ′a =December 20, 2004;Tb = June 20, 2009;

Values obtained for volatility appear high compared to interest rate default-free
swaptions, for example, but they have the same order of magnitude as some of those
found on the CDS market by Hull and White (2003) and in particular by Schonbucher
(2004) via historical estimation.

Below we see that changing the definition of the CDS rate both CDS forward rates
and implied volatilities are almost unchanged.RB

a,b(0) andσB
a,b refer to a CDS pay-

off including one more payment of the protection buyer, for the period when default
happens. For more details on these tests see Brigo (2004).

Option: bid mid ask R0,b(0) Ra,b(0) RB
a,b(0) K σa,b σB

a,b

C1(Ta) 14 24 34 60 61.497 61.495 60 50.31 50.18
C2 32 39 46 94.5 97.326 97.319 94 54.68 54.48
C3 18 25 32 61 62.697 62.694 61 52.01 51.88

C1(T ′a) 28 35 42 60 65.352 65.344 61 51.45 51.32

In the next table we check the impact of the recovery rate on implied volatilities
and CDS forward rates. Again the impact is very reduced.

REC = 20% REC = 30% REC = 40% REC = 50% REC = 60%
σa,b:

C1(Ta) 50.02 50.14 50.31 50.54 50.90
C2 54.22 54.42 54.68 55.05 55.62
C3 51.71 51.83 52.01 52.25 52.61

C1(T ′a) 51.13 51.27 51.45 51.71 52.10
Ra,b:

C1(Ta) 61.488 61.492 61.497 61.504 61.514
C2 97.303 97.313 97.326 97.346 97.374
C3 62.687 62.691 62.697 62.704 62.716

C1(T ′a) 65.320 65.334 65.352 65.377 65.415

In the next table we check the impact of a shift in the simply compounded rates of
the zero coupon interest rate curve.These shifts have still a small impact, even though it
is larger than the impact of recovery. We have volatilities on the left, rates on the right.

shift−0.5% 0 +0.5%

C1(Ta) 49.68 50.31 50.93
C2 54.02 54.68 55.34
C3 51.36 52.01 52.65

shift−0.5% 0 +0.5%

61.480 61.497 61.514
97.294 97.326 97.358
62.677 62.697 62.716

4 Variables for a general CDS Market Model

In the previous sections we have shown the fundamental steps for building a standard
CDS Market Model. Although various complications in the credit setting required
specific attention, steps are analogous to those required in the definition of the Swap
Market Model of Jamshidian (1997). Obviously, the above results immediately trans-
late for the case of a CDS Market Model designed along the definition of the Libor
Market Model of Brace, Gatarek and Musiela (1997).
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4.1 One period CDS forward rates

The LMM is designed for pricing caplets, the building blocks of caps. A caplet is an
option on a forward rate agreement, which is a one-period swap. One sets the price
of this one-period swap to zero and recovers the value of the fixed rate making it fair.
This defines the forward rate (one-period swap rate) which is also the underlying of
the caplet. Then one detects the equivalent measure under which a forward rate is a
martingale and assumes it has deterministic percentage volatility. Therefore up to this
point the steps are the same as those seen for the SMM (the relevant differences arise
in giving a term structure model), but applied to a one-period swap.

Analogously, we can express the results of the previous sections with reference to
a one-period CDS, as done in Brigo (2005).

We consider the measurēQj := Q̄j−1,j associated with numeraireCj = Cj−1,j .
Theforward CDS spreadRj (t) := Rj−1,j (t), martingale under̄Qj , is

Rj (t) =
LGDEQ

[
D (t, Tj)1{Tj−1<τ≤Tj}|Ht

]

αjEQ
[
D (t, Tj)1{τ>Tj}|Ht

] (9)

= LGD
EQ

[
D (t, Tj)1{τ>Tj−1}|Ht

]− EQ
[
D (t, Tj)1{τ>Tj}|Ht

]

αjEQ
[
D (t, Tj)1{τ>Tj}|Ht

]

=
LGD

αj

{
EQ
h
D(t,Tj)1{τ>Tj−1}|Ht

i
Q(τ>t|Ht)

}
− P̄ (t, Tj)

P̄ (t, Tj)
,

and pricing formulas for one-period CDS options are trivially derived by a change of
notation. The relationship betweenRj (t) andRa,b (t) is

Ra,b (t) =
b∑

j=a+1

αjP̄ (t, Tj)∑b
i=a+1 αiP̄ (t, Ti)

Rj (t) . (10)

Notice that in the definition of a CDS forward rate given in (9) we have complex
quantity between curly brackets. The definition of the rate can be better understood via
a change of measure. Therefore in the next section we carry out an analysis, based on
change of measure, of the nature of the fundamental variables.

4.2 CDS spreads as forward conditional probability ratios

Another advantage of our subfiltration structure approach is that now all quantities
are explicitly defined and represented as conditional expectations. This allows us to
investigate their nature more deeply. It is a well known result in change-of-measure
theory that for aσ-subalgebraN of σ-algebraM and anM-measurableX, integrable
under the measures considered, we have4

EP2 [X|N ] = EP1

[
X

dP2
dP1

1
EP1

[
dP2
dP1 |N

]
∣∣∣∣∣N

]
. (11)

4A proof of this result is provided in the Appendix.
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This implies that, for aF-measurableY and a measurePZ associated to numeraireZ

EZ [Y |Ht] = EQ

[
Y

Z
B

EQ
[

Z
B |Ht

]
∣∣∣∣∣Ht

]
. (12)

A one period CDS rate is

Rj (t) = LGD
EQ

[
D (t, Tj)1{τ>Tj−1}|Ht

]− EQ
[
D (t, Tj)1{τ>Tj}|Ht

]

αjEQ
[
D (t, Tj)1{τ>Tj}|Ht

] .

Consider
Y = 1{τ>Tj}

and apply (12) withPZ equal to theTj forward measureQj associated to numeraire
Z = B/BTj

having price processP (t, Tj), t ≤ Tj , namely theTj-maturity default-
free zero-coupon bond. We obtain that

EQ
[
D (t, Tj)1{τ>Tj}|Ht

]
= P (t, Tj)Ej

[
1{τ>Tj}|Ht

]

= P (t, Tj)Qj (τ > Tj |Ht)

and analogously

EQ
[
D (t, Tj)1{τ>Tj−1}|Ht

]
= P (t, Tj)Qj (τ > Tj−1|Ht) .

Therefore the CDS spread is

Rj (t) = LGD
EQ

[
D (t, Tj)1{τ>Tj−1}|Ht

]− EQ
[
D (t, Tj)1{τ>Tj}|Ht

]

αjEQ
[
D (t, Tj)1{τ>Tj}|Ht

]

= LGD
P (t, Tj)Qj (τ > Tj−1|Ht)− P (t, Tj)Qj (τ > Tj |Ht)

αjP (t, Tj)Qj (τ > Tj |Ht)

=
LGD

αj

(
Qj (τ > Tj−1|Ht)
Qj (τ > Tj |Ht)

− 1
)

(13)

Thus we obtain that the basic real world CDS rate is actually a ratio of survival
probabilities, if the right probability measure and information flow are selected in
defining conditional default probabilities. In particular, differently from their usual
representation as in (9), no direct presence of default-free interest rates and discount
factors appears in (13).

This result has a simple financial meaning. Consider for instance a classic toy
intensity model with constant intensity. It is well known that if we assume a continuous
instantaneous premium, a CDS rate can be seen as equivalent, by no-arbitrage, to the
credit spread of the same reference entity over the instantaneous spot interest rater. In
fact this is often called CDS spread. It is also well known that in this case the spread is
given by the instantaneous intensity, namely it is determined by survival probability.

The results above show that, in the much more complex context of real market
discrete-tenor CDS spreads, a dependence of the one-period CDS spread from default
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probability is maintained, but to detect this link separating out default-free interest
rates from default probabilities one needs to consider a probability measure associated
to discrete tenor interest rates, namely a forward measure. This is analogous to the
computation of

EQ [D (t, Tk) F (Tk−1; Tk−1, Tk) |Ft] = P (t, Tk)F (t; Tk−1, Tk) ,

where actually a change to theTk-forward measure is performed

EQ [D (t, Tk)F (Tk−1; Tk−1, Tk) |Ft] = P (t, Tk)ETk [F (Tk−1; Tk−1, Tk)] .

Notice that actually (13) gives a representation of the CDS spread analogous to that of
a Libor rate, where bond prices are replaced by forward default probabilities.

Now we move to consider multi-period CDS spreads. From (13) we have

Ra,b (t) = LGD

b∑

j=a+1

P (t, Tj)Qj (τ > Tj−1|Ht)− P (t, Tj)Qj (τ > Tj |Ht)∑b
i=k+1 αiP (t, Ti)Qj (τ > Ti|Ht)

.

(14)
Here we have an expression where both forward default probabilities and default-free
bonds appear explicitly, as one can expect. But due to the change of measure bond
prices and probabilities are separated, something which is usually done by assuming
independence of default probabilities and default free interest rates.

4.3 Dynamics under different measures

Up to now we have given dynamics and formulas involving one rate at a time under
the associated measure. Therefore the practical usefulness of our results is analogous
to that of the Black formula justified by the change of numeraire in the interest rate
market. We do not have yet a general model of the CDS term structure like the SMM
and LMM for the default-free term structure. A major contribution of the Swap and
Libor Market Models is giving the joint distribution of different interest rates under a
single convenient pricing measure.

For a CDS market model one needs defining a plurality of CDS spreads covering
the required tenor structure. A plurality of CDS spreadsRa,b are associated with a
plurality of natural measures̄Qa,b. One needs to know the dynamics of CDS spreads
jointly under a singlēQa,b measure.

We can span a complete tenor structureΥ = {T0, T1, . . . , TM} choosing for in-
stance the one-period forward CDS ratesRj (t), j = 1, . . . , M . This choice is analo-
gous to the LMM of Brace, Gatarek and Musiela (1997) and is the main choice sug-
gested in Brigo (2004, 2005). The definition of the model requires in this case com-
puting the dynamics of eachRj CDS spread under any of thēQi measures for theTi’s
in the tenor structure. This implies defining the dynamics ofRj underQ̄i wheni 6= j.
However Brigo (2004, 2005) points out problems in defining the dynamics because of
some fundamental differences between CDS forward spreads and default-free interest
rates. We analyze these differences in the following.
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Recall the change of numeraire rule for diffusions, given in more detail in Section 5.
Suppose we know the dynamics ofX under a measureQ1, associated with numeraire
N1, then through Girsanov’s Theorem we know that the dynamics ofX under the
equivalent measureQ2, associated withN2, differs in the drift from the dynamics of
X underQ1. In order to compute the new drift we need to consider the dynamics of
the logarithm of the ratio ofN1

t overN2
t , in particular its diffusion coefficient, which

is invariant under equivalent measures.
In case of the Libor Market Model the variables modelled are forward rates with

expiryTj−1 and maturityTj

Fj (t) =
1
αj

(
P (t, Tj−1)
P (t, Tj)

− 1
)

j = 1, . . . , M. (15)

In this case the probability measures to consider areQ1 = Qk, theTk-forward mea-
sure associated to theTk-maturity zero-coupon bondP (t, Tk), andQ2 = Qi, the
Ti-forward measure associated toP (t, Ti). If for examplei > k, the numeraire ratio
is

P (t, Tk)
P (t, Ti)

=
i∏

j=k+1

P (t, Tj−1)
P (t, Tj)

=
i∏

j=k+1

(1 + αjFj(t))

The numeraire ratio is a function of the state variables being modelled in the LMM and
the diffusion coefficient of its logarithm is easily computed.

CDS numeraire ratios. Considering CDS forward ratesRj , the relevant numeraire
ratios have the form

Ck
t

Ci
t

=
αkP̄ (t, Tk)
αiP̄ (t, Ti)

. (16)

Notice that

Rj (t) =
LGD

αj

{
EQ
h
D(t,Tj)1{τ>Tj−1}|Ht

i
Q(τ>t|Ht)

}

P̄ (t, Tj)
− 1,

where in the quantity between curly brackets the discount factor refers to a time dif-
ferent from the time in the default indicator. Thus we do not have a defaultable bond
numeraire, soRj (t) cannot be expressed as a function of only numeraire ratios. In turn
numeraire ratios cannot be expressed only in terms ofRj (t)’s.

This is even clearer making use of the change of measure approach. Express the
numeraire ratio via

P̄ (t, Tk)
P̄ (t, Ti)

=
P (t, Tk)Qk (τ > Tk|Ht)
P (t, Ti)Qi (τ > Ti|Ht)

=
i∏

j=k+1

P (t, Tj−1)
P (t, Tj)

Qj−1 (τ > Tj−1|Ht)
Qj (τ > Tj |Ht)

supposingi > k.
Thanks to this change of measure, we can apply the definition of forward Libor

rates (15) and find

P̄ (t, Tk)
P̄ (t, Ti)

=
i∏

j=k+1

(1 + αjFj(t))
Qj−1 (τ > Tj−1|Ht)
Qj (τ > Tj |Ht)

.
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But we cannot express the probability ratio in terms of defaultable forward rates, since

Rj (t) =
LGD

αj

(
Qj (τ > Tj−1|Ht)
Qj (τ > Tj |Ht)

− 1
)

and
Qj (τ > Tj−1|Ht)
Qj (τ > Tj |Ht)

6= Qj−1 (τ > Tj−1|Ht)
Qj (τ > Tj |Ht)

because of a mismatch in the measure under which the probabilities at numeraire are
taken.

The presence of default risk besides interest rates risk adds degrees of freedom,
and, in order to build a model for a complete term structure, additional assumptions
need to be done compared to a standard default free market model.

One possibility, considered by Brigo (2004), is modelling also additional rates,
for example two-period CDS ratesRj−2,j (t) , j = 2, . . . ,M . The choice appears
appropriate since, thanks to (10), we have

P̄ (t, Tk)
P̄ (t, Ti)

=
αi

αk

k∏

j=i+1

Rj−1 (t)−Rj−2,j (t)
Rj−2,j (t)−Rj (t)

and from this all required numeraire ratios are specified, so that we could in principle
complete the model, modelling bothRj (t) andRj−2,j (t) rates as lognormal martin-
gales under their natural measures.

Financial Behaviour. Unfortunately, as noticed by Brigo (2004), this holds mathe-
matically but does not hold in financial terms. We are not free to model the two-period
rate as we find more convenient, since the defaultable bonds must remain positive and
decreasing in the maturity:

0 <
P̄ (t, Tj)

P̄ (t, Tj−1)
< 1.

This translates into the following constraints

min
(

Rj−1 (t) ,
Rj−1 (t) + Rj (t)

2

)
< Rj−2,j (t) < max

(
Rj−1 (t) ,

Rj−1 (t) + Rj (t)
2

)
,

which require specific, nonstandard dynamics whose existence is still to be demon-
strated. Analogous problems arise if considering one-period CDS rates and multiperiod
co-terminal CDS rates, namely with common final dateTM .

The analysis previously carried out indicates that the problem can be also inter-
preted as a measure mismatch. This mismatch disappears if, as in Hull and White
(2003), Wu (2005) and in some parts of Schonbucher (1999) we assume independence
of interest rates and default probability. This is shown in the next section, where we
also present how the CDS rate definitions and CDS option formulas here presented can
be applied to develop closed-form formulas for other exotic credit derivatives, gaining
tractability via standard approximations.
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5 Dynamics and Constant Maturity CDS

Notice first that, when interest rates are independent of the default event, our CDS
forward spread becomes

Rj (t) = LGD
P (t, Tj)EQ

[
1{τ>Tj−1}|Ht

]− P (t, Tj)EQ
[
1{τ>Tj}|Ht

]

P (t, Tj)αjEQ
[
1{τ>Tj}|Ht

]

=
LGD

αj

(
Q (τ > Tj−1|Ht)
Q (τ > Tj |Ht)

− 1
)

and the numeraire ratio is

P̄ (t, Tj−1)
P̄ (t, Tj)

=
EQ

[
D (t, Tj−1)1{τ>Tj−1}|Ht

]

EQ
[
D (t, Tj)1{τ>Tj}|Ht

] =
P (t, Tj−1)Q (τ > Tj−1|Ht)

P (t, Tj)Q (τ > Tj |Ht)

Hence there is no measure mismatch

P̄ (t, Tj−1)
P̄ (t, Tj)

=
(
Rj (t)

αj

LGD
+ 1

)
(Fj (t)αj + 1) ,

P̄ (t, Tk)
P̄ (t, Ti)

=
i∏

j=k+1

(
Rj (t)

αj

LGD
+ 1

)
(Fj (t)αj + 1) , i > k

Financial behaviour. With this choice of modelling variables the numeraire ratios
are specified and we are free to model each variable according to a standard lognor-
mal dynamics under the corresponding natural measure. The resulting behaviour of
defaultable bonds satisfies all required financial regularities, in fact

P̄ (t, Tj)
P̄ (t, Tj−1)

=
1(

Rj (t) αj

LGD
+ 1

)
(Fj (t) αj + 1)

,

with

0 <
1(

Rj (t) αj

LGD
+ 1

)
(Fj (t)αj + 1)

< 1

whenever the rates in the model are bounded away from zero. Moreover

P̄ (t, Tj−1)
P̄ (t, Tj)

=
P (t, Tj−1)
P (t, Tj)

(
Rj (t)

αj

LGD
+ 1

)
,

1
P̄ (Tj−1, Tj)

=
1

P (Tj−1, Tj)

(
Rj (Tj−1)

αj

LGD
+ 1

)
,

P̄ (Tj−1, Tj) =
P (Tj−1, Tj)(

Rj (Tj−1)
αj

LGD
+ 1

) < P (Tj−1, Tj)

We are now ready to define a complete model.
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5.1 A Libor and CDS Market Model under independence

Change of numeraire for dynamics. Assume that under a measureQ1 associated
with numeraireN1 the dynamics of the processX is given by

dXt = µtdt + σtdW 1
t ,

whereX,µ areM -dimensional vectors andW 1 is standardM -dimensional brownian
motion underQ1 with instantaneous correlationΞ. The matrixσt is M × M and
diagonal. Then the dynamics ofX under an equivalent measureQ2 associated with
N2 is

dXt =
(
µt − σtΞΣ1,2 (t)′

)
dt + σtdW 2

t , (17)

whereΣ1,2 (t), or DC
(
ln N1

t

N2
t

)
, whereDC stand for diffusion coefficient, is defined

by

d

(
ln

N1
t

N2
t

)
= Ux

t dt + Σ1,2 (t) dW x
t , x = 1, 2.

In terms of stochastic shocks the equivalent formula is

dW 1
t = dW 2

t − ΞΣ1,2 (t)′ dt (18)

CDS and Libor Market Model Assume a tenor structure{T0, T1, . . . , TM}. Fork =
1, . . . , M , our variables are:Fk(t), the simply compounded forward rate resetting at
Tk−1 and with maturityTk, andRk(t), the CDS par spread for period fromTk−1 to Tk.
Qk is the equivalentTk-forward measure associated with the numeraire bondP (t, Tk),
andQ̄k is the equivalent measure associated with the credit numeraireαkP̄ (t, Tk).
Fork = 1, . . . ,M ,

dRk(t) = σ̄k(t)Rk(t)dV k
k (t), t ≤ Tk−1,

whereV k
k (t) is the k-th component of anM -dimensional Brownian motionV k(t)

underQ̄k and
dFk(t) = σk(t)Fk(t)dZk

k (t), t ≤ Tk−1,

whereZk
k (t) is thek-th component of anM -dimensional Brownian motionZk(t) un-

derQk. The correlation structure is

dVidVj = ρijdt,

dZidZj = δijdt,

dVidZj = 0.

since we have assumed independence of default probabilities and default-free interest
rates.
Definehj

i := 1{j<i} − 1{j>i}.
The dynamics ofRi(t) underQ̄j is

dRi(t) = hj
i σ̄i(t)Ri(t)

i∨j∑

h=(i∧j)+1

ρi,h
σ̄h(t)Rh(t)

Rh (t) + LGD
αh

dt + σ̄i(t)Ri(t)dV j
i (t).
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for t ≤ T(i−1)∧j .
Proof Apply (18) to

X = (R1, . . . , RM , F1, . . . , FM )′ ,

W =
[

V
Z

]
,

σ = diag (σ̄1, . . . , σ̄M , σ1, . . . , σM ) ,

Ξ =
[

ρ 0
0 δ

]
,

recalling that withi > j

P̄ (t, Tj)
P̄ (t, Ti)

=
i∏

h=j+1

(
Rh (t)

αh

LGD
+ 1

)
(Fh (t)αh + 1) .

For the dynamics of CDS spreadRi(t) underQ̄j , i > j, setdZ̄k for dZ underQ̄k, so

d

[
V j

Z̄j

]
= d

[
V i

Zi

]
−

[
ρ 0
0 δ

]
DC

(
ln
Cj

t

Ci
t

)
dt

= d

[
V i

Z̄i

]
−

[
ρ 0
0 δ

]
DC

(
ln

P̄ (t, Tj)
P̄ (t, Ti)

)′
dt

= d

[
V i

Z̄i

]
−

[
ρ 0
0 δ

] i∑

h=j+1

[
DC

(
ln

(
Rh (t)

αh

LGD
+ 1

))′
+ DC (ln (Fh (t)αh + 1))′

]
dt

= d

[
V i

Z̄i

]
−

[
ρ 0
0 δ

] i∑

h=j+1

[
DC (Rh (t))′

Rh (t) + LGD
αh

+
DC(Fh (t))′

Fh + 1
αh

]
dt,

dV j
i = dV i

i −
i∑

h=j+1

ρi,h
σ̄h(t)Rh (t)
Rh (t) + LGD

αh

dt,

and

dRi(t) = σ̄i(t)Ri(t)dV i
i (t) = σ̄i(t)Ri(t)

i∑

h=j+1

ρi,h
σ̄h(t)Rh (t)
Rh (t) + LGD

αh

dt + σ̄i(t)Ri(t)dV j
i (t)

= : σ̄i (t) Ri (t) µj
i (R (t) , t) dt + σ̄i (t)Ri (t) dV j

i (t) .

For Libor rates the derivation is analogous, and consistent with the standard Libor
Market Model of Brace, Gatarek and Musiela (1997) and Jamshidian (1997).

5.2 Constant maturity CDS

We see now application of the model to Constant Maturity CDS (CMCDS). In a CM-
CDS two parties, called the protection buyer and the protection seller agree that if a
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third company, called the reference entity, defaults at timeτ , Ta < τ ≤ Tb, then the
protection seller pays to the protection buyer an amountLGD at the firstTi following
default time. In exchange the protection buyer pays periodically at allTi before default
the(c + 1)-long CDS rateRi−1,i+c (Ti−1) timesαi

This product, developed for giving investors the flexibility of a CDS rate adapting
periodically to changing market conditions, is particularly suitable for being evaluated
via market models. Also the Constant Maturity Swap of the default-free interest rate
market is easily evaluated in a Libor Market Model, in particular closed-form formu-
las are easily obtained via well-established approximation procedures. Now we see a
simple application in the context of CDS market models.

The first approximation we apply is known as drift freezing approximation: in
the dynamics ofRi(t) we assumeµj

i (R (t) , t) ≈ µj
i (R (0) , t). This approximation,

tested via Monte Carlo simulation for the LMM, can be justified noticing the presence
of rates in both numerator and denominator ofµi,k, so that their volatilities tend to
partially cancel out. With this approximationRi(t) is a geometric brownian motion, so

Ēj [Ri (Tj−1)] ≈ Ri (0) exp

[∫ Tj−1

0

µj
i (R (0) , t) dt

]

= Ri (0) exp




i∑

h=j+1

Rh (0)
Rh (0) + LGD

αh

ρi,h

∫ Tj−1

0

σh (t) σi (t) dt




The second approximation, also typical of the default free market model and justified
in related literature, represents swap rates as linear combinations of forward rates, as-
suming

Rj−1,j+c (Tj−1) ≈
j+c∑

i=j

w̄j
i (0)Ri (Tj−1) , w̄j

i (t) =
αiP̄ (t, Ti)∑j+c

h=j αhP̄ (t, Th)

Since the protection leg is like in a standard CDS, valuing a CMCDS amounts to valu-
ing the premium leg, computing

b∑

j=a+1

αjEQ
0 [D(0, Tj)1{τ>Tj}Rj−1,j+c(Tj−1)]

≈
b∑

j=a+1

j+c∑

i=j

αjw̄
j
i (0)EQ

0 [D(0, Tj)1{τ>Tj}Ri(Tj−1)]

=
b∑

j=a+1

j+c∑

i=j

αjw̄
j
i (0)EQ

0 [D(0, Tj)Ri(Tj−1)EQ(1{τ>Tj}|FTj )]

=
b∑

j=a+1

j+c∑

i=j

w̄j
i (0)EQ

0

[
D(0, Tj)(Ri(Tj−1) Cj

Tj
)
]

=
b∑

j=a+1

j+c∑

i=j

w̄j
i (0)αjP̄ (0, Tj)Ēj

0[Ri(Tj−1)].

21



Now we apply the drift freezing approximation and can easily compute the CMCDS
price with a closed-form formula. Assuming time-constant volatility we find the same
formula obtained, modelling with different assumptions, in Brigo (2004b), giving the
price at time0 as

CMCDSa,b,c(0) =

=
b∑

j=a+1

αjP̄ (0, Tj)





j+c∑

i=j

w̄j
i (0)Ri (0) exp


Tj−1σi

i∑

h=j+1

σhRh (0)
Rh (0) + LGD

αh

ρi,h


−Rj(0)



 .

5.3 Empirical application

We consider the FIAT car company CDS market quotes of December 20, 2004, with
REC = 0.4. We start by giving a table for

conv(σ, ρ) := CMCDSa,b,c(0; σ, ρ)−CMCDSa,b,c(0; ρ = 0).

with σi = σ andρi,j = ρ. The second term is the value where no correction due to CDS
forward rate dynamics is accounted for:

∑b
j=a+1 αjP̄ (0, Tj) {Rj−1,j+c(0)−Rj(0)}.

This difference gives the impact of volatilities and correlations of CDS rates on the
CMCDS price. We takea = 0, b = 20, c = 20 (resetting quarterly).

conv(σ, ρ) ρ: 0.7 0.8 0.9 0.99
σ: 0.1 0.000659 0.000754 0.000848 0.000933

0.2 0.002662 0.003047 0.003435 0.003784
0.4 0.011066 0.012742 0.014442 0.015995
0.6 0.026619 0.030964 0.035464 0.039652

The “convexity difference” increases with respect both to correlation and volatility,
as expected. The next table reports the so called “participation rate”φa,b,c(σ, ρ)

φ0,20,20(σ, ρ) =
“premium leg CDS”

“premium leg CMCDS”
=

∑20
j=1 αjP̄ (0, Tj)R0,20(0)

∑20
j=1 αjĒj−1,j

0 [D(0, Tj)1{τ>Tj}Rj−1,j+20(Tj−1)]
,

φ0,20,20(σ, ρ) ρ: 0.7 0.8 0.9 0.99
σ: 0.1 0.71358 0.71325 0.71292 0.71262

0.2 0.70664 0.70532 0.704 0.70281
0.4 0.67894 0.67368 0.66842 0.66368
0.6 0.63302 0.62128 0.60957 0.59907

The participation rate decreases with volatility and correlation.
In the following section we abandon the hypothesis of independence of default-free

interest rates and default probabilities. We signal that, rather than adding other rates
or assuming independence, one can also consider modelling more fundamental quan-
tities to complete the model. For consistency with previous literature, in particular
Schonbucher (1999), here we develop this possibility starting from the expression (2)
in defining a conventional CDS contract. This allows to underline similarities with pre-
vious approaches but also the differences and the advantages of the current approach.
However a similar solution can be applied also starting from the feasible market payoff
(1), an alternative that will be addressed in subsequent research.
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5.4 A different model with approximated payoff

As we mentioned in the introduction, the first important development in the field of
market models for credit derivatives is given in Schonbucher (1999). Therefore we
show in this last sections relationships and differences with the approach of our work.

Building blocks. Schonbucher (1999) builds a market model based on the following
fundamental quantities, in the original notation:

1. Tk-maturity default free bondBk (t)

2. Tk-maturity defaultable bond1{τ>t}B̄k (t)

3. A ratio defined as

Dk (t) =
B̄k (t)
Bk (t)

Since no subfiltration structure is introduced in Schonbucher (1999), no other represen-
tation of the quantityB̄k (t) is given. In our subfiltration setting, we can give a precise
description of this quantity, in terms of its constituent components, since defaultable
bonds can be expressed as

1{τ>t}P̄ (t, Tk) = 1{τ>t}
EQ

[
D (t, Tk)1{τ>Tk}|Ht

]

Q (τ > t|Ht)
.

The nature ofP̄ (t, Tk) is therefore not opaque, and we can exploit its definition for
tractability. An application is describingDk (t), which is here5

P̄ (t, Tk)
P (t, Tk)

=
P (t, Tk)Qk (τ > Tk|Ht)
P (t, Tk)Q (τ > t|Ht)

=
Qk (τ > Tk|Ht)
Q (τ > t|Ht)

=
Qk (τ > Tk|Ht)
Qk (τ > t|Ht)

=: Qk
H (t)

easily interpreted as a forward conditional (Bayes) survival probability based on default-
free information.

Schonbucher assumes for the quantityDk (t) a dynamics under a generic measure.
With subfiltrations is the dynamics of the above probability

dQk
H (t)

Qk
H (t−)

= . . . dt− σk
HdW

for a generic covariance vector processσk
H and a vectorW of uncorrelated standard

brownian motions.
5Notice the following property

Qk (τ > t|Ht) = Ek
�
1{τ>t}|Ht

�
=
EQ[D(t,Tk)1{τ>t}|Ht]

EQ[D(t,Tk)|Ht]

=
EQ[1{τ>t}EQ[D(t,Tk|Ft)]|Ht]

EQ[EQ[D(t,Tk)Ft]|Ht]
=

P (t,Tk)EQ[1{τ>t}|Ht]
P (t,Tk)

= Q (τ > t|Ht)

23



Obviously modelling this quantity can allow further development of a model built
on the synthetic real-world payoff (1) as in the previous sections. But in this work we
prefer to show possible relationships with Schonbucher (1999).

Rates. Schonbucher (1999) defines the following rates (with a slightly different nota-
tion for maturities)

1. Default free Libor rate

Fk (t) =
1
αk

(
Bk−1 (t)
Bk (t)

− 1
)

2. Defaultable Libor rate defined as

F̄k (t) =
1
αk

(
B̄k−1 (t)
B̄k (t)

− 1
)

,

3. Discrete-tenor forward intensity defined as

Hk (t) =
1
αk

(
Bk (t) B̄k−1 (t)
B̄k (t) Bk−1 (t)

− 1
)

Adapting the notation for bonds, the default free Libor rateFk (t) is equivalent to our
default free forward rate and to that of the standard market model.
As for the defaultable forward rate, we signal that in a subfiltration setting it is possible
to find an analogous quantity setting the price of the contract to zero. One needs to
consider contract (2) for a one-period interval:

CDSS
t (R) = LGD

{
EQ

[
D (t, Tk−1)1{τ>Tk−1}|Ht

]− EQ
[
D (t, Tk)1{τ>Tk}|H

]}

−EQ
[
D (t, Tk)1{τ>Tk}|H

]
αkR,

RS
k (t) =

LGD

αk

EQ
[
D (t, Tk−1)1{τ>Tk−1}|Ht

]− EQ
[
D (t, Tk)1{τ>Tk}|H

]

EQ
[
D (t, Tk)1{τ>Tk}|H

]

=
LGD

αk

{
P̄ (t, Tk−1)
P̄ (t, Tk)

− 1
}

Here the nature of such a rate is

RS
k (t) =

LGD

αk

{
P (t, Tk−1)Qk−1 (τ > Tk−1|Ht)

P (t, Tk)Qk (τ > Tk|Ht)
− 1

}
.

In our context, we can perform the following simplification in defining the analogous
of Hk (t):

1
αk

(
P (t, Tk) P̄ (t, Tk−1)
P̄ (t, Tk)P (t, Tk−1)

− 1
)

=
1
αk

(
Qk−1 (τ > Tk−1|Ht)
Qk (τ > Tk|Ht)

− 1
)

=: R̃k (t)

very close toR that we presented in the previous sections, and equal to it in case of
independence, when however probabilities can be taken also under the risk neutral
measure.
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Looking for a measure under which̄F is a martingale, Schonbucher (1999) in-
troduces theTk survival measure associated to the defaultable bond price numeraire
1{τ>t}B̄k (t). This numeraire is not strictly positive, and this leads to a measure which
is not equivalent to the risk-neutral and real world probability measures.

In our setting, based on Jamshidian (2004), one can change instead to the measure
Q̄k associated withαkP̄ (t, Tk). The fundamental martingale properties are maintained
and in addition the measure is equivalent to the risk-neutral and real world probability
measures as in standard mathematical finance, and change of measure and dynamics is
performed as usual.

With the building blocks of this section the numeraire ratios are easily expressed
in terms ofRS

k (t)’s. However, with these building blocks, by modelling theRS
k (t)’s

directly as lognormal random variables we may incur into an unacceptable financial
behaviour.Hk (t) can rather be modelled as having deterministic percentage volatility.

We have under̄Qk

dRS
k (t) = σS

k RS
k (t) dW̄ k (t)

whereσS
k is a generic covariance vector process andW̄ a vector of uncorrelated stan-

dard brownian motions under̄Qk.
As for the default-free forward rate, applying (17),

dFk (t) = −Fk (t) σF
k σk′

Hdt + Fk (t)σF
k dW̄ k (t) .

whereσF
k is a deterministic covariance vector process. Then the dynamics ofR̃k (t)

can be computed through Ito’s Formula:

dR̃k (t) =
Fk (t)σF

k

1 + αkFk (t)

((
1 + αkR̃k (t)

)
σk′

H − αkR̃k (t) σ̃k

)
dt+R̃k (t) σ̃kdW̄ k (t) ,

whereσ̃k is a deterministic covariance vector process.

6 Conclusion

In this work we analyze CDS pricing in a probabilistic setting equipped with a subfil-
tration structure. We derive pricing formulas consistent with the standard market model
framework, with particular attention to the case of conditional independence for sub-
filtrations. We consider possibilities for a term structure model and analyze the nature
of CDS spreads via change of measure. We compute a term structure model dynamics
and apply it to deriving an approximated formula for Constant Maturity CDS. We con-
clude showing a term structure model in the same setting derived from an alternative
definition of conventional CDS contracts pointing out relations and differences with
previous literature.

7 Appendix

Proposition 7 Ca,b = Ca,b (Ta) B
BTa

=
∑b

i=a+1 αiEQ
[

BTa

BTi
1{τ>Ti}|HTa

]
B

BTa
> 0

almost surely.
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Proof. We need only to prove thatEQ
[

BTa

BTi
1{τ>Ti}|HTa

]
> 0 a.s. Notice that

EQ

[
BTa

BTi

1{τ>Ti}|HTa

]
= EQ

[
EQ

[
BTa

BTi

1{τ>Ti}

∣∣∣∣HTi

]∣∣∣∣HTa

]

= EQ

[
BTa

BTi

EQ
[
1{τ>Ti}

∣∣HTi

]∣∣∣∣HTa

]

= EQ

[
BTa

BTi

Q (τ > Ti|HTi
)
∣∣∣∣HTa

]
.

We assumed thatQ (τ > t|Ht) > 0, ∀t. SinceBt > 0, ∀t, EQ
[

BTa

BTi
1{τ>Ti}|HTa

]
>

0 a.s.

We prove now that

Proposition 8 Ht isQ-conditionally independent implies thatHt is Q̄a,b-conditionally
independent, namely that for anyY bounded andH-measurable

Ēa,b [Y |Ht] = Ēa,b [Y |Ft] , ∀t.

Proof. Notice thatC
a,b
t

Bt
isHt-adapted. In factC

a,b

B = Ca,b(Ta)
BTa

isH-measurable, so
given thatHt isQ-conditionally independent

Ca,b
t

Bt
= EQ

[
Ca,b

B

∣∣∣∣Ht

]
. (19)

Let X to be a claim such thatXCa,b is H-measurable. Then alsoXB is H-measurable
and, as above,Xt

Bt
isHt-adapted. This implies thatXt

Ca,b
t

= Xt

Bt

Bt

Ca,b
t

isHt-adapted (by

(19)).So

Ēa,b

[
X

Ca,b

∣∣∣∣Ht

]
=

Xt

Ca,b
t

= Ēa,b

[
X

Ca,b

∣∣∣∣Ft

]
, ∀t

(see also Jamshidian (2004) and the concept of coadaptedness).

Now consider aσ-subalgebraN of σ-algebraM and anM-measurableX, inte-
grable under the measures considered. We have the following results.

Lemma 9 If X isN -measurable

EP2 [X] = EP1

[
XEP1

[
dP2
dP1

|N
]]

.

In factEP1
[
EP1

[
dP2
dP1 |N

]
X

]
= EP1

[
EP1

[
dP2
dP1X|N ]]

= EP1
[

dP2
dP1X

]
= EP2 [X] .

This implies that ifX isN -measurable andA ∈ N

EP2 [1AX] = EP1

[
1AXEP1

[
dP2
dP1

|N
]]

,

namely ∫

A

XdP2 =
∫

A

XEP1

[
dP2
dP1

|N
]

dP1.
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Theorem 10 WhenX isM-measurable

EP2 [X|N ] = EP1

[
X

dP2
dP1

1
EP1

[
dP2
dP1 |N

]
∣∣∣∣∣N

]
.

Proof. The RHS is by definitionN -measurable. We apply Lemma 9. ForA ∈ N
∫

A

EP1

[
X

dP2
dP1

1
EP1

[
dP2
dP1 |N

]
∣∣∣∣∣N

]
dP2

=
∫

A

EP1

[
X

dP2
dP1

∣∣∣∣N
]

dP1

By definition of conditional expectation
∫

A

EP1

[
X

dP2
dP1

∣∣∣∣N
]

dP1 =
∫

A

X
dP2
dP1

dP1 =
∫

A

XdP2.
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[9] Scḧonbucher, P. (2000). A Libor market model with default risk, preprint.

27
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