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Abstract. Stream flow (SF) prediction is considered as a very complex due to the hydrological systems of 
surface water are complex and dynamic. The reliable prediction of stream flow (SF) can be performed by 
either conceptual or data-driven based models. In the modelling of hydrological processes, the support 
vector machine (SVM) is a novel, data-driven approach. Hence, six SVM-based models were generated in 
this study to predict real time hourly SF in the Selangor River Basin from the water level and rainfall of 
upstream stations. These models composed of six different combinations of input variables and were 
trained and tested under hourly records of SF, rainfall, and water level over one year (2011). Among the 
SVM-based models, SVM-M6, which has nine input variables, was the most effective. Under the training 
and testing data sets, its correlation coefficient and mean absolute error values were 0.992, 0.953, 0.061 
and 0.253 respectively.  
Keywords: stream flow, data-driven based models, support vector machine, prediction, hydrological 
modelling. 
 

 

1 Introduction 
To predict SF, various models have been established. 
These models can be classified into two main types: 
knowledge- driven and data-driven. Each type has 
specific advantages and disadvantages based on data 
availability and modelling condition [1, 2]. 
Knowledge-driven models are also known as physical 
or conceptual models. They are designed to simulate 
interior sub processes in prototypes, as well as physical 
mechanisms that dictate the natural process. These 
models use a mathematical structure that depends on 
basin features, such as the specific characteristics of 
rainfall (intensity and duration), the basin (area, shape, 
slope and land use, vegetation cover, and soil nature), 
and climate (temperature, humidity, and wind speed) to 
model and predict SF [3-5]. However, these models are 
too complex and demanding. In some cases, conceptual 
models cannot predict SF accurately and reliably given 
the lack of required data, especially in developing 
countries [6], furthermore, the physical process is 
complicated by the gathering of data on multiple model 
variables that vary spatially and temporally [7-10].  

Data-driven models include those developed 
using artificial intelligence (AI) techniques, such as 
artificial neural networks, genetic algorithms, support 
vector machine (SVM), and fuzzy rule-based systems. 
These models are adequate alternatives in many 

hydrological applications, especially when data are 
inadequate to generate conceptual models [11-14].   

This study mainly aims to develop SVM-
based models to predict hourly SF of downstream area 
from the water level and rainfall records of upstream 
stations in the river basins of humid tropical regions. 
These models are generated based on hourly records of 
SF, rainfall, and water level throughout one year 
(2011). The performance of the models are assessed 
based on two criteria, namely, correlation coefficient 
(R) and mean absolute error (MAE). 

 

2 Methodology 
In developing SVM-based models for SF prediction, 
we primarily consider data collection and analyses, 
followed by the selection of adequate input and output 
variables for the model. In small basins, these variables 
depend completely on the estimated lag time between 
the upstream and downstream stations. Thereafter, we 
determine model structure. Finally, we assess the 
developed models according to the evaluation criteria 
to obtain the model that best predicts hourly SF. 

2.1 Case study 

© The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative Commons Attribution
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In this study, we investigate the Selangor River Basin, 
which is one of the main rivers in Malaysia. It is 
located in the Selangor state and has an approximate 
area of 1960 km2 [15]. From northeast to southwest, the 
Selangor River is approximately 110 km long [6, 16, 
17]. Moreover, the Selangor River Basin provides 
approximately 50% of the water consumed in Selangor 
and Kuala Lumpur [18, 19]. Figure 1 presents the 
location map of the Selangor River Basin in Peninsular 
Malaysia, as well as its topography maps.  

 

 

 

 

 

 

 

 

 

Fig. 1 Location and topography map of the Selangor River 
Basin [20]. 

 

2.2 Data collection and analyses 

The SF data of the downstream station were 
obtained from the Rantau Panjang gauging station, 
which is located in the downstream of the Selangor 
River. Before this station, all of the major tributaries of 
this river converge. Thus, the SF at the Rantau Panjang 
Station is the best indicator of the stream flow at the 
study area. Water level and rainfall data were obtained 
from four upstream stations. The study stations were 
selected based on data availability and modelling 
requirement. Moreover, the stations that gauge rainfall 
and water level are very close to one another. Figure 2 
displays the location of the hydrological stations and 
the flow paths among them in the Selangor River 
Basin.  

 

Table 1. Hydrological stations and the statistical 
characteristics of the data used. 

 

 

 
Fig. 2 Location of the hydrological stations in the Selangor 

River Basin. 

 

 

2.3 Models development 

2.3.1 Determination of model variables  

In the development of AI-based models, determining 
the adequate input and output variables is a key issue. 
In models of SF prediction, model variables are 
commonly selected based on a priori knowledge of 
river basin hydrology, which provides initial 
indications of potential inputs and outputs [21]. The SF 
in tropical rivers can be characterized as the function of 
several influential variables, including rainfall, water 
level, and the physical characteristics of the river [22]. 
This study mainly aims to predict hourly SF of 
downstream area from the water level and rainfall 
records of upstream stations. Thus, we use the hourly 

Station Function Mean Min
. Max. Std. 

Dev. 

Rantau 
P j

SF (m3/s) 60.35 23.94 294.64 39.0
0

Ulu Yam RF (mm/h) 32.24 30.56 35.49 0.49 

Batang Kali RF (mm/h) 32.42 27.03 34.71 0.78 

Kerling RF (mm/h) 44.18 43.93 45.61 0.12 

Ampang Pecah RF (mm/h) 50.16 49.61 50.89 0.15 

Ulu Yam WL (m) 0.16 0.00 19.33 0.73 

Batang Kali WL (m) 0.24 0.00 22.67 0.91 

Kerling WL (m) 0.25 0.00 25.33 1.06 

Ampang Pecah WL (m) 0.24 0.00 28.00 1.08 
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records of water level and rainfall at the upstream 
stations as input variables and those of SF data in the 
downstream station as the output variable. Eq. 2 
describe the relationship between SF and the influential 
variables: 

��� = �(�(�)) + �                         (2) 

where Sf(t) represents the SF; X(t) is the input 
vector that includes the input variables (i.e., rainfall 
and/or water level); and e is the random error. 

We consider three scenarios in selecting the 
input and output variables of the models. First, we 
apply the rainfall data of upstream stations as input 
variables. Second, we regard the water level data of 
these stations as inputs. Third, we utilize both water 
level and rainfall data from these stations as inputs.  

In these three scenarios, we apply two input 
vectors. In the first, we use the single antecedent record 
of upstream stations. In the second, we obtain the 
average of these antecedent records. Given six input 
vectors, the single antecedent record of SF in the 
downstream station is considered another input 
variable that predicts the SF for a head period equal to 
the lag time between the upstream and downstream 
stations. The estimated lag time between these stations 
determines the final input variables for the six input 
vectors. Using these vectors, we generated six SVM-
based models to predict hourly SF. 

2.3.2 Model description 

SVM is a new learning system that has been 
developed based on the statistical learning theory 
aiming at minimizing the generalized model error 
rather than just minimizing the training error, which 
consequently increases SVM generalization ability [23, 
24].  

SVM is a comparatively new AI modelling 
technique based on statistical learning theory 
introduced by Vapnik in the 1970s. SVM has been 
developed as a classification tool and it was applied 
successfully in a wide range of classification and 
clustering applications in. Recently, SVM have been 
successfully extended to apply in regression and 
prediction applications [11, 25, 26].  

Figure 3 presents the Schematic diagram of 
SVM, where the K(xi,x) is the output of the ith hidden 
node for input vector x, it is a mapping of the input x 
and the support vector xi  by selecting the kernel 
function (Chen & Yu, 2007). 

SVM has been applied in the time-series 
prediction of river flow by Samsudin, Saad [6]; in SF 

prediction under multiple time scales by Asefa, 
Kemblowski [27]; in the real-time forecasting of flood 
stage by Yu, Chen [25]; in flood forecasting by [28]; in 
long-term discharge prediction by Lin, Cheng [29]; in 
the long-range forecast of SF by [30]; and in the 
monthly forecasting of SF by Guo, Zhou [31], Noori, 
Karbassi [32], Shabri and Suhartono [33], and Ch, 
Anand [34]. 

 

 

Fig. 3: Schematic diagram of SVM architecture 

 

2.3.3 Model training  

Once the structure of the SVM-based model has been 
determined, we set the conditions that halt the training 
processes. These conditions should be set prior to 
model training. Training is controlled by conditions 
such as the maximum number of iterations, maximum 
training time, the target performance that specifies the 
tolerance between the observed and predicted SF, and 
the minimum learning rate. 

To generate the models, we determined 
approximately 8,753 patterns of hourly SF, water level, 
and rainfall records throughout a single year (2011). 
Table 1 lists the basic statistical characteristics of the 
hourly records obtained from the stations, such as 
minimum, maximum, mean, standard deviation, and 
skewness. The modelling data were divided into two 
data sets: 75% for training with 6,580 patterns and 25% 
for model testing with 2,193 patterns. The training data 
set is used to train the models, and the testing data set 
assesses the performance of the SVM-based models 
[35].  

In this study, we are applying the SVM as 
modelling tool.  The training process was performed 
internally using close-source programing which is 
available in AI toolbox in Statistica software. Hence, 
the best training algorithm was selected by the software 
using built-in optimization technique, where 
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Levenberg-Marquardt technique is adopted as the 
training algorithm because it provides the best 
performance over other algorithms.   The main 
attention of the this paper is maximize the correlation 
and minimize the error, regardless the details of 
training algorithms and techniques. 

2.3.4 Performance evaluation criteria 

The performance of the models was assessed based on 
two criteria: R and MAE. R is a statistical technique 
that indicates the strength and direction of a linear 
relationship between two variables [36, 37]. In this 
study, R was used to validate the agreement between 
the observed and predicted hourly SFs. R2 describes the 
variance between two variables as determined by the 
linear fit. R can be calculated under different modes, 
but the most popular one is the Pearson R. This value is 
computed by dividing the covariance of the two 
variables by the product of their standard deviations, as 
described in the following equation:  

� =
∑ (	
 − 	̅) (�
 − �
)�


��

�∑ (	
 − 	̅)� ∑ (�
 − �
)� �

��  �


��

                   (3) 

where n is the number of data pairs and x and 
y are the variables.  

In a perfectly increasing linear relationship, R 
is +1. By contrast R is −1 in a perfectly decreasing 
linear relationship. The R values between +1 and −1 
indicate the strength of the linear relationship between 
the variables. R = 0 signifies that the variables are not 
linearly related.  

MAE evaluates the residual or the differences 
between the observed and predicted SF. Theoretically, 
its minimum value should be zero to indicate the 
perfect fit of the model. However, this value is difficult 
to obtain. Moreover, MAE has no maximum value and 
is calculated using the following equation: 

��� =
∑ ���,
 − ��,
��


��

�
                                            (4) 

 where Xm represents the data predicted by a 
model and Xo is the observed data. 

 

 

 

 

 

3 Results and discussion 
To predict hourly SF in the Rantau Panjang Station, we 
selected six AI-based models under different 
combinations of input variables. Table 2 presents the 
model structures. The six models were trained and 
developed by SVM to predict hourly SF. The 
performances of the models were assessed based on the 
training and testing data sets, as well as the overall 
performance of the data sets. The best fit model to 
predict hourly SF is thus determined according to the 
performance of the testing data sets.  

SVM-M6 model displays the highest R values 
(0.992 and 0.953) and the lowest MAE (0.061 and 
0.253) in both the training and testing data sets, 
respectively. Figure 4 shows the correlation between 
the observed and predicted hourly SF in the SVM-M6 
model given training and testing data sets. The 
observed and predicted hourly stream flow of the 
training and testing data sets, seem to be in good 
accord with R2 0.986 and 0.909 respectively. Figure 5 
compares the observed and predicted hourly SF in 
SVM-M6 for the period of September 2013. These 
flows are highly consistent. 

Table 2. Input and output variables of the AI models. 
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Fig. 4 Correlation between the observed and predicted hourly 
stream flow in the SVM-M6 model: (a) training data set and 

(b) testing data set 

 

 
Fig. 5 Comparison between the observed and predicted 

hourly stream flows in the SVM-M6 model 

 

4 Conclusions 
In this study, the ability of SVM to predict hourly SF in 
downstream area from the upstream water level and 
rainfall records in a humid tropical area was explored. 
In the process, we developed six SVM-based models 
with different combinations of input variables. The 
hourly records of SF, rainfall, and water level 
throughout one year (2011) were utilized to train and 
test the SVM models. The hourly water level and 
rainfall data in the upstream stations were considered 

input variables, and the hourly SF data in the 
downstream station were regarded as the output 
variable. The performance levels of the models were 
assessed based on two evaluation criteria, namely, R 
and MAE. The best fit model to predict hourly stream 
flow was determined based on the performance of the 
testing data sets. Among the SVM-based models, 
SVM-M6 model displays the highest R values (0.992 
and 0.953) and the lowest MAE (0.061 and 0.253) in 
both the training and testing data sets, respectively.  
The ability of the three techniques of SVM SVM for 
SF prediction in the downstream area from the 
upstream WL and RF records in the Selangor River 
basin was explored and successfully achieved with 
high performance throughout two modelling phases. 
Although SVM performed well in real-time SF 
prediction, higher R in the Selangor River basin can be 
investigated by employing other AI techniques, such as 
FRBSs and GAs.  
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