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Abstract. Nowadays, the Structural Health Monitoring (SHM) has been paid more and more attention. The 

five-cycle sine burst is widely used as the exciting signal in SHM and the sensors’ responded signals are analyzed 

to research the damage. In the sensor network, there will be many sensors which mean many responded signals 

will be sampled, restored and sometimes transferred. In the traditional way which is known as Nyquist sampling 

theorem, the sampling rate must be more than twice the highest rate of the original signal. In this way, the amount 

of data will be huge. As the result, the costs will be very expensive and the equipment may be huge and heavy, 

which is especially unaccepted in the aircraft. It is necessary to do some research to compress the signal. The 

Compressing Sensing (CS) theory provides new methods to compress the signals. The Random Demodulation 

(RD) is a specific method which can accomplish the physical implementation of CS theory. In this paper, 

according to the structure of RD, we chose some chips to build a RD system. And we did some experiments to 

verify the method through the system. We chose the Orthogonal Matching Pursuit (OMP) as the construct 

algorithm to recover the signal.  

1. Introduction  

SHM offers an online and real-time monitoring. It 

can discover the structural damage or fatigue timely and 

avoid the risk. However, in practical applications of large 

structural health monitoring, a large number of 

distributed sensors are usually adopted to monitor the big 

dimension structures. Hence, how to obtain a fast and 

accurate impact signal from the big data is an important 

problem for the damage assessments. According to the 

different functions of the system, there are two types of 

monitoring. One is active monitoring, the other is passive 

monitoring [1-2]. In this paper, the research is on the 

active monitoring. 

   Recently, the CS theory has been researched by many 

scholars. It has a lot of advantages on signal compressing, 

like independent acquisition and reconstruction, simple 

computation and good compression. So the CS has a 

great application prospects on SHM [3-5]. In this paper, 

we used the CS in the active monitoring, aiming to 

achieve a wide range of high-resolution data acquisition 

in large-scale structure quickly and efficiently. The 

research is about the five-cycle sine burst compressed by 

the RD system.  

The paper has 7 parts. Next, Section 2 introduces 

the background knowledge of RD system. In Section 3, 

the signal used in SHM is introduced. Section 4 gives 

simulations. Section 5 is the experimental part. And 

section 6 analyses the experimental results. Finally, 

section 7 makes a conclusion for the paper. 
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2. Random demodulation (RD)  

According to the CS theory, if a signal can be 
expressed as a product of a vector and a martrix 

           x  .          (1) 
    And the (1) can also be written as  
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If there is a few big coefficients in , then the    
x(t) is sparse in the basis of  .And the 	x(t) can be 
compressed and sampled at the same time by the method 
of global observation. 
   RD is a physical implementation of the CS. The 
structure of the RD is shown in Fig. 1.  
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Fig. 1. The structure of RD 

Its structure is simple and includes three main parts: 
mixing, filtering and sampling. The process expressed 
mathematically as  
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Substitute (2) into (3), the equation (3) is written as 
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where , ( ) ( ) ( )dm n n c sv p h mT   



   , where 

( )h t  is the unit impulse response of the filter. For the 

discrete signal, the output vector y  is equivalent to 

multiply matrix V by the input vector  for the output 
vector Vy  ,

where 
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V . In this 

paper, the    is the Inverse Discrete Fourier Transform 
base.   
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There is a few big coefficients in  , so the solution 

of the underdetermined Equations Vy   problem can 

be converted into the minimum 0-norm problem:  

0
ˆ arg min s.t.  , y = V .     (5) 

To solve the equation (5), the orthogonal matching 

tracking algorithm (OMP) is chosen, because the speed 

of the reconstruction is fast[6-13].  

3. The narrowband waves used in SHM 

Recently, the five-cycle sine burst is widely used as 

the exciting signal in SHM. It is a narrow-band signal 

which can be expressed as 

                                      (6) 

where A denotes the amplitude and fc represents the 

central frequency of the signal[14]. The exciting signal is 

the first cycle from the beginning of the x-axis of 

the    . The rest is 0. The Fig. 2 shows the exciting 

signal. 

Fig 2. The five-cycle sine burst 
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4. Simulation

4.1 The simulation instructions 

The simulation is done by the MATLAB. The 
random sequence produced by function randsrc(N,1) 
which can produce a sequence that is N-row and 1 
column with value of +1. The Butterworth is selected as 
the type of the filter using three functions, buttord, butter 
and buttap.  

In the simulation, we use the Signal-Noise Ratio 
(SNR) to evaluate the effect of reconstruction. The SNR 
expressed as 

2
10

2

20 log
ˆ

x
SNR

x x



� , (7) 

where 
2

  is defined as 

2 2 2
1 22

( )nx x x x    , x̂  is the 

reconstructed signal while x  is the original signal. 
   The simulations are about sin waves and the 
five-cycle sine burst. In the simulation, the sampling rate 
of generating signal is 100K, so the sampling rate of the 
digital filter is 100K too. We stipulate the reconstruction 
is successful when the SNR is higher than or equal to 
15dB. The probability of successful reconstruction is 
another factor to evaluate the result and defines as the 
ratio of successful times and total times. And the 
compression ratio is 10. 

4.2 The results 

The results of sin waves are very good and the SNR 
is very high. And the frequency of the signal 
reconstructed well can be very high, nearly the half of 
the sampling rate. The results are shown in Fig. 3. 

   
Fig. 3 The reconstructed result of sine waves 

However, the results are not so good for the 
five-cycle sine burst. As the Fig. 4 shows, as the 
frequency becomes increased, the SNR and the 
reconstruction probability are decreased. When the 
frequency is 2000Hz, the reconstruction probability is 
even 0. The relation between the frequency and the 
reconstruction probability is shown in Table. 1.  

Fig. 4 The frequency and the SNR when the sampling rate 

is 100K Hz 

Table 1. The frequency and the reconstruction probability 

when the sampling rate is 100K 

frequency（Hz） 500 800 1000 2000 

reconstruction 

probability（%）

100 75 40 0 

The results show that the five-cycle sine burst has 
frequency limits on using in the RD compared to the sine 
waves. The reason may be the sparsity of signals in the 
Inverse Discrete Fourier Transform base.

There is only one nonzero factor in the spectrum of 
the sine waves. But in the spectrum of the five-cycle sine 
burst, it’s a limited band. As shown in Fig. 5. 
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Fig. 5 The spectrum of the five-cycle sine burst 

However, the low frequency can be reconstructed well, 
like 500Hz and 800Hz. The frequency is higher, the 
results are worse. The reason is that as the frequency 
increased, the nonzero width of spectrum is wider, as the 
Fig. 6 shows. 

Fig. 6 The spectrum of different frequency of the five-cycle 

sine burst 

According to the CS theory, obviously, there are less 
nonzero factors in the spectrum, the reconstructed results 
will be better. However, the sparsity is relative, but it is 
not to total points of signal, according to the simulation, 
it’s to the sampling rate. 

If we change the sampling rate of generating signal to 
1000 KHz, the results’ frequency increases 10 times too. 
The results are shown in the Fig. 7 and Table 2. 

Fig. 7 The frequency and the SNR when the sampling rate 

is 1000K 

Table 2. The frequency and the reconstruction probability 

when the sampling rate is 1000K 

Frequency（Hz） 5000 8000 10000 20000 

Reconstruction

probability（%）

100 90 35 0 

It seems that the ratio of frequency and the sampling 
rate of generating signal must be in a specific range, the 
results will be good.  

What’s more, the cutoff frequency of the filter can 
influence the results. When the signal’s frequency 
increases, increasing the cutoff frequency from the low 
frequency’s cutoff frequency is helpful. But it’s not 
positive correlative. The cutoff frequency must be 
suitable.  

5. Experiments

5.1 Experiment system 

We set up a system to put the RD in the active 
monitoring system. The structure is shown in Fig. 8.  

Fig. 8 The RD in the active monitoring system 

As the Fig shows, the five-cycle sine burst is 
amplified by the power amplifier, then to one PZT sensor. 
The other sensor receives the reflected signal and is 
through the charge amplifier. Then the signal enters into 
the RD system, compressed, sampled and reconstructed. 

5.2 The method of experiment 

The reponse signal of sensor has many 
reflected waves, however, upon most occasions, only the 
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In this paper, we use the m-sequences for impulse 
response measurement. There are many noises in the 
impulse in one measurement. So we measure and 
calculate several times to get its average. There is less 
noise in the impulse response, the reconstructed results 
will be better. 

(a) 

(b) 
Fig. 13 The unit impulse response: the (a) is measured by once, 

the (b) is the average measured by ten times. 

6.3 The other reasons 

The noise in the unit impulse response is influenced 
by the chips, generator or sampling. The chips may 
produce the noise when they work. And there may be 
some mistakes in generating m sequence and sampling 
the output signals of the system. Those noise and 
mistakes result in the noise in the unit impulse response. 
What’s more, the system may have some offsets. All 
those nonideal factors will lead the mistakes in the 
reconstructed results. 

7. Conclusion 

In this paper, we have done some research on using 
RD system to compress and sample the five-cycle sine 
burst. For now, the frequency of the five-cycle sine burst 

that can be well reconstructed is relatively low. Then we 
analyzed the reason of the problem. The main reason is 
that the five-cycle sine burst’s spectrum is a limited band 
and as the frequency increases, the spectrum is wider. In 
the experiments, we found some factors that influence 
the practical application of the RD. The unit impulse 
response matters a lot and the accuracy of instruments 
and chips affects the results too. 
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