
On Arithmetically Equivalent Number Fields
of Small Degree

Wieb Bosma1 and Bart de Smit2

1 Mathematisch Instituut, Universiteit Nijmegen
Postbus 9010, 6500 GL Nijmegen, the Netherlands

bosma@sci.kun.nl
2 Mathematisch Instituut, Universiteit Leiden

P. O. Box 9512, 2300 RA Leiden, the Netherlands
desmit@math.leidenuniv.nl

Abstract. For each integer n, let Sn be the set of all class number
quotients h(K)/h(K′) for number fields K and K′ of degree n with the
same zeta-function. In this note we will give some explicit results on the
finite sets Sn, for small n. For example, for every x ∈ Sn with n ≤ 15, x
or x−1 is an integer that is a prime power dividing 214 · 36 · 53.

1 Introduction

In broad terms the main question on number fields we address in this article is:

to what extent does the zeta-function determine the class number?

Number fields with the same zeta-function are said to be arithmetically equiva-
lent. Arithmetically equivalent number fields have many invariants in common.
For instance, they have the same degree, discriminant, signature, Galois clo-
sure, maximal normal subfield, and number of roots of unity. By considering
the residue of the zeta-function we see that arithmetically equivalent K and
K ′ also satisfy h(K)R(K) = h(K ′)R(K ′), where h denotes the class number
and R denotes the regulator of a number field. Our first result summarizes the
possibilities for h(K)/h(K ′) for fields of degree at most 15.

n
r2 0 1 2 3 4 5 6 7

7 23 − 22 − − − − −
8 2332 − 22 223 22 − − −
11 35 − − − 33 − − −
12 273353 − 23 23 2552 2432 24325 −
13 36 − − − 34 − − −
14 210 − 25 − 24 26 25 23

15 214 − − − 210 − 28 −
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Theorem 1. Let K and K ′ be non-isomorphic arithmetically equivalent number
fields of degree n ≤ 15. Then n is equal to one of the integers in the first column
of the above table, and if the number of complex infinite primes of K is denoted
by r2, the class number quotient h(K)/h(K ′) is equal to pk or p−k, where p is a
prime number, k is a non-negative integer, and pk divides the number given in
the table for the pair (n, r2).

A dash in the table means that this pair (n, r2) does not occur.
The class number quotient bounds depend on the Galois configuration and

the signature in a strong sense: the conjugacy class in the Galois group of com-
plex conjugation. Therefore we first show in Section 2 that there are exactly 19
Galois configurations of degree at most 15 that contain a pair of arithmetically
equivalent fields. To produce the list of the 19 possible Galois configurations we
used the classification of transitive groups up to degree 15 by Butler, McKay and
Royle [2], [3], [17], and a database of subgroup-lattices in the Magma-system.
A relatively easy run on the Magma-system produces the list, and shows that
it is complete.

The 19 Galois configurations can also be obtained from theoretical considera-
tions; a better description of a particular configuration is useful for two purposes:
it might give clues about how to realize number fields with these Galois groups,
and it can also give a humanly readable proof that they contain non-isomorphic
fields with the same zeta-function, which may inspire other constructions. We
will give such descriptions in Section 2.

In Section 3 we employ methods of [6] to obtain bounds on class number quo-
tients for each configuration. The required symbolic computations are performed
in Magma using the ideas of [1].

LaMacchia [15] found a family of number fields, parametrized by two rational
numbers, each of which is a member of a pair of arithmetically equivalent fields
of degree 7. In Section 4 we construct the other member of the pair in terms of
the two parameters.

By computing class numbers for pairs in this family and by using earlier
results [5] about families in degree 8 constructed with 3-torsion points on elliptic
curves, we give a computational proof of the following result in Section 5, showing
that some of the bounds on the class number quotients are tight.

Theorem 2. The set of values of the class number quotient h(K)/h(K ′) as
(K,K ′) ranges over all pairs of arithmetically equivalent number fields of degree
at most 10 that are not totally real, is

{1
4
,
1
3
,
1
2
, 1, 2, 3, 4}.

The first known instances of pairs of arithmetically equivalent number fields
with different class numbers were generated using a family of fields in degree 8;
see [8], and also [1]. For that family, with pairs of fields of the form Q( 8

√
a) and

Q( 8
√
16a), a factor 22 will never appear in the class number quotient; see [6].
G. Dyer [10] found the first example of arithmetically equivalent fields in

degree 12 with class number quotient 5, by using the method of [5].
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2 Gassmann Triples

The goal of this section is to determine for all n ≤ 15 all possible Galois groups
of arithmetically equivalent number fields of degree n.

Let L/Q be a Galois extension with Galois group G, and let H and H ′ be
subgroups of G corresponding to intermediate fields K = LH and K ′ = LH′

.
Recall that the fields K and K ′ are isomorphic if and only if the G-sets X =
G/H and X ′ = G/H ′ are isomorphic, i.e., if there is a G-action preserving
bijection between them. We say that the G-sets X and X ′ are linearly equivalent
if every g ∈ G has the same number of fix points on X and on X ′. It is well-
known that K and K ′ are arithmetically equivalent if and only if X and X ′ are
linearly equivalent, which is also equivalent to H and H ′ giving rise to the same
permutation character 1G

H = 1G
H′ of G; see [4], Exercises 6.3, 6.4.

By a Gassmann triple (G,X,X ′) we mean a group G acting faithfully and
transitively on two finite sets X and X ′, so that X and X ′ are linearly equivalent
but not isomorphic as G-sets. The degree of (G,X,X ′) is the cardinality of X.
The Galois configurations of non-isomorphic arithmetically equivalent fields of
degree n are given by the Gassmann triples of degree n up to isomorphism,
where we say (G,X,X ′) ∼= (H,Y, Y ′) if G ∼= H and, viewing Y and Y ′ as G-sets
through this group isomorphism, we have X ∼=G Y and X ′ ∼=G Y

′.
The question whether for given positive integer n a Gassmann triple of degree

n exists has been addressed in [11], [13], [14] with the help of the classification of
finite simple groups. The degrees of the Gassmann triples with a solvable group
have been determined in [7]. Combining these results, one finds that for n ≤ 100
a Gassmann triple of degree n exists if and only if n ≥ 7 and

n 	= 9, 10, 17, 19, 23, 25, 29, 34, 37, 38, 41, 43, 46, 47, 53, 58,
59, 61, 67, 69, 71, 74, 79, 82, 83, 86, 87, 89, 94, 95, 97.

In particular we see from this list that the only Gassmann triples of degree at
most 15 have degree 7, 8, 11, 12, 13, 14, or 15.

As we will see, all Gassmann triples of degree at most 15 can be directly
constructed by, or at least derived from, one of the following three methods—see
sections 2 and 5 of [7] for details.

(A) For a finite field Fq and d ∈ Z≥2 consider the vector space V = Fq
d and

its Fq-dual V ∗ = Hom(V,Fq). Let S be a subgroup of Fq
∗ of index s, let

G = GLd(Fq)/S, and let X = (V − {0})/S and Y = (V ∗ − {0})/S. If d ≥ 3
or s ≥ 2 then (G,X, Y ) is a Gassmann triple of degree s(qd − 1)/(q − 1).

(B) Let Fq be a finite field of characteristic at least 7, and suppose that q ≡ ±1
modulo 5. Then G = PSL2(Fq) has two non-conjugate subgroups H and H ′

that are both isomorphic to A5, and that are conjugate in PGL2(Fq). Then
(G,G/H,G/H ′) is a Gassmann triple of degree q(q2 − 1)/120.

(C) Let p be a prime number, let k > 1 be an integer, and letm > 1 be a product
of prime powers q that are 0 or 1 modulo p. Then there exist a Gassmann
triple (G,X,X ′) of degree pmk with a 3-step abelian group G = Gp,m,k of
order (pm)kk.
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Theorem 3. There are exactly 19 Gassmann triples (G,X,X ′) of degree at
most 15, up to isomorphism. The groups G, viewed as transitive groups acting
on X, are given in the table below with Butler-McKay numbering.

deg. no. #G description of G construction

7 5 168 PSL2(F7) ∼= PGL3(F2) (A)
8 15 32 G2,2,2 ∼= C8 � V4 (C)

23 48 GL2(F3) (A)
11 5 660 PSL2(F11) (B)
12 26 48 GL2(Z/4Z) ∩A12 (A)

38 72 G2,3,2 (C)
49 96 GL2(Z/4Z) (A)
57 96 G2,2,3 ∩A12 (C)
104 192 G2,2,3 (C)
124 240 GL2(F5)/± 1 (A)

13 7 5616 PGL3(F3) (A)
14 10 168 PGL3(F2)

17 336 PGL3(F2)× C2
19 336 PGL3(F2)× C2 (A)
52 56448 PGL3(F2) � C2 (A)

15 15 180 GL2(F4) ∼= A5 ×A3
21 360 (S5 × S3) ∩A8
47 2520 A7

72 20160 PGL4(F2) ∼= A8 (A)

We explain the description of the group and the actions on the two sets X and
X ′ degree by degree.

Degree 7 and Degree 14. Taking a 3-dimensional vector space over F2, we
get a Gassmann triple in degree 7 from construction (A). Here the group is
G = GL3(F2) = PGL3(F2), and the sets X and Y are the sets of points and lines
in the projective plane P2(F2).

It was shown by Perlis [16] that this is the only Gassmann triple in degree 7.



On Arithmetically Equivalent Number Fields of Small Degree 71

In degree 14 the entries with number 19 and 52 have X equal to two copies of
P2(F2), where the groups are the direct product PGL3(F2)×C2 and the wreath
product PGL3(F2) � C2 respectively.

We obtain the other triples of degree 14 by adding “orientation” to the triple
of degree 7. Let X be the set of points P of P2(F2) together with a cyclic ordering
of the three lines through P . Dually, Y is the set of lines L in P2(F2) with a cyclic
ordering of the three points on L. The group PGL3(F2) acts naturally on X and
Y , and we have a commuting action by C2 which toggles the orientation of all
points and lines. This gives the entries (14, 10) and (14, 17) in the table.

Degree 8. Construction (A) gives a Gassmann triple of degree 8 with group
G = GL2(F3). The other triple can be described with the following graph.

The plane symmetries of this graph form a dihedral subgroup D8 of order 16 of
the group of graph automorphisms. Define another graph automorphism σ by
rotating one component over 180 degrees, and leaving the other component fixed.
Then D8 and σ generate a group G of graph automorphisms of order 32. The
transitive actions of G on the set of vertices and on the set of edges now give a
Gassmann triple of degree 8. We have G ∼= C8�V4, where the map V4 → Aut(C8)
is an isomorphism. This triple can also be obtained from construction (C) by
taking p = m = k = 2. In fact, construction (C) was inspired by this graph
theoretical example.

Degree 11. Construction (B) gives a triple of degree 11 with group PSL2(F11).

Degree 12. Construction (A) gives a triple with group GL2(F5)/ ± 1. We can
also do construction (A) for a finite commutative local ring R rather than a
finite field k. Then X is the set of elements in a free module V of rank d that are
not annihilated by the maximal ideal of R, and Y is the same set in the R-linear
dual of V , and G = GLR(V ). For R = Z/4Z and d = 2 this gives entry (12, 49),
with G = GL2(Z/4Z) which is solvable of derived length 3, and entry (12, 26) is
a subgroup of index 2 acting on the same sets.

Construction (C) gives the other entries. The group G2,3,2 has derived length
2, and the group G2,2,3 and its subgroup G2,2,3 ∩A12 have derived length 3.

Degree 13. The points in the projective plane over F3 together with the points
in the dual projective plane form a Gassmann triple with group PGL3(F3) and
degree 13 by construction (A).
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Degree 15. Construction (A) gives a Gassmann triple of degree 15 with group
G = GL4(F2). By one of the exceptional isomorphisms of simple groups [9] we
have G ∼= A8. It turns out that we obtain other Gassmann triples by keeping
the same sets, but restricting the group to the subgroup A7, or A5 × A3, or
(S5 × S3) ∩A8 of A8.
This completes the description of the 19 Gassmann triples. The second part of
the proof of Theorem 3 is to show that the table is complete. The proof is based
on the database of transitive groups of degree d up to 15 due to Butler, McKay
and Royle [2], [3], [17]. For each transitive group G from their classification we
need to determine all conjugacy classes of subgroups of index d which give rise
to the same permutation character of G as a point stabilizer.

A brute force way to do this, is to find all classes of subgroups of index d
and test their permutation characters. On a 1100 Mhz Athlon with 256K cache
and 512 MB main memory, one can check Theorem 3 in this way with a run of
Magma 2.8 of 208 seconds.

While we have no better method than brute force in general, one can often
decide that a transitive group is not part of a Gassmann triple by group the-
oretic means. For instance, it follows from the lemmas below that neither the
symmetric nor the alternating group on d letters is part of a Gassmann triple, for
any d. From 1997, when the list of 19 triples was first presented at the Journées
Arithmétiques in Limoges, up until the summer of 2001 when Magma 2.8 was
released, these additional methods were indispensable because the routines for
finding subgroups would fail on groups with a large radical index such as the
alternating group on 10 letters.

Lemma 1. Let A be the symmetric or alternating group on a finite set X. For
each finite set T with trivial A-action and each A-set Y which is linearly equiv-
alent to X ∪ T we have Y ∼=A X ∪ T .
Proof. If A is cyclic, then this is clear, so assume that the cardinality n of X is at
least 3. In order to prove the lemma we first prove a weaker statement. We claim
that on both X ∪ T and Y the group A has only one non-trivial orbit and that
it has length n. To see this, note that A contains a cyclic subgroup C of order n
or n− 1, and that Y is isomorphic to X ∪ T as a C-set. Thus Y has an A-orbit
of length n or n− 1. Since the number of A-orbits of X ∪ T and Y is the same,
the only case where the claim might fail is the case where Y consists of a trivial
G-set, one orbit of length 2 and one orbit of length n − 1. But then A embeds
into C2 × Sn−1 because A acts faithfully on Y . By comparing cardinalities, and
using the fact that A4 	∼= C2 × S3 one sees that this is impossible. This proves
the claim. The lemma now follows by applying the claim to A and to a point
stabilizer in A of a point in X.

Lemma 2. Let G be a finite group and X a transitive G-set and let k be a
positive integer. Suppose that X = X1 ∪ · · · ∪Xk is a decomposition of X into
blocks and let A be the subgroup of G of elements that fix X2∪· · ·∪Xk pointwise. If
A is the symmetric or alternating group on X1 and A is non-abelian, then every
G-set which is linearly equivalent to X, is G-isomorphic to X.
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Proof. We may assume that G acts faithfully on X. Let Y be a G-set which
is linearly equivalent to X. For i ∈ {1, . . . , k} let Ai be the subgroup of G of
elements which fix X \Xi pointwise. Then the Ai are the distinct conjugates of
A = A1. By the previous lemma, each Ai has exactly one non-trivial orbit Yi on
Y , and we have Xi

∼=Ai Yi. It follows that the collection of all Yi is G-stable,
so that Y1 ∪ · · · ∪ Yk is a sub-G-set of Y . But since G has the same number of
orbits on X and Y we have Y = Y1 ∪ · · · ∪ Yk, and by counting elements we see
that the Yi are disjoint. It follows that X and Y are isomorphic over the normal
subgroup N = A1 × · · · × Ak of G. This means that the G-set B of bijections
from X to Y contains an N -invariant element. Since A is non-abelian, the action
of A on X1 is two-transitive and AutA(X1) = {1}. It follows that #BN = 1.
Since N is normal in G, the set BN is a G-stable subset of B, and its unique
element is a G-isomorphism from X to Y . This proves the lemma.

These lemmas tell us that the 28 largest transitive groups of degree less than 16,
with orders ranging from 648000 to 1307674368000 = 15!, are not part of any
Gassmann triple. The biggest group on which we use the brute force method
is the 57th transitive group of degree 14, which has order 645120. The largest
radical index where we apply brute force is 95040, which is the order of the
simple group M12, the Mathieu group in degree 12.

In all 19 Gassmann triples of degree less than 16 we found exactly two con-
jugacy classes of subgroups inducing the same permutation character, and they
are conjugate by an outer automorphism. In other words, for these 19 triples we
have (G,X,X ′) ∼= (G,X ′, X). This completes the proof of the Theorem.

The list of Gassmann triples of degree less than 24, based on the classification of
transitive groups of degree up to 23 of A. Hulpke, was presented by the second
author at a meeting in Durham in the summer of 2000. It was computed in a
similar way by improving the lemmas above. A brute force run on Magma 2.8
seems to get stuck in degree 16.

3 Bounds on the Class Number Quotient

In the previous section we computed the possible Galois groups associated to a
pair of non-isomorphic arithmetically equivalent fields. In this section we com-
pute a bound on the class number quotient in each of the cases we found. To do
this, we use the method explained in [6] and [1].

Let L/Q be a Galois extension with Galois group G, and suppose we have
subgroups H, H ′ so that the fields K = LH and K ′ = LH′

are arithmetically
equivalent. Then there is an injective Z[G]-linear map φ : Z[G/H] → Z[G/H ′].
For each subgroup J ofG one has an induced map φJ : Z[J\G/H] → Z[J\G/H ′].
Now let D ⊂ G be a decomposition group at infinity. In other words, choose an
embedding L ⊂ C and let D be the subgroup of order 1 or 2 of G generated by
complex conjugation. For x, y ∈ Q we say that x divides y if y ∈ Zx.

Proposition 1. The class number quotient
h(K)
h(K ′)

divides
#Cok(φD)
#Cok(φG)

.
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One gets a bound on the left hand side by computing the smallest possible value
of the right hand side if one lets φ vary. There are some improvements on this
bound, which are explained in [1]. Using these improvements we get the following
table of bounds for the 19 Gassmann triples.

class number bound for given r2deg.
0 1 2 3 4 5 6 7

#G no.

7 23 − 22 − − − − − 168 5
8 23 − 22 22 22 − − − 32 15

32 − − 3 1 − − − 48 23
11 35 − − − 33 − − − 660 5
12 27 − − − 24 − 23 − 48 26

33 − − − − 32 32 − 72 38
27 − − − 25 24 24 − 96 49
24 − 23 − 22 − 2 − 96 57
24 − 23 23 22 22 2 − 192 104
53 − − − 52 − 5 − 240 124

13 36 − − − 34 − − − 5616 7
14 210 − − − − − 25 − 168 10

210 − − − − 26 25 23 336 17
26 − − − 24 − − 23 336 19
26 − 25 − 24 − − 23 56448 52

15 210 − − − − − 26 − 180 15
210 − − − − − 26 − 360 21
214 − − − − − 28 − 2520 47
214 − − − 210 − 28 − 20160 72

We list the bounds by degree [K : Q] = #X, the number of the group in the
classification, and the number r2 of complex infinite primes of K, which is equal
to the number of orbits of length 2 of the D on X. Combining the lines for a
fixed degree we obtain a proof of Theorem 1.

In the table we combined results for the different subgroups D of G which
give rise to the same r2. So for specific D one can sometimes give a better bound
than the one given in the table. For some of the bounds we know they can only
be attained under certain strong conditions. We refer to [1], Proposition 5.2, for
details.

4 A Family of Arithmetically Equivalent Fields
of Degree 7

In order to test to what extent the bound in the previous section are sharp, we
computed class groups for particular instances. For a good supply of arithmeti-
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cally equivalent fields of degree 7 we use a family of LaMacchia [15]:

fs,t(X) = X7 + (−6t+ 2)X6 + (8t2 + 4t− 3)X5 + (−s− 14t2 + 6t− 2)X4

+(s+ 6t2 − 8t3 − 4t+ 2)X3 + (8t3 + 16t2)X2 + (8t3 − 12t2)X − 8t3.

LaMacchia proved that over the function field Q(s, t) this polynomial is irre-
ducible, and that its Galois group is isomorphic G = GL3(F2). If we specify s
and t to particular values in Q, then the resulting polynomial in Q[X] might
be reducible, and even if it is irreducible, then its Galois group is a subgroup
of G which might not be the whole of G. But Hilbert’s irreducibility theorem
guarantees that there are infinitely many pairs (a, b) ∈ Q × Q for which the
resulting polynomial fa,b in Q[X] is irreducible with Galois group G.

Proposition 2. Let a, b ∈ Q; if fa,b is irreducible in Q[X] then f−a,b is also
irreducible, and the number fields of degree 7 defined by fa,b and f−a,b are arith-
metically equivalent. If, moreover, fa,b has full Galois group GL3(F2) then these
fields are not isomorphic.

Let us consider the action of G on the 7 points of the projective plane over F2.
The induced action on the 35 unordered triples of distinct points has two orbits:
the orbit of length 7 of collinear triples, and the orbit of length 28 of non-collinear
triples. The idea is that if G is the Galois group of a polynomial f over Q of
degree 7, we can compute the polynomial P of degree 35 whose roots are all sums
of three distinct roots of f . If P is a product of two irreducible polynomials P7
and P28 of degree 7 and degree 28, then the field defined by P7 is the field which
is arithmetically equivalent but not isomorphic to the field defined by f .

Let us first address the issue of computing P given f . If f is monic with
integer coefficients, then we could find approximations of the roots of f in C,
and then compute approximations of P . Since P ∈ Z[X] we can round off the
coefficients to integers and if there is no unfortunate error blow-up then this
gives the correct P .

An alternative approach uses resultants. Let us write

f(X) =
7∏

i=1

(X − αi).

For k ∈ Q with k 	= 0 we put

fk(X) =
∏

i

(X − kαi) = k7f(X/k).

Denote by R the resultant with respect to the variable T . Then we have

R(f−1(T −X), f(T )) =
7∏

i,j

(X − αi − αj) = Q1(X)2 · f2(X),

where
Q1(X) =

∏

i<j

(X − αi − αj).
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By computing the resultant, dividing by f2(X) and taking the square root we
can thus compute Q1(X) without working in any larger fields than Q. Similarly,
we can find an expression for our polynomial P :

R(f−1(T −X), Q1) =
∏

i<j

∏

k

(X − αi − αj − αk) = P (X)3Q2(X),

with
Q2 =

∏

i

∏

j �=i

(X − αi − 2αj).

We can find Q2 by computing one more resultant:

R(f−1(T −X), f2(T )) = Q2(X)f3(X).

The three resultant equations allow one to successively compute Q1, Q2 and P
by taking resultants, computing quotients and take a square and a cube root.

Note that the largest resultant has degree 147, but it turns out that one can
do this computation for any given f ∈ Q[X] quite easily on a computer. We then
find the degree 7 factor P7 of P by a rational polynomial factorization algorithm.

If we take f = fs,t it would be nice to obtain P7 as a polynomial with
coefficients in Q(s, t), so that we do not have to go through the resultant com-
putation for each pair of rational numbers a, b. One could try to do this with the
resultant-method given above, with base-field Q(s, t) rather than Q. This sym-
bolic computation turns out not to be feasible. Instead, we compute P7 for many
values of a and b in Z and then interpolate. To see how this works, let us consider
the polynomial P . The coefficients of P can be expressed in terms of the symmet-
ric functions σ1, . . . , σ7 in α1, . . . , α7, where f = X7 − σ1X6 + σ2X5 − . . .+ σ7.
Giving each σi degree i we see that all coefficients of P have degree at most
35. It follows that the coefficients have at most degree 35 in s and t. In fact,
since s occurs only in σ3 and σ4, the degree in s is at most 11. The factor P7
of P therefore also has coefficients ci(s, t) which are polynomials of degree at
most 11 and 35 in s and t. With these bounds on the degree we can now find
these polynomials by interpolating. For fixed t0 we need at least 12 values of s
to determine the polynomial ci(t0, s), and if we do this for at least 36 values of
t0 then we know ci(t, s) by interpolation. We thus computed that P7 is equal to
the polynomial

gs,t = X7 + (−18t + 6)X6 + (124t2 − 64t + 6)X5 + (−408t3 + 208t2 − 4t − 16)X4

+ (6(t − 1)s + 640t4 − 156t3 − 116t2 + 84t − 27)X3

+ ((−36t2 + 36t − 12)s − 384t5 − 152t4 + 120t3 + 88t2 − 34t − 6)X2

+ (−s2 + (48t3 − 20t2 − 2t − 2)s − 64t5 − 84t4 + 52t3 − 8t2 − 12t)X
+ (−8t3 − 4t2)s + 384t6 + 80t5 − 88t4 − 24t3.

To finish the proof of the proposition one notices that f−s,t(X) divides the
polynomial X7gs,t((X − 1)(1 + 2t/X)), which means that the field defined by
gs,t is contained in the field defined by f−s,t. Thus, the polynomials fs,t and f−s,t

give the Galois configuration of the desired Gassmann triple (G,X,X ′) over the
field Q(s, t).
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If we specify s and t to rational numbers a, b, and fa,b ∈ Q[X] is irreducible,
then the Galois group of fa,b is a subgroup G0 of G which is transitive on X.
Then G0 contains an element of order 7, so it is also transitive on X ′, so f−a,b is
also irreducible. Since X is linearly equivalent to X ′ over G0, the two fields are
arithmetically equivalent. Since there is only one Gassmann triple for degree 7
the two fields are isomorphic if and only if G0 	= G.

5 Class Number Computations

In this section we prove Theorem 2.
The first three lines in the table of Theorem 1 show that for arithmetically

equivalent fields K and K ′ of degree at most 10 that are not totally real, the
class number quotient h(K)/h(K ′) or its reciprocal lies in {1, 2, 3, 4}. It remains
to exhibit examples to prove that all possibilities occur. In [5] examples are given
of arithmetically equivalent fields K, K ′ of degree 8 with h(K)/h(K ′) = 3.

We use the family of polynomials fs,t and f−s,t from the previous section
to generate examples for the remaining cases. Using Magma we selected the
subset of 1091 pairs of integers (a, b) with 0 ≤ a, |b| ≤ 100, for which the field
discriminant of the number field generated by fa,b has less than 25 decimal digits.
In 276 of these cases the fields are totally real and in all other cases there are 2
pairs of complex embeddings.

We have used h and h′ to denote the class numbers of the number fields
generated by the polynomials fs,t and f−s,t. The table below summarizes the
class number quotients found.

r2

h/h′
1 1/2 2/1 1/4 4/1

∑

2 607 104 98 2 4 815

0 210 38 25 2 1 276

The last row, representing the 276 totally real fields found, is given here for
comparison, and to show that no factor 8 was found in the class number quo-
tients.

The table below lists, of the 815 pairs that are not totally real, those with
class number quotients 4 and 1/4, and the smallest (in terms of discriminant)
with class number quotients 1, 2 and 1/2.

Class groups (and unit groups) in Magma are computed by a method that
generates relations between prime ideals of bounded norm. This is guaranteed to
give the correct class number if all primes up to the Minkowski bound are taken
into consideration. For fields of small discriminant, including the first example
with class number quotient 4 listed in the table, the method can be used to
certify the class number. It took around 7 minutes of CPU time to find the class
number pair for (62,−1) with Magma this way.
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(a, b) D factorization of D h/h′

(8, 1) 232745536 26 · 19072 1/1

(7, −1) 24497571289 2812 · 5572 1/2

(5, 1) 31811219449 592 · 30232 2/1

(62, −1) 3770079362544784 24 · 153502432 4/1

(22, −6) 2429680593739514347584 26 · 36 · 114 · 712 · 1012 · 2632 1/4

(83, 4) 3174516214584075350089 563428452832 6/24

(81, −6) 10630565571038999396281 192 · 5572 · 16972 · 57412 8/2

(53, −6) 10726579028522017397529 34 · 132 · 14532 · 6092272 8/2

(2, −6) 155678051656088618455296 28 · 36 · 372 · 246847212 4/1

For large discriminants this computation is no longer feasible. In that case the
Minkowski bound can be replaced by the (usually much smaller) Bach bound, at
the cost of correctness only being guaranteed under assumption of the generalized
Riemann hypothesis. This was used to compute the other class number pairs,
each taking less than a minute.

Alternatively, some local computations with independent units together with
bounds on the regulator may provide fairly fast provably correct results; cf. [8].
For this Magma has a built in function pFundamentalUnits, which we also used
to verify the above class number quotients.
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