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In this talk, I will first give a brief review on the history, recent develop-
ments, and current state of automated geometric reasoning, with emphasis on
the role of computer algebra for theorem proving. I will then discuss how
geometric theorems may be specified, manipulated, and proved automati-
cally. The discussed aspects will be illustrated with live examples running
in my GEOTHER environment. The problem of designing and implementing
a geometric-object-oriented language for symbolic geometric computing and
reasoning will be addressed.
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Summary. We describe differential rational normal forms of a rational function
and their properties. These normal forms are used as the basis for algorithms which
solve the multiplicative and additive decomposition problems of hyperexponential
functions.

1 Introduction

Let F be a field of characteristic zero. A nonzero function T (x) over F is
hyperexponential if the logarithmic derivative R(x) = T ′(x)/T (x) is a rational
function of x. The rational function R is called the certificate of T .

Representations of R ∈ F(x) in the form

R(x) = K(x) +
S′(x)

S(x)
(1)

where K,S ∈ F(x) satisfy some specific conditions play a key role in a
number of computer algebra algorithms operating on hyperexponential func-
tions. Gosper’s algorithm for hyperexponential indefinite integration and Zeil-
berger’s algorithm for hyperexponential definite integration [3] both start with
the certificate of a hyperexponential function. Each algorithm then proceeds
by representing this certificate in the form (13). The algorithms for computing
the multiplicative and additive decompositions of hyperexponential functions
also use this representation.

By using the certificate R of T (x), we can write
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T (x) = exp

(∫

R(x) dx

)

. (2)

Let K(x) in (13) be written as a(x)/b(x) where a, b ∈ F[x] and gcd(b, a −
ib′) = 1 for all i ∈ Z. Then (13) is a differential rational normal form (DRNF)
of R(x). By using any DRNF of R, we can rewrite (2) in the form

T (x) = S(x) exp

(∫

K(x) dx

)

. (3)

A representation of T (x) in the form (3) is called a multiplicative decomposition
of T (x).

The paper is organized as follows. In Sections 2 and 3 we define the notion
of DRNFs of a rational function, and provide an algorithm for constructing
them. The construction is based on a classification and distribution of the
simple fractions in the irreducible partial fraction decomposition of the input
rational function. These DRNFs can be considered as the differential analogue
of the RNFs in the difference case [2, 1]. Among all DRNFs of a rational func-
tion, we select two canonical forms (DRCFs). While DRCF1 helps determine
similarity between two hyperexponential functions [6], DRCF2 is used in the
algorithm for solving the additive decomposition problem (also known as the
reduction algorithm) for hyperexponential functions [6]. In Section 4, we show
how to construct a multiplicative decomposition of a hyperexponential func-
tion based on a DRNF of its certificate, and specify the problem of comput-
ing an additive decomposition of hyperexponential functions. This problem is
solved in [6]. In Section 5 we describe an implementation of the algorithms in
this paper, and its availability.

For R ∈ F(x), num(R) and den(R) denote the numerator and the denomi-
nator of R, respectively. Except mentioned otherwise, we assume that num(R)
and den(R) are co-prime, and den(R) is monic. In particular, num(0) = 0 and
den(0) = 1. The use of some technical terms is borrowed from [2].

2 DRNFs and their strict versions

Definition 1 A rational function R ∈ F(x) is differential-reduced if

gcd(den(R), num(R)− i den(R)′) = 1 for all integers i.

In the differential Gosper’s algorithm(see [3]) a rational function R is con-
structed such that

gcd(den(R), num(R)− i den(R)′) = 1 for all nonnegative integers i.

The definition of differential-reduced rational functions is more restrictive so
that certain denominators of rational functions in our reduction algorithm for
hyperexponential functions will have minimal degree [6].
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Definition 2 Let R ∈ F(x). If there are K,S ∈ F[x] such that

(i) R = K +
S′

S
,

(ii) the rational function K is differential-reduced,

then (K,S) is a differential rational normal form (DRNF) of R. Additionally,
if

(iii)gcd(den(R), den(S)) = 1,

then (K,S) is a strict DRNF of R. The rational functions K and S are called,
respectively, the kernel and the shell of the DRNF (K,S).

A rational function R can be uniquely written as

R = p+

n∑

i=1

mi∑

j=1

qij

dj
i

, (4)

where n,mi are nonnegative integers, the di’s are distinct, monic and irre-
ducible polynomials in F[x], the polynomial qij is of degree less than that
of di, and p is a polynomial. We call (4) the irreducible partial fraction de-
composition of R over F. By a simple fraction we mean either a polynomial
or a fraction whose denominator is a power of a square-free polynomial b of
positive degree, and whose numerator is of degree less than deg b. All fractions
appearing in (4) are simple. An easy calculation shows

Lemma 1 A rational function is a logarithmic derivative of some rational
function in F(x) if and only if its irreducible partial fraction decomposition
can be written as

∑

i nip
′
i/pi where the ni’s are nonzero integers and the pi’s

are irreducible polynomials in F[x].

The following lemma describes a relation between a differential-reduced ra-
tional function and its irreducible partial fraction decomposition.

Lemma 2 A rational function R(x) is differential-reduced iff, for any monic

and irreducible p and nonzero integer m, the appearance of mp′

p in the irre-

ducible partial fraction decomposition of R implies that p2 divides den(R).

Proof: Set a = num(R), b = den(R). Suppose that the pair (a, b) is differential-

reduced, and that mp′

p appears in the irreducible partial fraction decompo-

sition, but that p2 does not divide b. Then the irreducible partial fraction
decomposition of a

b would be written as

a

b
= g +

mp′

p
+
∑

i

∑

j

qij

dj
i

where g, qij , di ∈ F[x] and gcd(di, p) = 1 for all i. Thus
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a

b
=
u

v
+
mp′

p
=
up+mp′v

vp

where u, v ∈ F[x], gcd(u, v) = 1, and gcd(p, v) = 1. Since gcd(vp, up+mp′v) =
1, we have a = up+mp′v and b = vp. However, we can verify that p divides
gcd(b, a−mb′) by a direct calculation, a contradiction.

Conversely, suppose that g = gcd(b, a−mb′) is of positive degree. Let p be
an irreducible factor of g. Then p2 does not divide b, for otherwise, p would
divide a, a contradiction to gcd(a, b) = 1. Thus

a

b
=
u

v
+
q

p
(5)

where gcd(u, v) = 1, gcd(v, p) = 1 and deg q < deg p. It follows that a =
up+ qv and b = vp. So

a−mb′ = v(q −mp′) + (u−mv′)p.

Hence p divides v(q−mp′), so it divides (q−mp′). A degree argument implies

that q = mp′. Hence mp′

p appears in the irreducible partial fraction decompo-

sition of a/b.
By Lemma 2 a rational function is differential-reduced if and only if it has

no first-order pole with integral residue.
Consider the irreducible partial fraction decomposition of a rational func-

tion

R =
∑

i

ui(x)

vi(x)
. (6)

Each simple fraction ui/vi in (6) belongs to one and only one of the following
three classes:

(I)
ui

vi
= mi

v′i
vi
, mi ∈ Z \ {0}, v2

i does not divide den(R);

(II)
ui

vi
= mi

v′i
vi
, mi ∈ Z \ {0}, v2

i divides den(R);

(III)
ui

vi
is not a logarithmic derivative of any rational function.

Let (K,S) be a DRNF of R. Then

• The simple fractions in class (I) appear in the irreducible partial fraction
decomposition of S′/S, not in the irreducible partial fraction decomposi-
tion of K (otherwise, K is not differential-reduced);

• The simple fractions in class (III) appear in the irreducible partial fraction
decomposition of K, not in the irreducible partial fraction decomposition
of K ′/K (otherwise, S′/S would not be a logarithmic derivative of any
rational function);

• The simple fractions in class (II) can appear in the irreducible partial
fraction decomposition of either K or S ′/S.
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Lemma 3 For nonzero R ∈ F(x), let ui/vi be a simple fraction of class (I)
or (II), then vi is an irreducible polynomial in F[x].

Proof: Since ui/vi is of class (I) or (II),

ui

vi
= mi

v′i
vi

(7)

for some mi ∈ Z \ {0}. If vi is not irreducible, then vi = ps where p is irre-
ducible, and s > 1. By (7), ui/vi = mi s p

′/p. Since deg p < deg vi, gcd(ui, vi)
is not trivial, a contradiction.

The following corollary is immediate from Lemma 3.

Corollary 1 Let the irreducible partial fraction decomposition of nonzero R ∈
F(x) be of the form (6). For i 6= j, if the simple fractions ui/vi is of class (I)
and uj/vj is of either class (II) or class (III), then gcd(vi, vj) = 1.

The next lemma reveals a relation among different DRNF’s.

Lemma 4 For nonzero R1, R2 ∈ F(x), let (K1, S1) and (K2, S2) be two
DRNFs of R1 and R2. If

R1 −R2 =
R′

R
, for some nonzero R ∈ F(x), (8)

then den(K1) = den(K2). In particular, the kernels of all DRNF’s of a rational
function have the same denominator.

Proof: Equation (8) implies

K1 −K2 =
Q′

Q
for some nonzero Q ∈ F(x), (9)

Let p be an irreducible factor of den(K1) with multiplicity m. Then a simple
fraction q

pm must appear in the irreducible partial fraction decomposition

of K1. If m > 1, then there is a simple fraction q
pm appearing in the irreducible

fraction of K2, because all simple fractions in the irreducible partial fraction
decomposition of Q′/Q have square-free denominators by Lemma 1. If m = 1,
then q 6= ip′ for any integer i, for, otherwise, K1 is not differential-reduced by
Lemma 2. It follows from (9) that there exists a simple fraction f/p in the
irreducible partial fraction decomposition of K2 such that the difference of
q/p and f/p is a logarithmic derivative of some rational function. Therefore
pm is also a factor of den(K2). Consequently, den(K1) divides den(K2). In the
same way we have den(K2) divides den(K1). Hence den(K1) = den(K2) since
they are monic.

Setting R = 1 in (8) yields the last conclusion of the lemma.

Example 1 Consider the rational function



8 Ha Le and Ziming Li

R =
4

x− 2
+

4

x+ 1
− 3

(x+ 1)2
− 9

(x− 1)2
−

9x2 + 12

x3 + 4x− 2
+

1

(x3 + 4x− 2)2
.

Note that R is already in the irreducible partial fraction form. The simple
fractions of R are classified as follows:

(I) u1 =
4

x− 2
, (II) v1 =

4

x+ 1
, v2 = − 9x2 + 12

x3 + 4x− 2
,

(III) w1 = − 9

(x− 1)2
, w2 = − 3

(x+ 1)2
, w3 =

1

(x3 + 4x− 2)2
.

Now we construct four different DRNF’s of R.
The first DRNF is constructed by moving both simple fractions in class (II)
to the shell: (

w1 + w2 + w3,
den(u1)

4den(v1)
4

den(v2)3

)

.

The second DRNF is constructed by moving both simple fractions in class (II)
to the kernel:

(
w1 + w2 + w3 + v1 + v2, den(u1)

4
)
.

The third DRNF is constructed by moving the simple fraction v1 to the shell
and the simple fraction v2 to the kernel:

(
w1 + w2 + w3 + v2, den(u1)

4den(v1)
4
)
.

Finally, the fourth DRNF is constructed by moving the simple fraction v2 to
the shell and the simple fraction v1 to the kernel:

(

w1 + w2 + w3 + v1,
den(u1)

4

den(v2)3

)

.

The set of strict DRNFs of R consists of the second and the third DRNFs.

3 Two differential rational canonical forms

Among all possible DRNFs of a non-zero rational function R(x), we select
two differential rational canonical forms (DRCF). The selection is based on
the distribution of the simple fractions of class (II) to either the kernel K or
the shell S: all simple fractions of class (II) are moved to the shell for DRCF1,
and to the kernel for DRCF2.

Example 2 For the rational function R(x) in Example 1, the first DRNF is
DRCF1 of R, while the second DRNF is DRCF2 of R.
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The next theorem shows the minimality of the shell of the DRCF.

Theorem 1 For R ∈ F(x), let S be the shell of the DRCF of R, and S̃ be
the shell of any DRNF of R. Then den(S) divides den(S̃), num(S) divides
num(S̃).

Proof: Let R be of the form (6), A and B be the sets of simple fractions of
class (I) and class (II), respectively. Each element f of either A or B is of
the form mv′/v where v is monic, and irreducible in F[x], and m, denoted by
res(f), is a nonzero integer. Then

S =
∏

f∈A

den(f)res(f), S̃ = S
∏

g∈J

den(g)res(g)

︸ ︷︷ ︸

W

(10)

where J is a subset of B. By Corollary 1, den(f) and den(g) are co-prime.
Hence, num(S̃) = num(S) num(W ), den(S̃) = den(S) den(W ).

Corollary 1 and the first equality of (10) imply

Corollary 2 If (K,S) is the DRCF of a rational function, den(K), num(S)
and den(S) are pairwise co-prime.

It follows from Corollary 2 that DRCF2 is a strict DRNF, while DRCF1

in general is not. Note that DRCF2 of a rational function is briefly mentioned
in [4, Chap. 8].

We conclude this section by describing algorithm DRCF which computes
DRCF1 and DRCF2 of a rational function. The algorithm needs an auxiliary
function for computing the class to which a simple fraction belongs.

Algorithm WhichClass
input: R ∈ F(x) \ {0}, a simple fraction qij/d

j
i of R;

output: (1,m) if qij/d
j
i is of class (I), m ∈ Z \ {0} such that

qij/d
j
i = m

(

dj
i

)′

/dj
i .

(2,m) if qij/d
j
i is of class (II), m ∈ Z \ {0} such that

qij/d
j
i = m

(

dj
i

)′

/dj
i .

(3, 0) if qij/d
j
i is of class (III).

m := qij/
(

dj
i

)′

;

if m ∈ Z \ {0} then
if d2j

j does not divide den(R) then return (1,m);
else return (2,m);
fi;

else return (3, 0);
fi;
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Algorithm DRCF[h]
Input: R ∈ F(x) \ {0} of the form (4), h ∈ {1, 2};
Output: DRCF1 of R if h = 1, and DRCF2 of R otherwise.

K := p; S := 1;
for each simple fraction qij/d

j
i do

(c,m) :=WhichClass (R, qij/d
j
i );

if c = 1 then S := S · djm
i ;

elif c = 2 then K := K + qij/d
j
i ;

else if h = 1 then S := S · djm
i ;

else K := K + qij/d
j
i ;

fi;
fi;

od;
return (K, S).

4 Representations of hyperexponential functions

4.1 Multiplicative decompositions

Definition 3 Let T (x) be a hyperexponential function over F with the cer-
tificate R ∈ F(x). Let the pair of rational functions (K,S) be a DRNF of R.
Then T can be written as

T (x) = S(x) exp

(∫

K(x) dx

)

,

which is called a multiplicative decomposition of T .

The following is a description of the algorithm which constructs two multi-
plicative decompositions of T based on the two DRCF’s of R.

Algorithm DMD[i]
input: a hyperexponential function T (x), i ∈ {1, 2}
output: a multiplicative decomposition S(x) exp

(∫
K(x) dx

)
of T ;

R := T ′/T ;
(K,S) := DRCF[i](R);
return S(x) exp

(∫
K(x) dx

)
.

4.2 Additive decompositions

Definition 4 A rational function R ∈ F(x) is said to be rational integrable
if there exists an R1 ∈ F(x) such that R = R′

1. Similarly, a hyperexponential
function T (x) over F is said to be hyperexponential integrable if there exists
a hyperexponential function T1 such that T = T ′

1.
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The additive decomposition problem for hyperexponential functions can
be specified as follows.

Given a hyperexponential function T , find hyperexponential functions T1

and T2 such that

(1) T = T ′
1 + T2,

(2) if T is hyperexponential integrable, then T2 = 0,
(3) if T is not hyperexponential integrable, then T ′

2/T2 has a DRNF (K,S)
such that the denominator of S has the minimal possible degree.

This formulation agrees with that of the well-known reduction algorithms
for rational functions [5, 7] since if T2 ∈ F(x) then num(K) = 0, den(K) = 1,
and den(S) = den(T2). It also includes Gosper’s algorithm as a special case,
i.e., T2(x) is identically zero if T (x) is hyperexponential integrable.

An algorithm which solves the additive decomposition problem for hyper-
exponential functions and applications of this algorithm are described in [6].

5 Implementation

We have implemented the algorithms in this paper in the computer algebra
system Maple. The functions are put together in the module drnf:
> print(drnf);

module()
local merge, mparfrac, simplefrac, grouping, Sgen, opgen, GosperStep3

rightform, ReduceCert, MinimalLinearSpecialization;
export ReduceHyperexp, MultiplicativeDecomposition,

RationalCanonicalForm, AreSimilar, Verify, IsHyperexponential,
Zeilberger, Gosper, PolynomialNormalForm, VerifydZ;

option package;
description “a reduction algorithm for hyperexponential functions”;
end module

The Maple source code, help pages for the exported functions, and some
test samples are available from

http://www.scg.uwaterloo.ca/~hqle/code/DRNF.html
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Summary. We present an approach to find all regular solutions of a system of
linear ordinary differential equations using EG′-algorithm [2, 3] as an auxiliary tool.

1 Introduction

Let
L = Qρ(z)D

ρ + · · ·+Q1(z)D +Q0(z), (1)

where D = d/dz.
Assume that Qρ(x), . . . , Q0(x) are polynomials in z over C. A regular

solution of the equation Ly = 0, or, the same of the operator L, at a fixed
point z0 ∈ C, is a solution of the form

(z − z0)λF (z) (2)

with F (z) ∈ C((z− z0))[log(z− z0)], where C((z− z0)) is the field of Laurent
series (here we do not consider convergence problems; all series are formal).
The value λ is the exponent of regular solution (2). W.l.g. we will suppose
that z0 = 0. The problem of constructing all regular solutions of L at 0 can
be solved, e.g., by Frobenius algorithm ([6]), which is based on using the
indicial equation f(λ) = 0 of L at 0 (a right-hand side which contains, in
particular, factors f(λ) and zλ, must be constructed for L; the corresponding
solutions must be differentiated by λ and so on). Not only the values of roots of
f(λ) = 0, each taken separately, are substantial for Frobenius’ algorithm, but
also multiplicities of the roots and the existence of roots differing by integers.

?The work is partially supported by the ECO-NET program of the French For-
eign Affairs Ministry.
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To apply Frobenius’ algorithm to a system of linear difference equations one
has to transform the system into a large order scalar differential equation (e.g.
by the cyclic vector method). The scalar equation may have huge coefficients,
that makes the approach quite unpractical.

In [4, Section 5] another algorithm for constructing regular solutions of a
first order system of the form

y′ = Ay, A ∈ MatN (C(z)) (3)

was described (in [5, Section 3.3] an extended version of the same algorithm
was presented). This algorithm is direct, i.e., it uses neither the cyclic vector
method nor any other decoupling procedure. For a given value λ the algorithm
constructs a basis of regular solutions at 0 whose exponent is λ (if there exists
no such solution then the basis is empty). The algorithm from [4, 5] does not
need any information neither on multiplicity of λ nor on the existence of other
roots with integer distance from λ. This algorithm constructs step by step
a sequence of first order linear differential systems, enumerated by 0, 1, . . . ,
which are inhomogeneous starting from the system with the number 1 (the
corresponding right-hand sides contain solutions of the preceding systems). If

zλ

(

g0(z) + g1(z)
log z

1!
+ g2(z)

log2 z

2!
+ · · ·+ gm(z)

logm z

m!

)

(4)

is a regular solution of (3) then gi(z) is a Laurent series solution of the con-
structed i-th system; the process of finding of regular solutions of (3) is ter-
minated when the current constructed system has no non-zero Laurent se-
ries solutions. It is necessary to be able to find Laurent series solutions of a
given system (the recognizing of the existence included). To do this in [4, 5]
a transformation of the system into a so-called super-irreducible form ([7]) is
computed. Once the system is in a super-irreducible form then a bound of the
“pole order” of the Laurent series solution, and then the coefficients of the
solutions themselves can be computed directly (in turn). Additionally, if the
original system is in a super-irreducible form, then one can find all possible
exponents λ1, λ2, . . . of its regular solutions.

We describe in this paper a modification of the algorithm from [4, 5].
This modification does not use the transformation of a system into a super-
irreducible form. Instead, we use EG′-algorithm from [2, 3] (see Section 3).
Note that sometimes the transformation into a super-irreducible form as well
as the application of EG′-algorithm is not fast. When we need to solve a
linear differential system of a large size, then it could make a sense to try
both approaches; if we are lucky, at least one (it is possible that only one) of
them will solve the problem.

It is convenient for this purpose to reorganize the algorithm from [4, 5] in
such a manner that it would be applicable to any linear system

Ly = 0 (5)
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where L has the form (1) with

Qi(z) ∈ MatN (C[z]), i = 0, . . . , ρ; (6)

in particular, L can be a scalar operator of arbitrary order (in this caseN = 1).
This is done in Section 2; some useful properties of this version of the algo-
rithm are described as well. In Section 4 the algorithm is summarized and
in Section 5 we describe some computing remarks useful for implementation
of the algorithm. Detailed example of the application of the algorithm is pre-
sented in Section 6. The implementation of the algorithm in Maple and related
experiments are described in Section 7.
Acknowledgements. We would like to thank Prof. M. Barkatou (University
of Limoges) for valuable discussions about regular solutions of linear differen-
tial systems.

2 Linear differential systems of arbitrary order

First, consider the problem of the search for Laurent series solutions of (5).
We can construct the associated recurrent system Rc = 0 with

R = Pl(n)El + · · ·+ Pt(n)Et, Pj(n) ∈ MatN (C[n]), j = t, . . . , l (7)

for the coefficients of any such solution. If detPl(n) is the zero polynomial,
then it is possible to transform the recurrent system into a system with a
non-zero detPl(n). This can be done by EG′-algorithm (see Section 3). In the
rest of this section we suppose that ϕ(n) = detPl(n), ϕ(n) ∈ C[n] \ {0}.

Set ψ(n) = ϕ(n−l) and n0, n1, resp., minimal and maximal integer roots of
ψ(n) (if there is no integer root, then (5) has no Laurent series solution). Any
Laurent series solution of (5) has no term ckz

k, ck ∈ Cn, with k < n0. Using
the recurrence Rc = 0 and the constructed constraints, we can, by a linear
algebra procedure, compute a basis of the linear space of initial segments

cn0
zn0 + cn0+1z

n0+1 + · · ·+ cMzM ,

where M is a fixed integer such that M ≥ n1 and M is greater than all indexes
involved into the constraints.

Observe, that if our differential system is inhomogeneous with a Laurent
series right-hand side (the coefficients of that right-hand side are given using
a recurrence), then similarly we will be able to construct a basis of the affine
space of Laurent series solutions.

If ψ(n) has a non-integer root λ, then the preliminary change of the
depended variable y = xλȳ will produce a new equation ψ̄(n) = 0, where
ψ̄(n) = ψ(n− λ). Therefore we always can work with integer roots.

Apparently, the result of application of L to

g(z)
logm z

m!
(8)
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where m ≥ 0 can be represented in the form

Lm,m(g)
logm z

m!
+ Lm,m−1(g)

logm−1 z

(m− 1)!
+ · · ·+ Lm,1(g)

log z

1!
+ Lm,0(g), (9)

where the coefficients of differential operators Li,j belong to MatN (C(z)).

Proposition 1 The coefficients of all operators Li,j belong to
MatN (C[z, z−1]) and, additionally,

L0,0 = L1,1 = L2,2 = · · · = L,

L1,0 = L2,1 = L3,2 = . . . , (10)

L2,0 = L3,1 = L4,2 = . . . ,

.............................

in (9).

Proof: After the applying of L to (8) one gets, e.g., Lm,m−1(g) by gathering
together all terms that contain one time differentiated factor (8); but

(
logm z

m!

)′

=
1

z
· logm−1 z

(m− 1)!

and the new factor 1/z does not depend on m (due to considering (logm z)/m!
instead of logm z).

Set
L0 = L0,0 (= L1,1 = L2,2 = · · · = L),

L1 = L1,0 (= L2,1 = L3,2 = . . . ),

.............................

If ordL = d, then ordLi = d − i, i = 0, . . . , d, Ld+1 = Ld+2 = · · · = 0. We
obtain

L

(
k∑

m=0

gk−m(z)
logm z

m!

)

= L0(g0)
logk z

k!
+ (L1(g0) + L0(g1))

logk−1 z

k − 1!
+ · · ·

+ (Lk(g0) + Lk−1(g1) + · · ·+ L0(gk)).

Therefore the equality

L

(
k∑

m=0

gk−m(z)
logm z

m!

)

= 0

is valid iff
L0(g0) = 0,

L0(g1) = −L1(g0),
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L0(g2) = −L1(g1)− L2(g0), (11)

L0(g3) = −L1(g2)− L2(g1)− L3(g0),

................

Denote Si the system of first i+1 equations from (11), i.e., of the equations
whose left hand sides are L0(g0), . . . , L0(gi). Hence we have the following
proposition.

Proposition 2 The equality (5) has regular solution

k∑

m=0

gk−m(z)
logm z

m!
(12)

iff (g0(z), . . . , gk(z)) is a Laurent series solution of Sk.

Note the following. We find g0(z) using the first equation from (11). This
solution may contain some arbitrary constants. When we use g0(z) in the
right-hand side of the second equation from (11), some of those arbitrary
constants have to be specified to make the second equation solvable in non-
zero Laurent series; if this is possible, then we get g1(z) that in its turn may
contain arbitrary constants and so on. So when Laurent series solutions of
Si are constructed and we solve Si+1, we, in general situation, decrease the
number of the arbitrary constants in solutions of Si and find new Laurent
series gi+1 (which may contain some arbitrary constant as well).

Denote Gk the set of all regular solutions of the form (12) of equation (5)
(the case g0(z) = 0 is not excluded).

Proposition 3 G0 ⊂ G1 ⊂ · · · ⊂ Gk ⊂ · · · .
Proof: Suppose that (g∗0 , . . . , g

∗
i ) is an (i+ 1)-tuple of Laurent series which

is a solution of Si. Set (g∗∗0 , . . . , g∗∗i+1) = (0, g∗0 , . . . , g
∗
i ). It is easy to check

that (g∗∗0 , . . . , g∗∗i+1) then satisfies the system Si+1. The claimed follows from
Proposition 2.

Apparently, if (12) is a solution of (5) (g0, . . . , gk) ∈ C((z))k+1 with g0 6= 0,
then k ≤ ordL − 1. Therefore, starting from some non-negative integer k,
all systems Sm, m > k, have only such solutions in C((z))k+1 that contain
g0 = 0. If k is such non-negative integer and we have constructed the set U
of all solutions of Sk in C((z))k+1, then using the elements of this set we can
construct all wanted regular solutions of (5). We will obtain U in the form of a
vector (g0(z), . . . , gk(z)) whose entries may contain some arbitrary constants.

It is very valuable, that all equations from (11) have in the left-hand side
the operator L0 = L, and we have the corresponding recurrent operator for it
with the non-singular leading matrix.
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3 EG
′-algorithm as an auxiliary tool for constructing

regular solutions

Linear recurrences with variable coefficients are of interest for many applica-
tions (e.g. in combinatorics and numeric computation). Consider the recur-
rence of the form

Pl(n)zn+l + Pl−1(n)zn+l−1 + · · ·+ Pt(n)zn+t = rn (13)

where l ≥ t are arbitrary integers, z = (z1, . . . , zN)T is a column vector of
unknown sequences (such that zi = (z1

i , . . . , z
N
i )T ), the right-hand side rn is

a vector of polynomials in n and the matrix coefficients Pt(n), . . . , Pl(n) are
polynomial in n, and Pt(n), Pl(n) are non-zero. Note that it’s often convenient
to regard the matrix P (n) = (Pl(n)| . . . |Pt(n)), which is referred to as the
explicit matrix of the recurrence. Each of the matrices Pt(n), . . . , Pl(n) is called
a block of the explicit matrix (resp. of the system (13)) and the matrices Pl(n)
and Pt(n) are called leading and trailing matrices of the explicit matrix (resp.
of the system (13)).

The roots of the determinants of the matrices Pt(n) and Pl(n) (when those
matrices are non-singular over C(n)) are always important for determining the
structure of the solution space (e.g. bounds on the orders of the solutions).
It may happen however that either Pt(n) or Pl(n) is singular. In that case,
not only it is impossible to compute bounds on the orders of the solutions,
but it also makes difficult, from a computational standpoint, to use the recur-
rence (13) to compute the sequence of vectors it generates.

A natural solution in that case is to compute an equivalence transformation
of the recurrence system, which transforms it into a form with either the
leading or trailing matrix nonsingular. This transformation may be a “quasi–
equivalence”, in the sense that the eventual changes in the solution set can be
easily taken into account.

Such EG-algorithm was developed in [1] and later improved (EG′-
algorithm) in [2]. It allows transforming the recurrence (13) to the form with
the non-singular leading (resp. trailing) matrix. The given system is equiva-
lent to the transformed system accompanied by a set of linear constraints (the
set may be empty).

The general scheme of the algorithm is the following: if the leading
(resp. trailing) matrix is singular, then we left-multiply it by another ma-
trix (obtained for example by elimination, but not necessarily so) in order to
zero one of its rows. This stage is called a reduction of the block. Suppose
that the i-th row of the block is now zero. Then, we shift the i-th row of the
transformed explicit matrix, which corresponds to left-multiplication of the
i-th equation of the system (13) by the shift operator E (resp. E−1) after
the reduction step (so along with shifting the i-th row, we replace n by n+ 1
(resp. n−1) in that row). Obviously, all the corresponding transformations are
performed on the right-hand side as well. Note that the reduction step may
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generate a set of linear constraints because of multiplications of the trans-
formed rows by polynomials having integer roots. Each of the constraints is a
linear relation that contains a finite set of variables zj

i . The process terminates
if some special precautions are taken. To guarantee termination, it is sufficient
that each reduction does not increase the width of any row: then the sum of
all the widths decreases after the shift.

One of the important applications of the algorithms is solving linear func-
tional (e.g. differential) systems with polynomial coefficients. The systems
induce recurrence systems for the coefficients of their series solutions in some
basis. This associated recurrence is of the form (13). EG′-algorithm is shown
to be efficient enough ([3]) for the purpose and used for finding polynomial,
rational, and formal series solutions of linear functional systems.

4 Algorithm

Summarizing the above information, the general scheme of finding regular
solutions of the system (5) is the following:

1. For a given system S in the form (5), construct the associated matrix
recurrence in the form (13). Using EG′-algorithm transform it into the
recurrence of the same form but such that ϕ(n) = detPl(n) is not identi-
cally zero. Compute all roots of ϕ(n), divide them into the groups of ones
having integer differences, and construct the set Λ consisting of represen-
tatives of the groups (one representative out of each group).

2. For each λ ∈ Λ compute regular solution whose exponent is λ:

a) Compute system Sλ by substituting y = xλyλ. Construct the as-
sociated matrix recurrence in the form (13). Using EG′-algorithm
transform it into the recurrence Rλ of the same form but such that
ϕλ(n) = detPl(n) is not identically zero. The transformed recurrence
includes a set of additional constraints (the set may be empty) and
the transformed right-hand side in a generic form.

b) Determine the number Mλ of needed initial terms of Laurent series
such that all integer roots of ϕλ(n) and all indices of constraints are
less than the number.

c) Successively solve systems (11) for the needed number of initial terms
of Laurent series using the recurrence Rλ while it’s possible. It gives
regular solutions yλ of Sλ in the form (12).

3. Combine all solutions {yλ}λ∈Λ into general regular solution y =
∑

λ∈Λ x
λyλ.
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5 Computing remarks

5.1 Associated recurrence

The main part of the algorithm (see Section 4) is solving a single system from
the sequence (11). As it is mentioned above all systems from (11) have in the
left-hand side the same operator L0 = L. Hence the associated matrix recur-
rences have the same left-hand side as well. But the right-hand sides of the
recurrences are different. In order to regard the different right-hand sides at
once during EG′-algorithm transformations we may apply all the transforma-
tions to a generic right-hand side. Then as a result of EG′-algorithm we have
the transformed recurrence in the form (13) with non-singular Pl(n), set of
linear constraints and the transformed right-hand side in a generic form. Each
component of this generic transformed right-hand side is a linear combination
of possibly shifted components of the right-hand side before transformations
(this is consequence of the corresponding operations in the recurrence dur-
ing EG′-algorithm). In this way we can use the same transformed recurrence
for solving any single system from the sequence (11) specifying the concrete
right-hand side by substituting corresponding values into the generic right-
hand side.

5.2 Computing the right-hand side

Computing the right-hand side is not so simple since the right-hand side for
the m-th system before transformations is in the form

−
m∑

k=1

Lk(gm−k), (14)

where g0, . . . , gm−1 are Laurent series solutions of the preceding systems in
the sequence (11). Since in practice we represent Laurent series solution by
segment of initial terms, we need to determine the needed numbers of initial
terms of g0, . . . , gm−1.

In its turn the numbers depend on the number Mλ of initial terms of trans-
formed right-hand side which is determined on the step 2b of the algorithm
(see Section 4) for all systems in the sequence (11) and ensures that next
terms of the series are computed from preceding ones by simple use of the
recurrence.

So we compute the transformed right-hand side in the following way:

1. Taking into account Mλ and the form of the components of transformed
generic right-hand side, compute the numbers of needed initial terms of
the components of right-hand side before transformations to ensure the
number of initial term in the transformed right-hand side being equal to
Mλ.
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2. Taking into account form of the operators L1, . . . , Lm, compute the num-
bers of initial terms of g0, . . . , gm−1 to ensure the needed numbers of initial
terms of the components of right-hand side before transformations.

3. Compute the corresponding initial segments of g0, . . . , gm−1.
4. Compute the initial segment of the right-hand side before transformations

substituting the initial segments of g0, . . . , gm−1 into (14).
5. Compute the initial segment of the transformed right-hand side substitut-

ing the initial segment of right-hand side before transformations into the
transformed right-hand side in a generic form.

5.3 Extending solution component

Computing the transformed right-hand side depends on computing initial seg-
ments of g0, . . . , gm−1 (step 3 in Section 5.2). Since the required number of
initial terms of the solution component gk may be greater than the number of
the initial terms computed on the preceding steps of the algorithm, we need
to extend the component. In order to do it we need to compute next terms us-
ing the associated recurrence. It means we need to extend the corresponding
transformed right-hand side, computing it using approach from Section 5.2
substituting Mλ by new number. Note that again it may require extending
other solution components. So this procedure is recursive.

5.4 Computing initial segment

When the transformed right-hand side of the recurrence is computed, solving
a system from the sequence (11) for the needed number of initial terms of
Laurent series may be performed one by one using the recurrence. In each
step one of the following options occurs:

• the next term is computed being expressed as a function of the previous
terms;

• a linear constraint on the previous terms appears, which can be either
resolved or is inconsistent that means that there is no Laurent series solu-
tion;

• the next term is a new arbitrary constant (it may be defined on the next
steps of the computations by resolving constraints).

After all steps either all initial terms are computed (some of them being
arbitrary constants) or it’s determined that there is no Laurent series solution.

Note the following:

1. Since each of the g0, . . . , gm−1 may have arbitrary constants, the right-
hand side for m-th system in the sequence (11) may have the same ar-
bitrary constants. It leads to the fact that during computing the initial
segment of the Laurent series solution of the m-th system some of the
constants may be defined due to resolving appearing constraints. It may
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lead to transforming the initial segment of g0 to zero. Since the number of
terms in the segment is determined in such a way that all the rest terms
are computed in turn by the associated recurrence with the non-singular
leading matrix, it gives that g0 is identically zero. As it is noted above,
if the case happens it means that all solution components are computed
and m-th system has no proper Laurent series solutions.

2. As it follows from the Proposition 3 we can use only the last found solution
of the form (12) as the regular solution whose exponent is λ, since it
contains all previously found solutions of the form as well.

6 Example

Consider the following system:

13

2
x2D2y1(x) +

33

4
xDy1(x) +

9

8
y1(x) + x3D3y1(x) − x2D2y2(x) +

− 3xDy2(x)−
3

4
y2(x) = 0 (15)

x2Dy2(x) +
3

2
y2(x) − x2y2(x) = 0

The explicit matrix of the associated recurrence is

(
(n− 2)(n− 1)n+ 13

2 (n− 1)n+ 33
4 n+ 9

8 −(n− 1)n− 3n− 3
4 0 0 0 0

0 0 0 n+ 1
2 0 −1

)

,

with leading index of the recurrence l = 0, and trailing one t = −2. EG′-
algorithm gives

(
(n− 2)(n− 1)n+ 13

2 (n− 1)n+ 33
4 n+ 9

8 −(n− 1)n− 3n− 3
4 0 0 0 0

0 n+ 3
2 0 −1 0 0

)

,

with no constarints. The determinant of the leading matrix is 1
16 (8n3+28n2+

30n+ 9)(2n+ 3). The roots are − 1
2 and − 3

2 and they form one group. Let set
of representatives Λ = {− 1

2}.
After substitution y = x−

1
2 ȳ, explicit matrix of the associated recurrence

is (
(n− 2)(n− 1)n+ 5(n− 1)n+ 4n −(n− 1)n− 2n 0 0 0 0

0 0 0 n 0 −1

)

,

with leading index of the recurrence l = 0, and trailing one t = −2. EG′-
algorithm gives

(
(n− 2)(n− 1)n+ 5(n− 1)n+ 4n −(n− 1)n− 2n 0 0 0 0

0 n+ 1 0 −1 0 0

)

, (16)
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with no constraints. The right-hand side before transformations in a generic
form is (

r1n
r2n

)

,

and the transformed one is (
r1n
r2n+1

)

(17)

The determinant of the leading matrix is n(n2 +2n+1)(n+1). The roots are
0 and −1. Taking into account l = 0, it means that the initial segment needs
to be from x−1 till x0.

Solving first system from the sequence (11) means solving the recurrence
(16) with the zero right-hand side for terms from −1 till 0. It gives

g0 =

(
c0,1x

−1 + c0,2 +O(x)
c0,3x

−1 + c0,3 +O(x)

)

Here and below O(xk) means the tail of the formal series, i.e. the terms of the
power greater than or equal to k.

Compute the operator needed for right-hand side of the second system
from the sequence (11):

L1(y(x)) =

(
y1(x) + 7xDy1(x) + 3x2D2y1(x)− y2(x)− 2xDy2(x)

xy2(x)

)

(18)

Taking into account (17), we compute that the initial terms of the right-hand
side before transformations should be up to x1. Then from (18) we conclude
that the initial terms of g0 should be up to x1 as well. Extending g0 gives

g0 =

(
c0,1x

−1 + c0,2 + 1
4c0,3x+O(x2)

c0,3x
−1 + c0,3 + 1

2xc0,3 +O(x2)

)

That leads to the transformed right-hand side being equal to
(
−c0,3x

−1 − c0,2 + c0,3 − 1
2c0,3x+O(x2)

−c0,3x
−1 − c0,3 − 1

2c0,3x+O(x2)

)

(19)

Solving the recurrence (16) with respect to the right-hand side (19) gives

g1 =

(
c1,1x

−1 + c1,2 +O(x)
c1,3x

−1 + c1,3 +O(x)

)

.

and due to resolving appearing constraints changes preceding solution com-
ponent

g0 =

(
c0,1x

−1 +O(x2)
0 +O(x2)

)

Compute the next operator needed for the right-hand side of the third
system from the sequence (11):
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L2(y(x)) =

(
2y1(x) + 3xDy1(x)− y2(x)

0

)

(20)

Taking into account (17), (18), and (20) we compute that the initial terms
both of g0 and of g1 should be up to x1. g0 is already in the needed form and
extending g1 gives

g1 =

(
c1,1x

−1 + c1,2 + 1
4c1,3x+O(x2)

c1,3x
−1 + c1,3 + 1

2xc1,3 +O(x2)

)

That leads to the transformed right-hand side being equal to

(
−c1,3x

−1 − c1,2 + c1,3 − 1
2c1,3x+O(x2)

−c1,3x
−1 − c1,3 − 1

2c1,3x+O(x2)

)

(21)

Solving the recurrence (16) with respect to the right-hand side (21) changes
preceding component g0 to be zero due to resolving appearing constraints.
It means that all solutions components are already found and no proper g2

exists.
Combining all the above we find the solution of (15)

y =

(
x−1/2(ln(x) ∗ (c1x

−1 +O(x2)) + c4x
−1 + c2 + 1

4c3x+O(x2))

x−1/2(c3x
−1 + c3 + 1

2xc3 +O(x2))

)

7 Implementation and experiments

The algorithm is implemented in Maple on top of the package
LinearFunctionalSystems, which is implementing EG′-algorithm and some
algorithms for finding closed-form solutions of linear functional systems with
polynomial coefficients. The algorithm is implemented as the function that
returns the regular solutions of the specified linear differential system of equa-
tions with polynomial coefficients with involved Laurent series represented as
their initial segments. The number of the initial terms are determined auto-
matically to ensure that the rest terms of the series can be directly computed
(in turn) using associated recurrences (i.e. the leading matrix is invertible for
all the rest terms). In order to extend initial segments of the Laurent series of
the found regular solution the other function is provided, which returns the
regular solution with the segments extended to the specified degree.

For experiments we use as well a Maple implementation of the algorithm
from [5] (presented in the package ISOLDE).

We compared the two programs on two types of sets of generated systems.
For the first type of the sets we generated randomly the systems of the

form Y ′(x) = A(x)Y (x), where A(x) is the matrix of rational functions, and
the entries on each row of the matrix have the same denominator. For each
n ∈ {4, 7, 10}, three sets of 20 random n × n matrices were generated. For
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each of the sets, numerators and denominators of the entries of the generated
matrices had degrees bounded by d ∈ {4, 8, 12} respectively. More precisely
the following Maple instruction was used as a generator:

randpoly(x, terms=rand(1..floor(d/2))(), expons=rand(0..d))

Additionally, the probability of non-zero entries in the matrix was set to 3/5.
The entire collection of matrices (as well as for the other comparisons re-
ported here) is available at
the URL http://www.ccas.ru/~zavar/abrsa/regsol/comparisons.html.
The results for the first type of the sets are presented in Table 1, where the
rows represent the degree bound on the coefficients, and the columns repre-
sent the size of the system. Each cell of the table corresponds one series of
20 systems and contains 2 fractions: the first is the number of systems solved
faster by the program from ISOLDE over the number of systems solved faster
by EG′-based one, and the second is the total CPU time (in seconds) taken
by the program from ISOLDE for the 20 systems over the CPU time taken by
EG′-based one. Additionally two numbers are indicated: the first one shows
the number of solutions of the systems in the set containing logarithms and
the second one shows the number of trivial (zero) solutions of the systems in
the set.

Table 1. Results for the first type of the sets

4 7 10

4 3/17 1/19 1/19
13.642/11.279 747.451/187.077 1060.768/399.171

8–0 10–0 13–0
8 2/18 2/18 0/20

17.405/10.362 276.639/312.407 627.547/164.203
4–0 9–1 13–0

12 4/16 2/18 1/19
15.609/13.251 211.671/389.345 1371.342/184.999

4–2 8–2 10–0

For the second type of the sets we constructed the systems in the follow-
ing way. First for each pair l and d, where l ∈ {2, 4, 6} and d ∈ {3, 5, 7},
we constructed 20 random scalar recurrences of the order bounded by l and
coefficients of the degrees bounded by d. More precisely the following Maple
instruction was used as a generator:

(n-rand(-5..5)())^2*E^l+randpoly(E, terms=rand(1..l)(),

expons=rand(l), coeffs=(()->randpoly(n, coeffs=rand(-5..5),

terms=rand(1..floor(d/3)+1)(), expons=rand(0..d))))

Each scalar recurrence can be treated as being induced by scalar differential
equation. So, second, for the constructed scalar recurrences we constructed
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corresponding scalar differential equations. Third we constructed first order
differential systems corresponding to these equations. And as the last step
we transformed the systems in accordance with changing function variables
induced by randomly generated transformation matrices with integer entries
and the probability of non-zero entries in the matrices set to 1/2 (only in-
vertible matrices were selected). The results for the second type of the sets
are presented in Table 2, where the rows represent the order bound on the
source scalar recurrence, and the columns represent the degree bound on its
coefficients. Cells contain the same information as in the first type, except
for the numbers of logarithmic and trivial solutions since all solutions for the
second type are non-trivial and logarithmic.

Table 2. Results for the second type of the sets

3 5 7

2 0/20 1/19 5/15
9.640/4.376 22.625/25.594 64.592/185.720

4 0/20 2/18 7/13
15.811/7.390 30.248/46.553 71.404/122.832

6 0/20 1/19 9/11
21.567/8.920 45.389/23.609 125.859/517.655

As it is mentioned above, since the programs use different approaches, their
weak and strong features are displayed on different systems. As we can see for
the first type of the sets most systems were solved faster by the EG′-based
program, however for some sets the total CPU time was less for ISOLDE since
a few systems in these sets were solved much faster by this program. For the
second type of the sets we can see both the same effect and the growth of the
number of the systems solved faster by ISOLDE with the growth of the degree
bound of the coefficients of the source scalar recurrences. So it seems like a
difficult task to implement a poly-algorithm that would detect automatically
the most efficient method to use for a particular input.

We conclude with a final remark: while EG′-based program has improved
its efficiency after the recent update of some modules, the package ISOLDE has
not been updated for quite a long time, so we do not exclude the possibility
that further improvements in the package could lead to some changes in the
table. It nevertheless reflects accurately the current status of those programs.
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A Newton method for computing the power series solution of a nonlinear ODE
of order 1 satisfying regular initial conditions was introduced in [2, 3]. The
basic step of the algorithm is to double the number of known coefficients of
the power series solution using the linearisation of the equation at the known
approximation. We generalized this method to systems of partial differential
equations in [4]. The method works for so called regular differential systems
and any polynomially nonlinear differential systems can be rewritten in terms
of those [1, 5].

The Newton methods mentionned above lend themselves to modular com-
putations. Our goal now is to recover the exact power series solution from
the modular computations with a Hensel lifting. As a first stage we explore
the case of first order ordinary differential equations. We first obtain a bound
on the coefficients. We expect that, along the lines of the analytic results by
Riquier [6], we can generalize that approach to PDE systems.

The focus of our talk is the problem of computing the power series solution
ȳ ∈ Q[[t]] of y′ = f(t, y), y(0) = y0 where f ∈ Z[t, y], y0 ∈ Z, up to a given
order n, that is computing ȳ mod tn.

Note that under our hypothesis the coefficients of tk in ȳ can be written
ȳk

k! where ȳk belongs to Z. We show, using classical majorant technique and
Cauchy inequalities, that

| ȳk

k!
| ≤ 3

(
1− exp( −1

2M )
)n−1 for 0 < k < n
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where M = sup{|f(t, y+ y0)| : |t| ≤ 1, |y| ≤ 1}. This bound depends on f and
n only and M can be replaced by any majorant of the supremum.

Let p be a prime number greater than n so that the denominators of the
n first coefficients of ȳ do not vanish. A power series ỹ ∈ Q[[t]] is such that
ỹ ≡ ȳ mod (tn, pk), for some n, k ∈ N iff ỹ′ ≡ f(t, ỹ) mod (tn−1, pk) and
ỹ0 ≡ ȳ0 mod pk

EITHER :
If ỹ ≡ ȳ mod (tn, pk) then after the application of the operator that is

obtained by Taylor formula, ỹ ≡ ȳ mod (tn, p2k).
The first step of the algorithm is to compute ỹ s.t. ỹ ≡ ȳ mod (tn, p) by

Newton’s method [3], but with all computations done modulo p. We then lift
that modular solution by iterating the above operator N times where

p2N

>
6(n− 1)!

(
1− exp( −1

2M )
)n−1 .

Here again, operations are done modulo p. We then have ỹ ≡ ȳ mod (tn).
OR:
The first step of the algorithm is to compute ỹ s.t. ỹ ≡ ȳ mod (tn, p)

by Newton’s method [3], but with all computations done modulo p. We then
lift that modular solution by iterating an operator that is obtained by Taylor
formula. If ỹ ≡ ȳ mod (tn, pk) then after the application of the operator ỹ ≡ ȳ
mod (tn, p2k). We stop after N iterations, where

p2N

>
6(n− 1)!

(
1− exp( −1

2M )
)n−1 .

We then have ỹ ≡ ȳ mod (tn).
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Summary. We consider the hamiltonian system of linear differential equations with
periodic coefficients. Using the method based on the existence of periodic solutions
on the boundaries between the domains of stability and instability we have developed
the algorithm for computation of the stability boundaries. The algorithm has been
realized for the fourth order hamiltonian system arising in the restricted many-body
problems. The stability boundaries have been found in the form of powers series,
accurate to the fifth order in a small parameter. All the computations are done with
the computer algebra system Mathematica.

1 Introduction

Let us consider the linear hamiltonian system of differential equations

dx

dt
= JH(t)x, (1)

where xT = (x1, x2, . . . , x2n) ia a 2n-dimensional vector whose components xk

and xn+k are the canonically conjugated variables, J =

(
0 En

−En 0

)

and En

is the n× n identity matrix, H(t) is the real-valued 2n× 2n matrix function
which can be represented in the form of the converging series

H(t) = H0 + εH1(t) + ε2H2(t) + . . . , (2)

where ε is a small parameter. The matrix functions Hk(t) (k = 1, 2, . . .) in (2)
are continuous and periodic with a period T , while H0 is a constant matrix.
Besides, H0 and Hk(t) can depend on some parameters. Equations of the form
(1) describe dynamical systems with intrinsic periodicity and appear in many
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branches of science and engineering (see, for example, [1]). Our interest to the
system (1) arises because such a system occurs in studying of the stability of
equilibrium solutions in the elliptic restricted many-body problems [2,3]. And
we are interested in determination of the stability boundaries for the system
(1) in the space of parameters.

According to the general theory of differential equations with periodic
coefficients [1], the behaviour of solutions of the system (1) is determined
by its characteristic exponents which are continuous functions of ε. And the
system may be stable only if none of the eigenvalues of the matrix JH0 has
a positive real part. However, the system being stable for ε = 0 may become
unstable even for very small values of ε > 0. So, in order to analyze the
stability of system (1) we have to calculate its characteristic exponents for
ε > 0. Using the method of a small parameter we can find them in the form
of power series in ε as it was done in [2,4], for example. But if we are looking
for the stability boundaries the method of infinite determinant turns out to
be more effective [5,6]. The main aim of the present paper is to develop the
corresponding algorithm of calculations and to realize it for the hamiltonian
system of the fourth order. It should be emphasized that such calculations may
be reasonably done only with a computer software. Here all the calculations
are done with the computer algebra system Mathematica [7].

2 Properties of the characteristic multipliers

The hamiltonian systems of linear differential equations with periodic coeffi-
cients and their general properties have been studied quite well (see [1], for
example). It is known that their characteristic multipliers obey the following

Rule 1. If ρ is a characteristic multiplier of the system (1) then ρ−1, ρ, ρ−1

are its characteristic multipliers as well, where ρ is a complex-conjugate value
for ρ.

The Rule 1 restricts possible values of the characteristic multipliers of the
hamiltonian systems. For instance, characteristic multipliers of the second
order hamiltonian system (n = 1) may be either both real-valued and ρ2 = 1

ρ1

or both complex-valued with unit magnitude |ρ1| = |ρ2| = 1 and ρ2 = ρ1.
In the first case the system (1) is unstable because one of its characteristic
exponents has a positive real part. In the second case both characteristic
exponents of the system are pure imaginary and it is stable. The cases ρ1 =
ρ2 = 1 and ρ1 = ρ2 = −1 correspond to the boundary between stable and
unstable behaviour and are characterized by the existence of periodic solutions
of the system (1) with periods T and 2T respectively. Thus, we can seek the
stability boundary of the second order hamiltonian system using the condition
of the existence of periodic solutions. This approach was successfully realized
for the Hill’s equation in [8].
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The fourth order hamiltonian system (n = 2) has four characteristic mul-
tipliers which must obey the Rule 1 as well. Hence, the system may be stable
only if all its characteristic multipliers are complex-valued with unit magni-
tude |ρ1| = |ρ2| = |ρ3| = |ρ4| = 1. Geometrically these characteristic mul-
tipliers are situated on the unit circle in the complex plane, symmetrically
in pairs with respect to the real axis (see Fig. 1a). If one of them leaves the
circle then the rest three characteristic multipliers must leave the circle too
because in the opposite case the Rule 1 will be broken. Moreover, the Rule 1
imposes restrictions on possible motion of the characteristic multipliers in the
complex plane. One possibility is shown on Fig. 1b, when two characteristic
multipliers being in the same semi-plane move toward each other on the circle
until their coincidence and then start to move away of the circle along radial
directions. It means that the system becomes unstable because magnitudes of
two characteristic multipliers becomes larger that 1. If such a case is realized
then the system (1) has no periodic solutions and we have to calculate its
characteristic multipliers explicitly in order to find the stability boundaries.
There is also another possibility when two characteristic multipliers moving
on the circle toward each other coincide in the point ρ = −1 and then con-
tinue their motion along the real axis (see Fig 2). Similar situation can occur
if two characteristic multipliers coincide in the point ρ = 1. In both cases the
other two characteristic multipliers are situated on the unit circle, symmetri-
cally with respect to the real axis. Again the cases ρ = ±1 correspond to the
boundary between stable and unstable behaviour of the system (1), similarly
as it is in the case of the second order hamiltonian system. The interesting
and significant result from this analysis is that for ρ = ±1 the system (1)
has periodic solutions of period T and 2T respectively and this property may
be used for determination of the boundaries between the domains of stability
and instability in the space of parameters.

1-1

aL
1-1

bL
Fig. 1. Possible motion of the characteristic multipliers in the complex plane.
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1-1

aL
1-1

bL
Fig. 2. Two characteristic multipliers go on the real axis.

3 Algorithm of the calculations

Let us consider the hamiltonian system (1) of the fourth order with the matrix
function

H(t) =







1+b+4ε cos t
1+ε cos t 0 0 −2

0 − b
1+ε cos t 0 0

0 0 1 0
−2 0 0 1






, (3)

where b, ε are some positive parameters. Such a system arises in studying
the stability of equilibrium solutions in the elliptic restricted problem of four
bodies [2]. The matrix function (3) is periodic with the period T = 2π and
may be represented in the form (2) where

H0 =







1 + b 0 0 −2
0 −b 0 0
0 0 1 0
−2 0 0 1






, Hk(t) = (− cos t)k







−3 + b 0 0 0
0 −b 0 0
0 0 0 0
0 0 0 0







and the corresponding series converges in the domain |ε| < 1 for any t. The
eigenvalues of the matrix JH0 are easily found and can be represented as
λ1,2 = ±iσ1, λ3,4 = ±iσ2 where

σ1,2 =

(

1±
√

1− 12b+ 4b2

2

)1/2

.

They are distinct pure imaginary numbers if parameter b satisfy the following
inequalities

0 < b <
1

4
(6−

√
32) or

1

4
(6 +

√
32) < b < 3.

In the case we are interested in parameter b belongs to the first interval. The
corresponding intervals for σ1,2 are



3 Algorithm of the calculations 35

1√
2
< σ1 < 1, 0 < σ2 <

1√
2
.

The analysis above shows that the domain of instability can arise only in
the vicinity of the point σ2 = 1

2 when two characteristic multipliers ρ3,4 =
exp(±2πσ2i) = −1. The corresponding value of b is

b =
1

4
(6−

√
33). (4)

Hence, the boundaries between the domains of stability and instability in the
b− ε plane are some curves b = b(ε) which are characterized by the presence
of periodic solutions with the period 2T = 4π and cross the b-axis in the point
(4).

In order to find the stability boundaries let us rewrite the system (1) with
matrix (3) in the form of two linear second order differential equations

{
(1 + ε cos t)(ẍ1 − 2ẋ2) + (−3 + b)x1 = 0
(1 + ε cos t)(ẍ2 + 2ẋ1)− b x2 = 0

(5)

where dot means the derivative d
dt . Now we can attempt to seek a solution of

the system (5) in the form of Fourier series

x1 = p0 +
∞∑

k=1

(pk cos(
k

2
t) + qk sin(

k

2
t)),

x2 = α0 +
∞∑

k=1

(αk cos(
k

2
t) + βk sin(

k

2
t)). (6)

On substituting (6) into equations (5) and equating coefficients of cos( k
2 t)

and sin(k
2 t) to zero we obtain the following infinite sequence of equations

(−b+
13

4
+
ε

8
) p1 + (1 +

ε

2
) β1 +

9ε

8
p3 +

3ε

2
β3 = 0,

(−1 +
ε

2
) p1 + (−b− 1

4
+
ε

8
) β1 −

3ε

2
p3 −

9ε

8
β3 = 0,

... (7)

ε

8
(3− 2k)2p2k−3 +

ε

2
(−3 + 2k)β2k−3 + (−b+

13

4
− k + k2) p2k−1+

+(−1 + 2k) β2k−1 +
ε

8
(1 + 2k)2 p2k+1 +

ε

2
(1 + 2k) β2k+1 = 0,

ε

2
(−3 + 2k)p2k−3 +

ε

8
(−3 + 2k)2β2k−3 + (1− 2k) p2k−1+
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+(−b− 1

4
+ k − k2) β2k−1 +

ε

2
(1 + 2k) p2k+1 +

ε

8
(1 + 2k)2 β2k+1 = 0, . . .

(−b+
13

4
− ε

8
) q1 + (−1 +

ε

2
) α1 +

9ε

8
q3 −

3ε

2
α3 = 0,

(1 +
ε

2
) q1 − (b+

1

4
+
ε

8
) α1 +

3ε

2
q3 −

9ε

8
α3 = 0,

... (8)

ε

8
(3− 2k)2q2k−3 −

ε

2
(−3 + 2k)α2k−3 + (−b+

13

4
− k + k2) q2k−1+

+(1− 2k) α2k−1 +
ε

8
(1 + 2k)2 q2k+1 −

ε

2
(1 + 2k) α2k+1 = 0,

ε

2
(−3 + 2k)q2k−3 −

ε

8
(−3 + 2k)2α2k−3 + (−1 + 2k) q2k−1+

+(−b− 1

4
+ k − k2) α2k−1 +

ε

2
(1 + 2k) q2k+1 −

ε

8
(1 + 2k)2 α2k+1 = 0, . . .

It can be seen that in fact there are two infinite subsequences of linear
homogeneous equations (7)-(8). Equations (7) are for the odd coefficients p1,
p3, ... , p2k−1 and β1, ... , β2k−1, while equations (8) determine coefficients
q1, q3, ... , q2k−1 and α1, ... , α2k−1. Extracting coefficients of cos(k t) and
sin(k t) we can easily obtain two similar subsequences of equations for the
even coefficients p2k, q2k, α2k, β2k. For a solution to exist, the corresponding
determinants of infinite systems (7), (8) must vanish, thus determining the
stability boundaries in the b−ε plane. These boundaries obviously must reduce
to the point b = (6−

√
33)/4 when ε→ 0.

Of course, it’s impossible to calculate a determinant of the infinite matrix.
Hence, in order to find the stability boundaries b = b(ε) we should truncate
the infinite subsequences of equations (7)-(8) after the k-th term, where k is a
suitably large number. For k = 3, for example, the corresponding determinants
may be written as

D3 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−b+ 13
4 ± ε

8 ±1 + ε
2

9ε
8 ± 3ε

2 0 0
∓1 + ε

2 −b− 1
4 ± ε

8 ∓ 3ε
2 − 9ε

8 0 0
ε
8 ± ε

2 −b+ 21
4 ±3 25ε

8 ± 5ε
2

∓ ε
2 − ε

8 ∓3 −b− 9
4 ∓ 5ε

2 − 25ε
2

0 0 9ε
8 ± 3ε

2 −b+ 37
4 ±5

0 0 ∓ 3ε
2 − 9ε

8 ∓5 −b− 25
4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (9)

Equating determinants (9) to zero we obtain two algebraic equations giving
an approximation for b = b(ε). For sufficiently small ε we can represent the
function b = b(ε) in the vicinity of the point (4) as a converging power series

b =
6−
√

33

4
+ b1ε+ b2ε

2 + . . . . (10)
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Substituting (10) into (9) and equating coefficients of εk to zero we get the
system of algebraic equations determining the coefficients bk (k = 1, 2, . . .).
Solving this system we have obtained

b =
6−
√

33

4
± ε

8
+

23ε2

128
√

33
∓ 105ε3

2048
− 148859ε4

1081344
√

33
∓ 58335ε5

5767168
+ . . . , (11)

where the error term is O(ε6). It should be emphasized that increasing the
order of the determinant (9) we’ll be able to find the following coefficients
b6, b7, . . . in the expansion (10). But coefficients b1, b2, . . . , b5 found in (11)
will be the same. Of course, exact expressions for the boundary b = b(ε) are
obtained when k → ∞.

4 Conclusions

Using the method based on the existence of periodic solutions on the bound-
aries between the domains of stability and instability in the space of pa-
rameters we have developed the algorithm for computation of the stability
boundaries in the hamiltonian systems of linear differential equations with
periodic coefficients. The algorithm has been realized in the case of the fourth
order hamiltonian system arising in the restricted many-body problems. The
obtained results are in a good agreement with similar results of [2] where the
calculations are done only in linear approximation on a small parameter and
another method is used.

Acknowledgements
The author is very grateful to Prof. Evgeni A. Grebenikov for useful advices

and fruitful discussions of the stability problem.

References

[1] V.A.Yakubovich and V.M.Starzhinskii. Linear differential equations
with periodic coefficients, John Wiley, New York, 1975.

[2] E.A.Grebenikov, A.N.Prokopenya. Studying stability of the equilibrium
solutions in the restricted Newton’s problem of four bodies, Bul. Academiei
de Stiinte a Republicii Moldova. Matematica, No. 2(42), 28-36 (2003).

[3] A.N.Prokopenya. Studying stability of the equilibrium solutions in the
restricted many-body problems. In: Challenging the Boundaries of Symbolic
Computation - Proc. 5th International Mathematica Symposium (London, 7-
11 July 2003), P.Mitic, Ph.Ramsden, J.Carne (Eds.), Imperial College Press,
London (2003), 105-112 .

[4] A.N.Prokopenya. Calculation of the characteristic exponents for a Hill’s
equation. In: Proc. 8th Rhine workshop on Computer Algebra (Mannheim,
21-22 March, 2002), H.Kredel, W.K.Seiler (Eds.), University of Mannheim
(2002), 275-278.



38 A.N.Prokopenya

[5] D.R.Merkin. Introduction to the Theory of Stability, Springer-Verlag,
1997.

[6] R.Grimshaw. Nonlinear Ordinary Differential Equations, CRC Press,
2000.

[7] S.Wolfram. The Mathematica book, Cambridge University Press, 1999.
[8] E.A.Grebenikov, A.N.Prokopenya. Determination of the boundaries be-

tween the domains of stability and instability for the Hill’s equation, Nonlinear
Oscillations 6, No. 1, 42-51 (2003).



Finite presentations of spherical categories

Bruce W. Westbury

bww@maths.warwick.ac.uk

Mathematics Institute
University of Warwick
Coventry CV4 7AL

Summary. The category of representations of a group or Lie algebra has both a
tensor product and a dual. These functors satisfy relations which are then taken as
defining tensor categories with extra structure. Here we are concerned with pivotal
and spherical categories.

Our main aim is a construction of free spherical categories. The usual approach is
to use isotopy classes of planar diagrams. Our construction is purely combinatorial.
The advantage of this approach is that we replace isotopy classes by a combina-
torial notion of equivalence. Our construction retains the features of the diagram
construction and in addition is suitable for implementation on a computer algebra
system.

1 Introduction

The purpose of this paper is to develop a combinatorial theory of finitely
presented spherical categories in a form amenable to implementation in a
symbolic algebra package. The definition of a spherical category is given in
[BW99, Definition 2.5]. Specifically a spherical category is a pivotal category in
which the two different definitions of a trace map agree; and a pivotal category
is a tensor category in which objects have duals, see [FY89, Definition 1.3].

The examples of spherical categories which are of interest are constructed
as follows. Let V be a finite dimensional self-dual representation of a simple
Lie algebra, or quantum group, or more generally of a Hopf algebra, H . Then
the category of invariant tensors has objects the natural numbers and the
vector spaces of homomorphisms are given by

Hom(n,m) = HomH(⊗nV,⊗mV )

This category is a pivotal category and if H is a universal enveloping algebra
of a semi-simple Lie algebra or a quantum group then it is also spherical.

There is a general problem which is to take one of these examples and de-
scribe it as a finitely presented spherical category. The first author to consider
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this problem was Cvitanović who systematically studied all the simple Lie al-
gebras from this point of view in [Cvi84], [Cvi77] and [Cvi]. Some examples
which have been studied in detail are:

• All representations of SL(2); [CFS95] and [KL94].
• Vector representations of special linear groups, [Jon87].
• Vector representations of orthogonal and symplectic groups, [BW89].
• Fundamental representations of the rank two simple Lie algebras, [Kup96].
• Adjoint representations of SL(n), [BD02].
• Fundamental representations of SL(4), [Kim].

These papers all describe the category of invariant tensors using graphs
(usually trivalent) drawn in a rectangle. This raises the problem of finding
algorithms which would allow us to study these and similar categories using
a symbolic algebra package. This paper proposes a solution to this problem.
This approach is based on a description of oriented surfaces which first appears
in [Bra21] and which is developed in [Tut79].

The original motivation for this work comes from the Deligne conjecture on
the exceptional series of Lie algebras. The conjecture and supporting evidence
is given in [Del96], [DdM96] and [CdM96]. The conjecture is that there is a
tensor category which can be specialised to give the category of invariant
tensors of the adjoint representation of any Lie algebra in the exceptional
series. Our approach to this conjecture is to attempt to define this category
as a finitely presented spherical category. In [Wes03a] we have shown that
certain 6j-symbols can be written in a way consistent with this conjecture.
This can be taken as giving a finitely presented category which has some but
not all of the properties required by the conjecture. The results of [Wes03b]
can also be taken as giving relations in this category.

2 Combinatorial surfaces

The type of oriented surfaces we are considering are given by a finite amount
of combinatorial data. First we consider surfaces with empty boundary.

Definition 1. An oriented surface is the disjoint union of a finite set of ori-
ented polygons with the edges identified in pairs by orientation reversing home-
omorphisms.

The edges of the polygons can be considered as a finite graph and for each
vertex v the embedding defines a cyclic ordering of the set of edges incident at
the vertex v by moving around the vertex in a clockwise direction. Conversely
if we are given a finite graph together with a cyclic ordering of the set of
edges incident at v for each vertex v then we can recover the oriented surface.
Another description of this is to consider the set F consisting of pairs (v, e)
where v is a vertex and e is an edge incident at v. These pairs have been
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called flags, darts, and half-edges. Then F has two operations. Imagine each
edge of the graph as a rod and that we can put a bead on each rod in one of
two positions, one at each end of the rod. Then F is the set of all positions
for a bead. The first operation is i : F → F which moves the bead to the
other end of the rod. This is an involution. The other operation c : F → F
moves the bead to the next rod in a clockwise sense around the vertex. This
is a bijection. Given the set F , the involution i, and the bijection c we can
recover the graph and the cyclic orderings and hence the surface. The surface
with the reverse orientation is given by taking (F, i, c−1).

There is a dual picture where we take a pair to be a polygon and an edge
of the polygon. This can be regarded as a triangle whose three vertices are
the two vertices of the edge and the centre of the polygon. The action of the
involution is to rotate through half a revolution about the midpoint of the
edge to give the triangle on the other side of the edge. The bijection acts by
rotating clockwise about the centre of the polygon.

This gives a map from connected oriented surfaces to transitive permuta-
tion representations of the free product Z2 ∗Z; and so a map from connected
oriented surfaces with a basepoint to finite index subgroups of the free product
Z2 ∗ Z.

3 Cyclic graphs

3.1 Closed cyclic graphs

Here we give the definition of a cyclic graph motivated by the discussion in
the introduction.

Definition 2. A cyclic graph is a finite set F together with an involution
i : F → F and a bijection c : F → F .

Definition 3. The components of a cyclic graph F are the orbits of the group
generated by i and c.

A cyclic graph is connected if it has one component. Each component is a
cyclic subgraph and F is the disjoint union of these cyclic subgraphs.

The vertices of the oriented surface are the orbits of c, the edges are the
orbits of i, and the faces are the orbits of ic. Hence by counting the numbers
of these orbits we can compute the genus of the oriented surface. Since we can
also compute the genus of each connected component we can determine the
topological type of the surface.

Definition 4. Let Λ be a finite set with an involution ∗. Then a labelling of
a cyclic graph F is a function λ : F → Λ such that iλ = λ∗.
Definition 5. Let F, i, c, λ be a labelled cyclic graph. Then the labelled cyclic
graph with the reverse orientation is the labelled cyclic graph F , i, c, λ defined
by

F = F i = i c = c−1 λ = λ ∗ .
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3.2 Cyclic graphs with boundary

In this section we extend the definition of the previous section to allow cyclic
graphs to have a boundary.

Definition 6. A cyclic graph consists of a finite set F and a subset ∂F to-
gether with bijections

i : F → F c : F\∂F → F\∂F b : ∂F → ∂F

Definition 7. For a cyclic graph F let ∼ be the relation on F given by f ∼ f ′

if f ′ = cn(f) or f ′ = bn(f) for some n ∈ Z or f ′ = i(f).

Then the relation ∼ is reflexive and symmetric so the transitive closure
is an equivalence relation. The equivalence classes are called the components
of F ; and F is connected if it has a single component. Each component is a
cyclic subgraph and F is the disjoint union of these cyclic subgraphs.

Definition 8. Let Λ be a (finite) set with an involution ∗. Then a labelling of
a cyclic graph F is a function λ : F → Λ such that iλ = λ∗.

Definition 9. Let F, ∂F, i, c, b, λ be a labelled cyclic graph. Then the la-
belled cyclic graph with the reverse orientation is the labelled cyclic graph
F , ∂F , i, c, b, λ defined by

F = F ∂F = ∂F i = i c = c−1 b = b λ = λ∗

These definitions extend the definitions of the previous section since this
is the special case ∂F = ∅.

3.3 Glueing

Definition 10. Define an equivalence relation on Λ by λ1 ∼ λ2 if and only if
λ1 = λ∗2. Let D be the set of equivalence classes and δ : Λ→ D the canonical
map.

Definition 11. A monomial is a function n : D → N. The sum of two mono-
mials is defined pointwise so that the set of monomials is the free commutative
monoid on the set D.

This means that we have indeterminates {δ(λ) : λ ∈ Λ} such that δ(λ1) =
δ(λ2) if and only if λ1 = λ∗2. Then the monomial n : D → N is usually written
as

µ =
∏

δ∈D

δn(δ)

Definition 12. A labelled boundary is a finite set X with a bijection b : X →
X and a function λ : X → Λ.
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The components are the orbits of the group generated by b; and a la-
belled boundary is connected if it has a single component. Each component
is a labelled boundary and a labelled boundary is the disjoint union of its
components.

Definition 13. If X, b, λ is a labelled boundary then the labelled boundary with
the reverse orientation is the labelled boundary X, b, λ defined by

X = X b = b−1 λ = λ∗

If F is a cyclic graph then ∂F is the labelled boundary ∂F, b|∂F , λ|∂F .
Let F, ∂F, i, c, b, λ be a labelled cyclic graph. Let B1 and B2 be labelled

boundaries given as subsets of ∂F . Let θ : B1 → B2 be an isomorphism of la-
belled boundaries. This means that θ is an orientation reversing isomorphism.
Note that we not require B1 and B2 to be disjoint. Then we can glue along
θ. This will give a labelled cyclic graph F (θ), ∂F (θ), i(θ), c(θ), b(θ), λ(θ) and
a monomial µ. The sets F (θ) and ∂F (θ) are defined by

F (θ) = F\(B ∪ B) ∂F (θ) = ∂F\(B ∪ B)

The maps c(θ), b(θ) and λ(θ) are defined by

c(θ) = c b(θ) = b|∂F (θ) λ(θ) = λ|F (θ)

It remains to define i(θ) and we also associate a monomial to the glueing data.

Definition 14. Given a labelled cyclic graph and glueing data θ : B → B
define a relation on B ∪ B by f ∼ g if g = i(f) or g = θ(f) or f = i(g) or
f = θ(g).

Then the transitive closure of this relation is an equivalence relation. Define
a loop to be an equivalence class which is closed under the action of i. Each
loop L is labelled by δ(L) ∈ D. Choose f ∈ L∪ θ(L) and put δ(L) = δ(λ(f)).
This is independent of the choice of f . Let L be the set of loops for the glueing
data and define a monomial µ by

µ =
∏

L∈L

δ(L)

This is the monomial for the glueing data θ : B → B.
Let S be an equivalence class which is not a loop. Then the set

{f ∈ s|i(f) /∈ S}

contains exactly two elements say f and f ′. Then define i(θ)(i(f)) = i(f ′) and
i(θ)(i(f ′)) = i(f). This defines i(θ)(f) for all f ∈ F such that f /∈ (B ∪ B)
and i(f) ∈ (B∪B). If f /∈ (B∪B) and i(f) /∈ (B∪B) then put i(θ)(f) = i(f).
This defines i(θ) and the cyclic graph.
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3.4 Cobordism

Then this glueing can be used to define a cobordism category. The objects of
the category are labelled boundaries. Let X and Y be labelled boundaries.
Then a morphism X → Y is a monomial and a cyclic graph F together with
two inclusions

θX : X → ∂F θY : Y → ∂F

Let F : X → Y and G : Y → Z be morphisms. Then the composite is
defined by first taking the disjoint union F ∪G. Then the inclusions θY : Y →
∂F and θY : Y → ∂G give an isomorphism of labelled boundaries θ : (Y F )→
(YG) This gives glueing data for the disjoint union F ∪G. Let µ be the sum of
the monomial for F , the monomial for G and the monomial associated to the
glueing data. Then glueing along this map gives a cyclic graph F ◦ G. Then
we have

∂(F ◦G) = (∂F\θF (Y )) ∪ (∂G\θG(Y ))

and so there is an inclusion

θF |X ∪ θG|Z : X ∪ Z → ∂(F ◦G)

The composition of the two morphisms is defined to be the monomial µ and
the cyclic graph F ◦G with this inclusion.

The identity morphism of an object X, bX , λX is the cyclic graph with

F = X ∪X ∂F = X ∪X b = bX ∪ bX λ = λX ∪ λX

Since F\∂F is empty there is no definition for c. The map i is the union of
the identity maps X → X and X → X . The identity map X ∪X → ∂F is an
isomorphism of objects which makes F into a morphism X → X .

Next we should check associativity. This is just the observation that two
disjoint glueings can be carried out in either order.

This category has more structure. This is a strict monoidal category with
tensor product given by disjoint union of cyclic graphs and addition of mono-
mials. The unit object is the empty labelled boundary with no monomial.

3.5 Surfaces

In this section we discuss the cobordism category given by taking the realisa-
tion of the cobordism category in the previous section.

Definition 15. A collar of order p is a cyclic graph isomorphic to the follow-
ing cyclic graph.

F = {x(k), y+(k), y−(k), z(k) : 0 ≤ k < p}
∂F = {x(k) : 0 ≤ k ≤ p− 1} (1)
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• The map i is defined by i : x(k) ←→ z(k) and i : y+(k) ←→ y−(k) for
0 ≤ k ≤ p− 1.

• The map c is defined by c : y+(k) 7−→ y−(k), c : y+(k) 7−→ z(k), c :
z(k) 7−→ y+(k)

• The map b is defined by b : x(k) 7−→ x(k+1) where k+1 is taken (mod p).

Then given a cyclic graph F with boundary then there is a unique way to
glue a collar to each boundary component. This gives a closed surface with a
polygon for each boundary component of F . If there is no edge of the surface
which occurs twice as an edge of a polygon then we can remove the interior
of each of these polygons and get a surface with boundary. If an edge does
appear twice as an edge of a polygon then we can still remove the interior of
each of these polygons but this will give not be a surface.

3.6 Spherical categories

Next we want to consider a more general notion of glueing. This involves
glueing not along whole boundary components but along intervals. The moti-
vation is that we want to construct a spherical category whose morphisms are
isotopy classes of graphs drawn in a rectangle. The composition of morphisms
is given by putting one rectangle on top of the other and the tensor product
is given by putting rectangles side by side.

Definition 16. A labelled oriented interval is a finite set X and a subset ∂X
partitioned into two disjoint subsets ∂X = ∂+X q ∂−X together with inverse
bijections

b+ : ∂X\∂+X → ∂X\∂−X and b− : ∂X\∂−X → ∂X\∂+X

and a function λ : X → Λ.

This implies that the finite sets ∂+X and ∂−X have the same number
of elements. A labelled interval with ∂X = ∅ is a labelled object where the
bijection b is taken to be b+.

The labelled oriented interval with reverse orientation is given by

X = X ∂+X = ∂−X ∂−X = ∂+X b+ = b− b− = b+ λ = λ∗

Define a relation on X by x ∼ y if y = b+(x) or y = b−(x). The transitive
closure of this relation is an equivalence relation and the equivalence classes
are the components of the interval. Each interval is the disjoint union of its
components.

Definition 17. Glueing data for an interval is a bijection θ from a subset
S ⊆ ∂+X to a subset T ⊆ ∂−X such that θλ = λ∗. Given glueing data we
glue along θ to get the interval Y with
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Y = X\T ∂+Y = ∂+X\S ∂−Y = ∂−X\T

The maps

b+ : ∂Y \∂+Y → ∂Y \∂−Y (2)

b− : ∂Y \∂−Y → ∂Y \∂+Y (3)

are defined by

b+(x) =

{
b+(x) ifx ∈ ∂X\∂+X
θ(x) ifx ∈ S (4)

b−(x) =

{
b−(x) ifx ∈ ∂X\∂−X
θ−1(x) ifx ∈ T (5)

and λY is just the restriction of λX .

Then we can define a cobordism category whose objects are labelled ori-
ented finite sets and whose morphisms are labelled oriented intervals.

Definition 18. An object is a finite set with a map to Λ. If A and B are
objects a morphism X : A→ B is a labelled oriented interval X together with
isomorphisms of objects A→ ∂+X and B → ∂−X.

Given a labelled oriented finite set S we construct the identity morphism
X by taking ∂+X = S, ∂−X = S and X = ∂X .

This is a tensor category under disjoint union.
Taking the reverse orientation is an anti-involution. There is a strict piv-

otal structure which takes a labelled oriented finite set U and constructs the
labelled oriented interval εU = X with

X = U q U, ∂+X = U, ∂−X = U, b+(u) = u, b−(u) = u, λ = λ q λ∗

This then gives the four morphisms εU ,εU , εU ,εU . This is then a strict spherical
category.

3.7 Spherical 2-categories

Labelled oriented intervals are the 1-morphisms of a strict 2-category. This
strict 2-category is modelled on the strict 2-category of surfaces with corners.
This 2-category is studied in [Law93],[BD95]. A closely related 2-category of
2-tangles is considered in [BL03].

Before constructing this 2-category we need to generalise the definition of
glueing data and glueing given in §3.3. This generalisation consists in replacing
the labelled boundaries B1 and B2 by labelled oriented intervals.

The 1-morphisms of this 2-category are the labelled oriented intervals.
Let X,Y : A → B be two 1-morphisms. Then a 2-morphism Σ : X → Y is
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given by a monomial together with the following data. First note that the two
inclusions

A ∪ B → X A ∪ B → Y

gives glueing data on the disjoint union X∪Y . If we then glue along this data
we get a labelled boundary (X ∪A∪B Y ). Then a 2-morphism Σ : X → Y is
a cyclic graph Σ together with an identification of the boundary, ∂Σ, with
(X ∪A∪B Y ).

Then to define the 2-category we are required to define a horizontal and
vertical composition of 2-morphisms. The vertical composition is defined es-
sentially as follows. Let Σ1 : X → Y and Σ2 : Y → Z be 2-morphisms. Then
the two inclusions of Y in Σ1∪Σ2 gives glueing data. Glueing along this data
gives the composite Σ1 ∪Y Σ2 : X → Y .

The horizontal composition is defined essentially as follows. Let
X1, Y1 : A → B and X2, Y2 : B → C be 1-morphisms and let Σ1 : X1 → Y1

and Σ2 : X2 → Y2 be 2-morphisms. Then we compose the 1-morphisms to
give

(X1 ∪B X2), (Y1 ∪B Y2) : A→ C

and then the horizontal composite is a 2-morphism

Σ1 ∪B Σ2 : (X1 ∪B X2)→ (Y1 ∪B Y2)

In both cases to define the composition we also need to take into account
the monomials and loops. In each case we define the monomial for the compos-
ite to be the sum of the monomials for the two initial 2-morphisms with the
monomial given by taking into account any loops that arise from the glueing.

Then this defines a strict 2-category. We omit the proof of this claim. The
conditions that need to be checked are of two types. One type consists in
the constructions of identity morphisms and the conditions associated with
these. The other type are associative and compatibility conditions for the
two compositions. The check that these conditions are satisfied amounts to
checking that two disjoint glueings can be carried out in either order.

This 2-category has additional structure. First it has a monoidal structure
given by the tensor product. Furthermore it is a monoidal 2-category with
duals (as defined in [BL03]).

At present there is no definition of a spherical 2-category but we suggest
that this example satisfies some further conditions which should be taken as
the definition.

4 Presentations

First we discuss finitely generated free spherical categories.

Definition 19. A star of valence k is a cylic graph isomorphic to the following
cyclic graph
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F = {x(k), y(k) : 0 ≤ k ≤ p− 1} ∂F = {x(k) : 0 ≤ k ≤ p− 1}

• The map i is defined by i : x(k)←→ y(k) for 0 ≤ k ≤ p− 1.
• The map c is defined by c : y(k) 7→ y(k+1) where k+1 is taken (mod p).
• The map b is defined by b : x(k) 7→ x(k+1) where k+1 is taken (mod p).

If F is a cyclic graph then a vertex is an orbit of the bijection c : F\∂F →
F\∂F . The valency is the order of the orbit. Each vertex v of valency k gives
a star S of valency k by taking S = v ∪ i(v) and ∂S = i(v).

Let S be a finite set of labelled stars. Then there is a category for which
a morphism is a morphism as above together a function from the vertices of
the cyclic graph to G and an isomorphism of labelled cyclic graphs between
the star at the vertex and the corresponding element of S. Then these are the
morphisms of a strict spherical category S(S). This category will be called
the free strict spherical category generated by S. The justification for this is
that it has the following universal property.

Theorem 1. Let S be any strict spherical category and let Φ : S → S be
any set map. Then there is a unique strict spherical functor S(S)→ S which
extends Φ.

The uniqueness is clear. In order to see this take the generators and for
each object the four morphisms given by the pivotal structure. Then we have
to show any morphism can be built from these using composition and tensor
product. Draw the graph in the rectangle such that any two critical points
have different heights. Here a critical point is either a maximum a minimum
or a vertex. Then reading the critical points in decreasing height gives an
expression for the diagram of the required form.

The main issue is to show that the functor is well-defined. This means that
any two such expressions give the same morphism. This uses the identities of a
spherical category. This can be proved using [FY92, Theorem 5.3] to construct
the free pivotal category. Denote this free pivotal category by P(S). Then
by the universal property of this category we have unique pivotal functors
P(S) → S(S) and P(S) → S. Then the theorem follows by observing that
there is a unique spherical functor S(S)→ S such that the functor P(S)→ S
is the composite

P(S)→ S(S)→ S
As an illustration of the difference between these; the free pivotal category on
a single self-dual generator is given in [FY89, Theorem 4.1.1] as the category of
crossing-free tangles whereas the construction we consider gives the diagram
category given in [FY89, Definition 4.1.2].

The examples which motivated this work are slightly different. In these
examples the set S of generators has the property that two elements are
isomorphic if and only if they have isomorphic boundary. Then we define
a morphism to be a morphism as above such that for vertex there exists an
isomorphism of labelled cyclic graphs between the star at the vertex and some



4 Presentations 49

element of S. The distinction is that in the first instance we had to specify
the isomorphism and this isomorphism was part of the data. In the second
instance the requirement is just that an isomorphism exists; if there are several
such isomorphisms then we are not required to specify any one in particular.

There is a common generalisation of both of these situations. For each
element of S we also specify a subgroup of the automorphism group of each
element. In the free case this subgroup is trivial and in our examples it is the
automorphism group. Now we read two morphisms as the same if there are
related by a specified automorphism at each vertex. The universal property
is now

Theorem 2. Let S be any strict spherical category and let Φ : S→ S be any
set map which respects the specified symmetries. Then there is a unique strict
spherical functor S(S)→ S which extends Φ.

4.1 Relations

Now that we have the notion of a free spherical category we introduce the
notion of a finitely presented linear spherical category. Let K be a commuta-
tive ring and form the free K-linear category on the free spherical category
S(S). Denote this strict spherical K-linear category by KS(S). Now define
a set of relations to be a set, R, of morphisms of this category. Then take the
tensor ideal generated by R and denote it by 〈R〉; this is the intersection of
all tensor ideals which contain R. Then the quotient category KS(S)/ 〈R〉 is
a strict spherical category with the following universal property. This is called
a finite presentation if S and R are both finite sets.

Let S be any strict spherical K-linear category and let Φ : S→ S be any
set map. Extend this to a strict spherical K-linear functor Φ : KS(S) → S.
If Φ(r) = 0 for all r ∈ R then Φ factors through a strict spherical K-linear
functor KS(S)/ 〈R〉 → S.

As is usual when working with finite presentations the most useful presen-
tations are the confluent presentations.

Instead of working with the Hom-sets we fix a closed boundary B and
consider the set of connected cyclic graphs, F ,with an isomorphism B → ∂F
and where the cyclic graph has a specified genus. Call this set V (B, g).

Definition 20. A reduction order is a partial order on V (B, g) with no in-
finite descending sequence and which is compatible with glueing. This means
that if we are given the same glueing data θ on f and on g and the result of
glueing is fθ and gθ then fθ < gθ.

Definition 21. Given a finite linear combination of labelled oriented surfaces

R =
∑

x∈X

kxrx

the support is the subset Supp(R) ⊂ X defined by
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Supp(R) = {x ∈ X |kx 6= 0}

Definition 22. A disc is a labelled oriented surface which is connected and
which has Euler characteristic one.

This is equivalent to saying that the geometric realisation has one boundary
component and is contractible.

Definition 23. A rewrite rule, W , has a left hand side, L, and a right hand
side, R. The left hand side is a labelled oriented disc with boundary. The
right hand side is a finite linear combination of labelled oriented discs with
boundary,

R =
∑

x∈X

kxRx

where kx ∈ K and Rx is a labelled oriented surface with an isomorphism of
objects ∂Rx → L for each x ∈ X. Furthermore Rx < L for all x ∈ Supp(R).

Then a reduction is an application of a rewrite rule. This means if a labelled
oriented surface S can be written as S = S ′ ∪ L where L is a left hand side
then we have glueing data which gives the finite linear combination of labelled
oriented surfaces ∑

x∈S

kxS
′ ∪ Rx

This is abbreviated to S → S ′ ∪R. Then we can define a reduction of a finite
linear combination of labelled oriented surfaces to be a reduction of one of
these labelled oriented surfaces.

∑

x∈X

kxSx → kx (S′ ∪ R) +
∑

y 6=x

kySy

This is abbreviated to S → R.
There is no difficulty in giving an algorithm for finding all possible reduc-

tions of a given surface. This is one of the main motivations for developing
these categories this way.

Then we introduce the transitive closure of the relation →. This means
that S ↘ R if there is a finite sequence S = S0S1 . . . Sn = S such that
Si−1 → Si for 1 ≤ i ≤ n. We also introduce the equivalence relation generated
by the relation →. This means that S ↔ R if there is a finite sequence
S = S0S1 . . . Sn = S such that Si−1 → Si or Si−1 ← Si for 1 ≤ i ≤ n.

Once we have this set-up we can define confluence, local confluence and
the Church-Rosser properties and show they are all equivalent by following
[Sim94, Chapter 2]. Therefore we can simply refer to a set of generators,
reduction ordering and relations as confluent.

The point of local confluence is that if we are given a finite presentation
then there is an algorithm for deciding if the presentation is confluent. This
just involves finding overlaps and checking local confluence for each overlap.
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This is a finite calculation as there can only be finitely many overlaps; and
there is an algorithm for finding all these overlaps.

If a presentation is not confluent then we can attempt to complete it to
a confluent presentation using the Knuth-Bendix algorithm. This procedure
may not be well-defined if the reduction order is a partial order and not a
total order.
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This is a joint project with Arjeh M. Cohen, Scott H. Murray and D. E. Taylor.
We design and implement algorithms for computation with groups of Lie type
in the software package Magma. The goal is to perform computations with
parametrised group elements.

Algorithms for computing with elements of untwisted groups of Lie type
are known and implemented in Magma [2]. (Cohen, Murray, Taylor [1]; Haller
[3]; Riebeek [4])

The twisted groups of Lie type are fixed point subgroups in untwisted
groups of Lie type. The possible twists for a given field extension and group
type are classified by Galois cohomology. We report on current work to make
Galois cohomology effective.

Let G be a simple linear algebraic group defined over the field k. One
step in the process of computing the Galois cohomology of G is to extend
1-cocycles on a factor group A/B to 1-cocycles on A, where A is the group of
algebraic automorphisms of G and B the connected component of A. We will
discuss an algorithm to solve this problem.

Galois cohomology can also be used to compute all maximal tori of G.
For finite k, the tori are computed as subgroups Tγw of G(K)γw, where γ is
the generator of Gal(K : k) and w is conjugation by an element normalising
the split maximal torus T of G(K). Using Lang’s theorem the tori can be
conjugated from G(K)γw back into the original group G(k).
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The groups of Lie type are among the most important structures in modern
mathematics. Examples of such groups include reductive Lie groups, reduc-
tive algebraic groups, and finite groups of Lie type (which include most of the
finite simple groups). Many problems in the representation theory of groups
of Lie type have been solved using computers (for example, by the CHEVIE
group). In this talk, I discuss descriptions of these groups (via the Steinberg
presentation or highest weight representations) that are useful for computa-
tion. I also give methods for dealing with the twisted groups using Galois
cohomology and Lang’s theorem.

This talk describes joint work with Arjeh Cohen, Sergei Haller, and Don
Taylor.
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1 Short Abstract

One of the products of the long running CoCoA project specialised in Computa-
tions in Commutative Algebra is a freely available interactive system offering
good implementations of many algorithms in that area. This program (cur-
rently CoCoA 4.3) has been, and still is, highly successful; indeed it has grown
far beyond what was foreseen when its foundations were laid. The similarly
specialized systems Macaulay 2 and Singular have their own special strengths.

CoCoA 5 is an important new phase in the project: the program is being
completely rewritten in C++. This obviates various limitations innate in the
earlier design (written in C). CoCoA 5 will be available in three guises: an
interactive system, a C++ library, and a server (using an OpenMath-like
interface). Ease of use is a high priority for all three forms. Currently there is
an “alpha” release of the library.

The new library already offers facilities for computing Gröbner bases be-
yond those present in version 4.3: e.g. more coefficient types, and better ex-
ecution speed. Version 4.3 also boasts a range of other skills including poly-
nomial factorization, exact linear algebra, Hilbert functions, and computing
with zero-dimensional schemes. CoCoA 5 will gradually grow to cover each of
these skills, and ultimately extend the repertoire.

Unlike general purpose symbolic computation systems CoCoA does not offer
facilities for calculus or any other area not closely related to commutative
polynomial algebra. The CoCoA project is closely allied to this book:

M. Kreuzer, L. Robbiano Computational Commutative Algebra 1,
Springer (2000), ISBN 3-540-67733-X

2 Long Abstract

The CoCoA project began in 1987. Initially it comprised just a small program
in Pascal running only on Macintoshes, and written simply to enable the
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authors to experiment with Buchberger’s algorithm for computing Gröbner
bases. Within two years it had become widely used in many countries both for
research and teaching. Later the program was translated into C, and ported
to other platforms. As its range of abilities grew continually so did its use by
researchers and teachers.

The most recent version, CoCoA 4.3, benefits from development directed
at areas too often neglected in academic environments notwithstanding their
unquestionably vital contributions to the usefulness of the program: e.g. a
sophisticated (graphical) user interface, comprehensive documentation, and
robustness. Naturally, there has also been continual development in more aca-
demically “respectable” areas, often spurred on by symbiosis with researchers
using CoCoA not only in algebraic geometry but also in other fields such as
mathematical analysis, and statistics.

An important purpose of the CoCoA program is to provide a “laboratory”
for studying computational commutative algebra: it together with Singular
and Macaulay 2 form an elite group of highly specialized systems having as
their main forte the capability to calculate Gröbner bases. Although a number
of general purpose symbolic computation systems (e.g. REDUCE and Maple)
do offer the possibility to compute Gröbner bases, their non-specialist nature
implies a number of severe compromises which make them far less suitable to
act as a laboratory: e.g. relatively poor execution speed and limited control
over the algorithm parameters.

Aside from computing Gröbner bases CoCoA’s particular strengths include
polynomial factorization, exact linear algebra, computing Hilbert functions,
and computing with zero-dimensional schemes. The usefulness of these tech-
nical skills is enhanced by the mathematically natural language for describing
computations. This language is readily learned by students, and enables re-
searchers to explore and develop new algorithms without the administrative
tedium necessary when using “low-level” languages.

An extensive evolution from humble beginnings has led to some deeply
rooted limitations which cannot easily be eradicated: e.g. restricted coefficient
types, inaccessibility as a library, and poor interaction with other symbolic
computation software. A completely new incarnation, CoCoA 5, addresses all
these issues; indeed, significant progress has already been made in respect of
each weakness. A crucial design decision was the passage from C to C++ as
the implementation language: the improved expressivity of C++ allows the
source code to be more readable while offering better run-time performance.
We expect concomitant benefits for future maintenance of the source. The
new design is expressly as a library; a server (communicating via OpenMath)
and a standalone interactive system will be built on top of this library. The
new interactive interface will not gratuitously violate backward compatibility
though some incompatible changes are expected.

The main challenge in the design of CoCoA 5 was to reconcile two tradition-
ally conflicting goals: flexibility and efficiency. The inheritance mechanism of
C++ plays a vital role here. Our use of inheritance is exemplified by the way
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in which rings and their elements are implemented. An early design decision
was to allow arbitrary (commutative) rings wherever possible. The run-time
penalty for this additional abstraction is virtually negligible.

Without doubt, CoCoA’s primary remit is to compute with polynomials in
a commutative setting, yet there are a number of interesting areas of “almost
commutative” algebra where the Gröbner basis methods offered in CoCoA may
practicably be applied. The library includes a prototype implementation of
Weyl Algebras, and further work in this area is anticipated.

Undoubtedly the principal element of CoCoA 5 is its code for comput-
ing Gröbner bases. Theoretically the issue of computing Gröbner bases was
resolved by Buchberger’s algorithm, published almost forty years ago. In prac-
tice, there is often a huge gulf between the neat elegance of a published algo-
rithm, and the complex engineering hidden within a refined implementation.
In the case of Buchberger’s algorithm this gulf is especially wide: as witness
we cite the numerous research papers published in the interim, and the fact
that studies are still being actively pursued.

Creating the new library from scratch makes it easy to include the best of
these recent developments, and the carefully structured design should accom-
modate future ideas readily. Some of the modern ideas which are implemented
include geobuckets, binary divisibility mask, fraction free representation, so-
phisticated reducer selection strategy, automatic homogenization, additional
reducers, and multiple-float coefficients. Our use of C++ inheritance offers a
clean mechanism for handling special cases: e.g. computing Gröbner bases of
binomial and toric ideals.
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FORM is a symbolic system for the fast manipulation of large expressions. I
will show a number of its features and properties.
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Summary. This paper describes the results of a project intended to make it possi-
ble to put forward geometrical theorems by pointing and clicking, and then obtain
a proof for that theorem automatically. This goal was achieved by adding various
options to Cinderella [1], a computer program with which one can create geomet-
rical configurations. Its internal ‘Randomized prover’ is able to discover theorems
automatically.

In the project the functionality was added to find proofs for these theorems with
the aid of the computer algebra package GAP [9]. Communication between these
two programs and the various steps in generating the proof is done by means of
OpenMath [5, 7]. The proofs are represented by bracket calculations as proposed in
[8].

1 Introduction

Proof is the idol before whom the pure
mathematician tortures himself.

Sir Arthur Eddington (1882 - 1944)

Cinderella is a computer program, with which one can create geometrical
configurations. Cinderella has a built in ‘Randomized prover’, that is able to
discover geometrical theorems and return a probabilistic proof [2]. However,
these proofs are not verifiable.

The main goal of the project covered here was to make it possible to put
forward a theorem by pointing and clicking (in Cinderella), and then obtain
a mathematically sound proof of that theorem. Moreover, this proof should
be verifiable. This goal was achieved by using the following three packages:

Cinderella “Software for doing geometry on the computer, designed to be
both mathematically robust and easy to use” [1].

OpenMath “A new, extensible standard for representing the semantics of
mathematical objects” [5] - The communication between Cinderella and
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GAP was implemented with OpenMath. This was done using the Riaca
OpenMath library for Java [7].

GAP “GAP – Groups, Algorithms, and Programming” [9].

In this paper we first introduce the OpenMath standard in Section 2. Sec-
tions 3 and 4 explain how bracket calculations are used for the representation
of geometrical configurations and theorems. Section 5 addresses the structure
of the prover. Section 6 gives some notes on the translation from a geometric
configuration in Cinderella into bracket equations as well as the implementa-
tion using GAP. A few examples of the theorem prover in action can be found
in Section 7.

2 The OpenMath Standard

The OpenMath standard is made for the representation of mathematics in
such a way that mathematical objects can easily be exchanged between com-
puter programs.

OpenMath is an emerging standard for representing mathemati-
cal objects with their semantics, allowing them to be exchanged be-
tween computer programs, stored in databases, or published on the
worldwide web. While the original designers were mainly developers
of computer algebra systems, it is now attracting interest from other
areas of scientific computation and from many publishers of electronic
documents with a significant mathematical content. [5, Overview]

A rough overview of the standard can be found in Figure 1. The 3 layers
are explained as follows:

Language The OpenMath language defines the ‘grammar’. It defines notions
like Variables, Constants, Errors, and Functions.

Content Dictionary A Content Dictionary (CD) is (or can be) defined for
each area of Mathematics. For example the ‘arith1’ CD describes the no-
tions of ‘minus’, ‘plus’, ‘power’, etc.

Phrasebooks A Phrasebook provides communication between OpenMath
and another program. Phrasebooks exist for, for example, Mathematica,
GAP and Singular. A specific Phrasebook consists of three parts:
• An encoder to encode OpenMath objects into commands that the

program understands,
• A decoder to translate program output into OpenMath objects,
• The physical communication between the program and the Java (or

C, or C++) program containing the OpenMath objects.

The interested reader is encouraged to have a look
at http://www.openmath.org for an extensive overview of the OpenMath
standard. In this project the (experimental) plangeo codec [6] is used, since
it contains elements for representing planar geometry.
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Fig. 1. The OpenMath framework

3 Brackets and Projective Geometry

When we restrict ourselves to geometric theorems that are invariant under
projective transformations, we can prove geometric theorems much faster than
when we would have used Gröbner bases. The method we use is based on
a paper by Jürgen Richter-Gebert in 1995 [8]. For now, we only consider
configurations and theses of the form:

• The three points A, B, and C lie on one line (the points A, B, and C are
collinear), denoted by ‘h(A,B,C)’,

• The three lines through A and B, C and D, and E and F , respectively,
go through one point, denoted by ‘m((A,B), (C,D), (E,F ))’,

• The six points A, B, C, D, E, and F lie on one conic, denoted by
‘c(A,B,C,D,E, F )’.

We again observe the homogeneous coordinates in the plane, elements of
P3. This means the coordinates are in (R3\{0})/R\{0}, in words: all scalar
multiples of a vector denote the same point. We will denote the determinant

∣
∣
∣
∣
∣
∣

xA xB xC

yA yB yC

zA zB zC

∣
∣
∣
∣
∣
∣

corresponding to the points A, B, and C by [ABC]. This notation is referred
to as the bracket notation, a determinant [ABC] as a bracket. In the math-
ematical foundation in this section parts from the masters thesis by one of
Jürgen Richter-Gebert’s students, Andreas Umbach, were consulted [10].

3.1 Collinearity

First, we focus on the collinearity conditions, described by h(A,B,C). It is
commonly known that three points A, B, and C are collinear if and only if
[ABC] = 0.
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To create a proof (as shown in the next section) we need to make a connec-
tion between several conditions. This can be done using the following theorem.
In order to make reading easier, we write k for the point defined by coordinates
(xk , yk, zk)T .

Theorem 1. Let 1, 2, 3, 4, and 5 be 5 points in the plane, such that 1, 4, and
5 are not collinear. Then the following equivalence holds:

[123] = 0⇔ [124][135] = [125][134]

Proof. The bracket is a 3-linear alternating form: Observe

a = [123][145]− [124][135] + [125][134].

Fix 1 in a. Then a is a 4-linear alternating form on {2, 3, 4, 5}. However,
there is no such thing as a non degenerate 4-linear alternating form in a 3-
dimensional space, so a = 0. Since this implies

[123][145] = [124][135]− [125][134]

the theorem is proved.

Using this theorem, we can translate a set of conditions of the form
h(A,B,C) to bi-quadratic equations :

[ABD][ACE] = [ABE][ACD]

for any D and E such that A, D, and E are not collinear.

This method of describing a geometry theorem implicitly introduces a
number of non-degeneracy conditions. For example, the fact that 1, 4, and 5
are not collinear. On the one hand, this is an advantage, as we do not have to
express this kind of non-degeneracy conditions explicitly. On the other hand,
this is a disadvantage, as we might add some non-degeneracy conditions we
are not aware of and which might be unnecessary. However, in this specific
situation the disadvantage seems less important, since the user will construct
a certain theorem in Cinderella, thus (in general) avoiding degenerated cases
himself.

3.2 Concurrency and Conics

In this section we show how to translate the assertions m((A,B), (C,D),
(E,F )) and c(A,B,C,D,E, F ) to bracket equations.

Theorem 2. Observe the assertion m((A,B), (C,D), (E,F )). This means
that the lines through A and B, C and D, and E and F go through one point.
This assertion implies that all these 6 points and 3 lines are distinct, and that
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the point of concurrency is not one of A,B,C,D,E, F , thus implicitly adding
non-degeneracy conditions every time we use this assertion.

This assertion is equivalent to,

[ABC][CDE][EFA] = −[ABE][CDA][EFC],

and to
[ABF ][CDE] = [ABE][CDF ].

Proof. Observe the assertion m((A,B), (C,D), (E,F )), i.e. the lines through
A and B, C and D, and E and F go through one point, say Z. This is
equivalent to the combination of the three assertions

h(A,B,Z), h(C,D,Z) and h(E,F, Z).

Using Theorem 1 we find the following three equations. Notice how we have
to use the fact that all 6 points are distinct and none of them is the point of
concurrency.

[ABC][AZE] = [ABE][AZC],
[CDE][CZA] = [CDA][CZE],
[EFA][EZC] = [EFC][EZA]. (1)

We multiply the left- and right-hand sides and cancel terms that occur on
both sides, and obtain

[ABC][CDE][EFA] = −[ABE][CDA][EFC], (2)

thus proving the first equation.
As m((A,B), (C,D), (E,F )) is equivalent to (for example) the assertion

m((A,B), (C,D), (F,E)) we obtain from Equation 2:

−[ABF ][CDA][FEC] = [ABC][CDF ][FEA]. (3)

Again, we multiply the left- and right-hand sides from Equations 2 and 3
and cancel terms that occur on both sides, and we obtain

[ABF ][CDE] = [ABE][CDF ], (4)

which proves the second equation of the theorem.

We just showed two possible encodings of the m(..)-assertion. However, it
appears that using only the second one suffices in practice. An assertion m(..)
gives us only three different instances of Equation 4, all other permutations
are equivalent to one of those three.

Remark 1. Because of the implicit degeneration conditions introduced, we
have to be careful when using m(..) as an assertion representing the the-
sis. Additionally, in practice it appears a proof using m(..) as configuration
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assertions is harder to understand than a proof using h(..) as configuration
assertions. However, the m(..)-assertion still has the huge advantage that it
represents three h(..)-assertions, thus considerably reducing the amount of
configuration assertions and configuration equations.

As this shows that using the m(..)-assertion has both advantages we do
not want to loose and disadvantages we do not want to have, we chose to
leave the choice to the user of Cinderella. When trying to obtain a proof, he
can decide whether he wants to use m(..)-assertions in the configuration, and
whether he wants to use m(..)-assertions in the thesis. This enables the user
to find the ‘golden mean’ between the shortness and the clarity of the proof.

The next theorem describes how to encode six points on a conic into
bracket expressions.

Theorem 3. Observe the assertion c(A,B,C,D,E, F ), meaning that the six
points A,B,C,D, E, and F are on one conic. This assertion implies that
all these six points are distinct and no three of the points are collinear, thus
implicitly adding non-degeneracy conditions every time we use this assertion.

This assertion is equivalent to the following bracket equation:

[ACE][BDE][ABF ][CDF ] = [ABE][CDE][ACF ][BDF ].

Proof. First, observe four distinct points, A, B, C, and D, and the two de-
generate conics c1 and c2. The conic c1 is given by the line through A and B
and the line through C and D, the conic c2 is given by the line through A
and C and the line through B and D. For an arbitrary point x we have

x ∈ c1 if and only if x on AB or x on CD, so [ABx][CDx] = 0
x ∈ c2 if and only if x on AC or x on BD, so [ACx][BDx] = 0. (5)

Now, for all λ, µ ∈ R, the equation

λ[ABx][CDx] + µ[ACx][BDx]

describes a conic through A, B, C, and D. Now let

λ = [ACE][BDE]
µ = −[ABE][CDE], (6)

and observe the expression

[ACE][BDE][ABx][CDx] − [ABE][CDE][ACx][BDx]. (7)

Since this is a bi-quadratic expression of degree two, which evaluates to zero
for x ∈ {A,B,C,D,E}, this defines a conic on the points A,B,C,D, and E.
This means F is on that conic if and only if

[ACE][BDE][ABF ][CDF ] = [ABE][CDE][ACF ][BDF ], (8)

which concludes the proof.



4 Non-Projective Geometry 71

In general, a single c(..)-assertion gives us 6! = 720 possible equations.
However, in the configuration a basis of the subspace spanned by these 720
equations will suffice. Such a basis is a set of equations such that the other
equations can be obtained by multiplying sides and removing pairs that occur
on both sides. With basic linear algebra we can obtain a basis for this [10,
p. 36]. The basis can be found in Table 1. So, every c(..)-assertion only adds
five equations to the set of configuration equations. However, if the thesis is a
c(..)-assertion, we have to include all 720 possible equations, as each of those
equations is equivalent to the thesis.

[ABC][ADE][BDF ][CEF ] = [ABD][ACE][BCF ][DEF ],
[ABE][ACD][BDF ][CEF ] = [ABD][ACE][BEF ][CDF ],
[ABE][BCD][ADF ][CEF ] = [ABD][BCE][AEF ][CDF ],
[ABD][AEF ][BCF ][CDE] = [ABF ][ADE][BCD][CEF ],
[ABE][ACF ][BDF ][CDE] = [ABF ][ACE][BDE][CDF ]. (9)

Table 1. A basis for c(..)-assertions in the configuration

4 Non-Projective Geometry

In this section we present some theory that enables us to represent assertions
in non-projective geometry in brackets. Someone might think that calculat-
ing with expressions that are invariant with respect to linear transformations,
as described in the previous chapter, automatically makes it impossible to
prove any theorems containing for example circles. This is not such a strange
thought, since circles might become conics (and lose their circularity) under
linear transformations. However, by adding two special points to the configu-
ration, we can prove such theorems.

4.1 Complex Numbers

With the following procedure we can use complex numbers to express condi-
tions involving distances, angles, etc. Given a point P = (x, y) ∈ R2 in the
plane, we define zp ∈ C := x+ iy. Moreover, zp = r · eiϕ for certain r, ϕ ∈ R.
We know z ∈ R⇔ z = z, and z ∈ iR⇔ z = −z.

We go back to homogeneous coordinates and introduce two new ‘points’:
I = (i,−1, 0) and J = (−i,−1, 0). Now observe the bracket [ABI ], where
A = (xa, ya, 1) and B = (xb, yb, 1):
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[ABI ] =

∣
∣
∣
∣
∣
∣

xa xb i
ya yb −1
1 1 0

∣
∣
∣
∣
∣
∣

= xa + iya − xb − iyb = za − zb. (10)

Likewise, the bracket [ABJ ] evaluates to

[ABJ ] =

∣
∣
∣
∣
∣
∣

xa xb −i
ya yb −1
1 1 0

∣
∣
∣
∣
∣
∣

= xa − iya − xb + iyb = za − zb. (11)

Example 1. (Collinearity) Now suppose A, B, and C are collinear. Observe
the complex numbers z1 = r1e

iϕ1 of the vector (B − A), and z2 = r2e
iϕ2 of

(C − A). The points A, B, and C are collinear if and only if the two angles
ϕ1 and ϕ2 are either the same or opposed to each other. This means ϕ1 = ϕ2

or ϕ1 = π + ϕ2, which means z1/z2 ∈ R, or equivalently

B −A
C −A =

(
B −A
C −A

)

(12)

Using Equations 10 and 11 this is equal to

[BAI ]

[CAI ]
=

[BAJ ]

[CAJ ]
, (13)

which evaluates to

[ABI ][ACJ ] = [ACI ][ABJ ], (14)

which indeed fulfills the claim at Theorem 1.

4.2 Circles

We will now show how to encode the fact that four points are on one circle in
brackets.

Theorem 4. Suppose the four points A, B, C, and D are on one circle, then
the following bracket equation holds:

[ACI ][BDI ][ADJ ][BCJ ] = [BCI ][ADI ][ACJ ][BDJ ].

This assertion will be denoted by ci(A,B,C,D).

Note that this matches the bracket equation for a conic through the points
A, B, C, D, I , and J (See Theorem 3).

Proof. It is a well known theorem that four points A, B, C, and D are on
one circle if and only if the angle between AC and BC is equal to the angle
between AD and BD. We now switch to complex numbers as described in the
start of this section, and find that this is equivalent to
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zA − zC

zB − zC

/
zA − zD

zB − zD
∈ R,

with arguing as in the example on collinearity above. This equation can be
rewritten to

zA − zC

zB − zC

/
zA − zD

zB − zD
=
zA − zC

zB − zC

/
zA − zD

zB − zD
.

Using Equations 10 and 11 this transforms to

[ACI ][BDI ][BCJ ][ADJ ] = [BCI ][ADI ][ACJ ][BDJ ],

which concludes the proof.

5 The Prover

Suppose we are given a certain theorem in planar geometry, containing points
and some collinearity conditions. This means we know that certain brackets
(i.e. expressions of the form [ABC]) are equal to zero. We define B to be the set
of all brackets, i.e. all combinations of three points from the geometry theorem,
so |B| =

(
p
3

)
, where p denotes the number of points in the configuration.

Example 2. Suppose we have a configuration with the points A, B, C, and D.
Then

B := {[ABC], [ABD], [ACD], [BCD]},
and |B| = 4 =

(
4
3

)
.

Suppose we have a geometry statement, and by Theorems 1, 2 and 3 we
obtained a set of n equations following from the configuration:

c1l ≡ c1r,
c2l ≡ c2r,

...
cnl ≡ cnr, (15)

where ‘l’ denotes the left hand side of the equation, and ‘r’ the right hand
side. Each of the factors of the cil and cir denotes a determinant of three
points in the geometry statement, so each ci,l/r is a product of elements of B.
Note that we use the equivalence sign ‘≡’ rather than the normal equation
sign ‘=’ to make it clear that we are calculating with brackets, elements of B,
rather than with the elements in R or Q they evaluate to. From Theorem 1 it
follows directly that each of the factors of the cil and cir is not equal to zero.

Moreover, we have an (at least one) equation that implies the thesis we
want to test:
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tl ≡ tr. (16)

Note that all factors in tl,r should be a factor of at least one ci,l/r. This
means that the brackets in the thesis equation should occur somewhere in the
configuration equations.

Remark 2. Note that it is almost always possible to express the thesis in vari-
ous different equations. For the remainder of the section we will just pick one,
for ease of reading. In practice we will test all of them, checking which gives
us the shortest proof, if any.

Now suppose we have a certain oracle that gives us a vector g ∈ Qn, g 6= 0
such that

1

tl

n∏

i=1

(cil)
gi ≡ 1

tr

n∏

i=1

(cir)
gi . (17)

By multiplying both sides by the greatest common divisor q of the denom-
inators in g1, . . . , gn, thus clearing the denominators, we obtain the following
equation:

(
1

tl

)q n∏

i=1

(cil)
vi ≡

(
1

tr

)q n∏

i=1

(cir)
vi , where vi = q · gi, so vi ∈ Z. (18)

Remark 3. In words: For each of the n equations we multiply a certain power
of the left sides with each other, and the same power of the right sides. Then
all terms cancel, except for (tl)

q on the left side, and (tr)
q on the right side.

By the definition of the ci,l/r we know

(cil)
a ≡ (cir)

a ∀1 ≤ i ≤ n, ∀a ∈ Z, (19)

and since q 6= 0 we obtain from Equation 18:

(
1

tl

)q

≡
(

1

tr

)q

, so tl ≡ tr. (20)

This means such a vector g ∈ Qn gives us a verifiable proof that the thesis
logically follows from the configuration. In the next section it will be shown
how we can obtain such a g.

5.1 Obtaining the Proof

It will be shown that a vector g as in 17 can be found by solving linear
equations. We recall that B is the set of all brackets, and define b = |B| and
xi such that {x1, . . . , xb} = B.

Suppose we have a configuration given by c1l, c1r, . . . , cnl, cnr and a thesis
given by tl and tr. Recall that ci,l/r and tl/r are products of elements of B.
Introduce the b× n matrix X with coefficients in Z, defined as follows:
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for all 1 ≤ k ≤ b, 1 ≤ i ≤ n : Xki :=







1 if xk is a factor of cil,
−1 if xk is a factor of cir,
0 otherwise.

(21)

The vector Y ∈ Zb is defined in the same way from our thesis.

for all 1 ≤ k ≤ b : Yk :=







1 if xk is a factor of tl,
−1 if xk is a factor of tr,
0 otherwise.

(22)

Now observe the following system of linear equations

X · g = Y, (23)

with a solution vector g. Since X and Y have integer values, we know that
g ∈ Qn. It is straightforward to see that g satisfies Equation 17. Thus, we
have a procedure that enables us to obtain a proof by solving linear equations,
which is much faster than having to use Gröbner bases.

Remark 4. In general, the problem whether a geometric theorem is true or
false is still equal to the decision if tl − tr is in the ideal I generated by
cil − cir (i = 1, . . . , n). This ideal membership problem is normally decided
by means of Gröbner bases, but experimenting with Gröbner bases in this
context thought us that they are too slow to be practical in our situation.
However, a g as in Equation 23 shows that

tl − tr ≡
n∑

i=1

gi(cil − cir). (24)

which proves the ideal membership. If such a vector g does not exist however,
we have no information on the ideal membership. This is why we lose the
possibility to prove a theorem to be false, as a theorem is called ‘false’ only
when tl − tr 6∈

√
I .

6 On the Implementation

In this section some notes are given on the implementation of the prover
described in Sections 3 and 4. It is meant to give an overview of how the
transition from a geometric theorem in Cinderella to a proof of that theorem
can be realized.



76 Dan Roozemond

1. A := FreePoint;

2. B := FreePoint;

3. a := Join(A,B);

4. C := FreePoint;

5. b := Join(B,C);

6. D := FreePoint;

7. c := Join(C,D);

8. E := FreePoint;

9. d := Join(D,E);

10. F := Meet(a,c);

11. e := Join(E,F);

12. G := Meet(b,d);

13. f := Join(A,G);

14. g := Join(A,D);

15. h := Join(B,E);

16. H := Meet(e,f);

17. k := Join(H,C);

Fig. 2. Pappos’ Theorem as a Cinderella Algorithm

(Capital characters denote points, small characters denote lines)

6.1 Translating the Assertion

The translation from a geometric theorem in Cinderella into a set of assertions
of the forms described in Sections 3 and 4, takes place in two steps.

Firstly, an algorithm in Cinderella (see for example Figure 2) is trans-
lated into an OpenMath plangeo.assertion-object. This can be done rather
straightforward, as every step of the algorithm corresponds to a single Open-
Math Application. For example,

a := Join(A,B)

can directly be translated into the OpenMath object below.

<OMA>

<OMS name="line" cd="plangeo1"/>

<OMV name="a"/>

<OMA>

<OMS name="incident" cd="plangeo1"/>

<OMV name="a"/>

<OMV name="A"/>

</OMA>

<OMA>

<OMS name="incident" cd="plangeo1"/>

<OMV name="a"/>

<OMV name="B"/>

</OMA>

</OMA>

Thus, walking through Cinderella’s algorithm step by step, we obtain an
OpenMath plangeo1.assertion representing the configuration. The thesis
added to this object is the last non-trivial incidence the randomized prover
concluded.
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Cinderella is able to convert the following Cinderella algorithms into
OpenMath elements: Join, Meet, Mid, PointOnLine1, Through2, Orthogonal,
Parallel, CircleMP3, ConicBy5,
IntersectionConicLine, IntersectionConicConic, CircleBy3,
PointOnCircle,
OtherIntersectionCC4, and OtherIntersectionCL5. Note that not all of
these algorithms can be encoded to bracket equations. However, it is useful to
translate as much objects as possible to OpenMath, as this OpenMath object
can be used by other applications.

In this step we will restrict ourselves to elements we can translate to the
assertions given in Sections 3 and 4. This means that if the OpenMath ob-
ject from the previous step has elements such as Mid, an error will be raised
and the translation will be broken off at this point. However, the OpenMath
object is still valid, and might be used by an application that can handle
more statements. Moreover, this two-phased design makes it possible for the
prover to handle any theorem in projective geometry that can be expressed
in OpenMath, not just the ones that can be constructed in Cinderella!

The plangeo1.assertion from the previous step is processed in the fol-
lowing way:

1. Find all elements (point, lines, conics) in the configuration, say
{E1, . . . , Ep},

2. Find all incidences, and link them to the elements, thus finding a set of
incidences Fi ⊂ {E1, . . . , Ep}, where 1 ≤ i ≤ p. This means that element
Ei is incident to all elements in the set Fi,

3. We set G := {1, . . . , p},
4. While G 6= ∅:

a) Get an index k ∈ G, where first indices corresponding to conics are
processed, then circles, then points, and finally lines,

b) Encode the element identified by k. For example: If Ek is a conic,
and Fk contains 6 points, an element of the form c(..) is added to the
configuration,

c) Set G := G\{k}
d) Set Fi := Fi\{Ek}, for all i ∈ G,
e) Set G := G\{i} for all i ∈ G for which Fi = ∅.

5. Find the incidence the thesis describes. Depending on if this is an incidence
between a point and a line, a point and a conic or a point and a circle,
the type of the thesis will differ.

1A new point on an existing line
2A new line through an existing point
3MP stands for MidPoint
4The two intersections between two conics
5The two intersections between a conic and a line
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Notice that the element ‘points’ in Item 4a may be ignored if the user
stated that he does not wantm(..) assertions in the configuration (See Remark
1). Using the above procedure, a configuration from Cinderella is translated
automatically to a configuration consisting of assertions, ready to be converted
into brackets.

6.2 The Prover

The procedure explained in the previous sections was implemented in Cin-
derella [1], with the aid of OpenMath [5, 6, 7] and GAP [9]. A geometric
theorem in Cinderella is translated into a proof in bracket algebra according
to the following steps:

1. Cinderella: A configuration described by points and lines, some objects
may have coordinates,

2. OpenMath: A configuration described by points and lines, as in plangeo,
some objects may have coordinates,

3. OpenMath: A matrix X and a vector Y as in Equations 21 and 22,
respectively,

4. GAP: A matrixX and a vector Y as in Equations 21 and 22, respectively,
5. GAP: A vector g as in Equation 17,
6. OpenMath: A vector g as in Equation 17,
7. Cinderella: A vector g as in Equation 17,
8. Cinderella: A string representing the proof, where the coordinates of

the vector g have been translated back into their equivalents in bracket
expressions.

These translations were implemented using Java, the Riaca OpenMath
Library [7] and GAP [9]. The result was integrated within Cinderella and will
be a part of Cinderella 2, which will be ready someday in the future with more
exciting new options!

7 Examples

In this section we give some examples of geometric theorems proved using
Cinderella and GAP. These theorems were created in Cinderella, ‘discovered’
by the internal Randomized Prover, and then, via OpenMath, given to the
prover. Thus, there has been no optimization whatsoever by the user.

7.1 Pappos

We consider Pappos’ Theorem, see Figure 3. The thesis is that the lines
through B and C, through A and D, and through G and H go through
one point (K). The full output of the prover is as follows:
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Fig. 3. Pappos’ Theorem

Conditions:

{h(C, F, G)} On line h
{h(D, F, H)} On line g

{h(B, E, H)} On line f
{h(A, E, G)} On line e

{h(C, D, E)} On line c
{h(A, B, F)} On line a

Assertion:
{m((B, C), (A, D), (G, H))} Through point K

Number of configuration equations: 200
Number of possible theses: 3

Found a proof for thesis 1. Length: 11.

Found a proof for thesis 2. Length: 11.
Found a proof for thesis 3. Length: 10.

(1) [A.C.F][B.C.G] == [B.C.F][A.C.G] <== {h(C, F, G)}
(1) [B.D.F][A.D.H] == [A.D.F][B.D.H] <== {h(D, F, H)}

(1) [B.C.E][A.B.H] == [A.B.E][B.C.H] <== {h(B, E, H)}
(1) [A.B.E][B.D.H] == [B.D.E][A.B.H] <== {h(B, E, H)}

(1) [A.B.E][A.C.G] == [A.C.E][A.B.G] <== {h(A, E, G)}
(1) [A.D.E][A.B.G] == [A.B.E][A.D.G] <== {h(A, E, G)}
(1) [B.C.D][A.C.E] == [A.C.D][B.C.E] <== {h(C, D, E)}

(1) [A.C.D][B.D.E] == [B.C.D][A.D.E] <== {h(C, D, E)}
(1) [A.B.C][A.D.F] == [A.B.D][A.C.F] <== {h(A, B, F)}

(1) [A.B.D][B.C.F] == [A.B.C][B.D.F] <== {h(A, B, F)}
---------------------------------------------------------------------

(1) [B.C.G][A.D.H] == [B.C.H][A.D.G] <== {m((B, C), (A, D), (G, H))}

Checking proof... done.

Result: [B.C.G][A.D.H] == [A.D.G][B.C.H]

Found first proof in 2.08 seconds, final proof in 3.27 seconds.

In the remainder of the section only the proofs are given, the rest of the
prover output is omitted.
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7.2 Pascal

Fig. 4. Pascal’s Theorem

We consider Pascal’s Theorem, as shown in the picture above. The thesis
is that the six points A, B, C, D, E and K are on one common conic. The
proof is as follows:

(1) [A.C.G][B.C.K] == [B.C.G][A.C.K] <== {h(C, G, K)}
(1) [B.D.H][A.D.K] == [A.D.H][B.D.K] <== {h(D, H, K)}

(1) [B.F.G][A.F.H] == [A.F.G][B.F.H] <== {h(F, G, H)}
(1) [B.C.G][A.B.F] == [A.B.C][B.F.G] <== {h(B, C, F)}
(1) [A.B.C][B.F.H] == [B.C.H][A.B.F] <== {h(B, C, F)}

(1) [A.B.D][A.F.G] == [A.D.G][A.B.F] <== {h(A, D, F)}
(1) [A.D.H][A.B.F] == [A.B.D][A.F.H] <== {h(A, D, F)}

(1) [A.B.E][B.C.H] == [B.C.E][A.B.H] <== {h(B, E, H)}
(1) [B.D.E][A.B.H] == [A.B.E][B.D.H] <== {h(B, E, H)}

(1) [A.C.E][A.B.G] == [A.B.E][A.C.G] <== {h(A, E, G)}
(1) [A.B.E][A.D.G] == [A.D.E][A.B.G] <== {h(A, E, G)}
--------------------------------------------------------------------------------------------

(1) [A.C.E][A.D.K][B.C.K][B.D.E] == [B.D.K][B.C.E][A.D.E][A.C.K] <== {co(A, B, C, D, E, K)}

7.3 Miguel

Miguel states that if ABCF , BCDE, CEFG, AFGH and ABDH form five
circles, then the four points D, E, G and H are on one circle, see Figure 5.
This is proved as follows:

(1) [A.F.I][F.G.H][A.H.J][G.I.J] == [A.F.H][F.G.I][A.I.J][G.H.J] <== {ci(A, F, G, H)}
(1) [A.F.H][A.I.J][F.G.J][G.H.I] == [A.F.J][A.H.I][F.G.H][G.I.J] <== {ci(A, F, G, H)}

(1) [C.E.I][C.F.J][E.G.J][F.G.I] == [C.E.J][C.F.I][E.G.I][F.G.J] <== {ci(C, E, F, G)}
(1) [B.C.I][B.D.J][C.E.J][D.E.I] == [B.C.J][B.D.I][C.E.I][D.E.J] <== {ci(B, C, D, E)}

(1) [A.B.H][B.D.I][A.I.J][D.H.J] == [A.B.I][B.D.H][A.H.J][D.I.J] <== {ci(A, B, D, H)}
(1) [A.B.J][A.H.I][B.D.H][D.I.J] == [A.B.H][A.I.J][B.D.J][D.H.I] <== {ci(A, B, D, H)}
(1) [A.B.I][B.C.F][A.F.J][C.I.J] == [A.B.F][B.C.I][A.I.J][C.F.J] <== {ci(A, B, C, F)}
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Fig. 5. Miguel’s six circle theo-
rem

Fig. 6. Another six circle theo-
rem

(1) [A.B.F][A.I.J][B.C.J][C.F.I] == [A.B.J][A.F.I][B.C.F][C.I.J] <== {ci(A, B, C, F)}
--------------------------------------------------------------------------------------

(1) [D.E.I][D.H.J][E.G.J][G.H.I] == [G.H.J][E.G.I][D.H.I][D.E.J] <== {ci(D, E, G, H)}

7.4 Six circles

Observe the geometric configuration in Figure 6. The thesis is that the points
A, B, G and H are on one circle. Although this theorem is a lot like Miguel’s
theorem about six circles, thisone can not be proved to be true by our prover.
In [10] Umbach gives a proof in 4 steps, using human reasoning about this
configuration. He too, however, is unable to prove this theorem automatically.

8 Conclusion

We made it possible to obtain proofs for theorems put together in Cinderella
by any user. However, we must be careful not to forget that we do not have
the possibility to prove theorems false, as we did when using Gröbner bases.
Sure, the prover can handle some theorems in projective and non-projective
geometry, but often fails, as for example in Section 7.4. However, in exchange
for these disadvantages, we gained the possibility to proof geometric theorems
considerably faster than before. Moreover, these proofs are short and, unlike
proofs made by Gröbner bases, easy to check by hand.

In the course of the project the power of OpenMath became clear. Because
of the existing link between OpenMath and GAP [7] it was extremely easy to
use GAP for solving linear equations without any additional programming.
Although that is not such a difficult algorithm, there is no need to imple-
ment it yourself. The added advantage is that GAP will perform a lot better
than our own home-made algorithm. Other advantages of the extensive use of
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OpenMath include the possibility to reuse intermediate results, import geo-
metric theorems made by hand, and in the future, use other computer algebra
packages than GAP, or import geometric theorems made by other geometry
programs. All this can be done rather easily, because of the clarity of the
OpenMath standard.

A few questions remain open on proving geometry theorems using bracket
algebra. For example, we again consider the fact that, when proving a geo-
metric theorem, we are actually testing ideal membership (see Remark 4). In
practice however, we are able to find a proof for a fairly large number of ge-
ometric theorems, using only linear combinations. The question why we ‘get
lucky’ so often remains open. The power of the prover may be extended in
the future, for example using methods proposed recently in the Journal of
Symbolic Computation by Li and Wu [3, 4].

Cinderella and its randomized prover have been out there for a few years
already, the invariant theory used exists since the twenties, and solving linear
equations is not the most recent discovery either. However, the combination
of these three items into a single program gives us a rather interesting result.
OpenMath made it possible to do this in a structured and extendable manner,
helping to achieve the goal of this project. It is now possible to create geometric
theorems by pointing and clicking, and then automatically obtain a proof for
that theorem. Not only can this proof be obtained very quickly, it is short and
easy to check!
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1 Introduction

In the late eighties, two computer programs allowing dynamic changes in
plane geometric constructions were simultaneously introduced: Cabri [14] and
The Geometer’s Sketchpad, GSP [11]. The key feature of this software is
that unconstrained parts of the construction can be dragged on by the user
and, as they move, all other elements in the construction automatically self–
adjust, preserving mutual dependency relations and constraints [12]. Because
of its evident impact in computer aided mathematics instruction, a specific
name, ie. dynamic geometry, was soon coined for programs presenting this
kind of feature. Dynamic geometry software offers a virtual environment where
accurate construction of geometric configurations can be carried out. Besides
Cabri and GSP, Cinderella [17, 13] and Geometry Expert, GEX [7] can be
also quoted as well known and performing dynamic geometry environments.

On the other hand, even in this summary introduction to the topic, we
would like to highlight three problems (creating, perhaps, a real bottleneck for
future developments) that dynamic geometry software has to face in general:
the so called continuity problem, the loci generation and the proof capability.
The problem of continuity appears when small changes in some element of the
construction involve sudden changes in some other parts of the construction,
as it happens in the construction shown in Fig. 1: The common point P of
circles C1 and C2 suddenly jumps when dragging the circle C1 along the line
AB. Although the mathematical theory behind Cinderella has solved this

?Second author supported by grant BFM2002-04402-C02-02 from the Spanish
MCyT and by the University of Vigo, on a sabbatical visit



86 F. Botana and T. Recio

problem, it must be noted that the symbolic approach taken in GDI gives
another way of circunventing the continuity issue.

Fig. 1. A case of discontinuity

Regarding loci generation, dynamic geometry environments heavily rely
on an interactive approach [1]. Thus, in order to build up some geometric lo-
cus, they allow the user to drag an element of a construction, usually a point,
and then to visualize the path of some other element, whose trace is sup-
posed to be activated by the displacement of the first object. This approach,
quite successful in many instances, impedes the computation of loci defined
through a posteriori conditions and, even worse, the loci equations cannot be
determined in general for further computation purposes.

Finally, a common use of dynamic geometry environments such as Cabri
and GSP, in elementary geometry teaching and learning, involves an activity
that has been termed as ‘visual proving’ (of properties and theorems). The
numerical accuracy of the constructions and the possibility to experiment with
different instances (by dragging the basic geometric objects in a given state-
ment) get the user convinced about the truth or falsity of some conjecture.
Partly reacting to this approach, last generation programs such as Cinderella,
GEX and GEOTHER [18] start including formal tools for automatic geometric
theorem proving.

In this context, the goal of this short note is to give some simple examples
from a prototype of a recent program, GDI [2, 3], a Spanish acronym of In-
telligent Dynamic Geometry. Apart from being a standard dynamic geometry
environment, GDI includes enhanced tools for loci generation and automatic
proving, plus another distinguished feature, namely, a discovery option allow-
ing a user to finding complementary hypotheses for arbitrary statements to
become true, or, in other words, to finding the missing hypotheses so that a
given conclusion follows from a given (perhaps drastically) incomplete set of
hypotheses.

The key technique for all these improvements is the development of an
automatic “bridge” between the graphic and the algebraic counterparts of
the program, as proposed in [16, 15].
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2 Loci discovery

In order to describe a geometry problem by a finite set of polynomials, we only
consider problems involving incidence, congruence and parallelism relations.
Given a geometric construction with a point whose locus is the one we are
looking for, the procedure begins by translating the geometric properties into
algebraic expressions, after selecting a coordinate system. We use the field of
rational numbers Q and C, the field of complex numbers, as an algebraically
closed field containing the former. The collection of construction properties is
then expressed as a set of polynomial equations

p1(x1, . . . , xn) = 0, . . . , pr(x1, . . . , xn) = 0,

where p1, . . . , pr ∈ Q[x1, . . . , xn]. Thus, the affine variety defined by V =
{p1 = 0, . . . , pr = 0} ⊂ Cn contains all points (x1, . . . , xn) ∈ Cn which satisfy
the construction requirements, that is, the set of all common zeros of p1, . . . , pr

in the n-dimensional affine space of C describe all the possible positions of the
construction points. In particular, the positions of the locus point define the
locus we are searching for. Thus, supposing that the locus point coordinates
are xn−1, xn, the projection

πn−2 : V ⊂ Cn → C2

gives an extensional definition of the locus in the affine space C2. This projec-
tion can be computed via the (n−2)th elimination ideal of 〈p1, . . . , pr〉, In−2.
The Closure theorem states that V (In−2) is the smallest affine variety con-
taining πn−2(V ), or, more technically, that V (In−2) is the Zariski closure of
πn−2(V ). So, except some missing points that lie in a variety strictly smaller
than V (In−2), we can describe the locus computing a basis of In−2. This basis
is computed as follows: given the ideal 〈p1, . . . , pr〉 ⊂ Q[x1, . . . , xn], let G be
a Groebner basis of it with respect to lex order where x1 > x2 > · · · > xn.
The Elimination theorem states that Gn−2 = G ∩ Q[xn−1, xn] is a Groebner
basis of In−2.

As an illustration of the above procedure, GDI will be used to discover a
recent generalization of Wallace–Steiner theorem [9, 8]: Given a triangle ABC
and three directions, not all three equal, nor parallel to the triangle sides, find
the locus of points X such that its projections M,N,P along the three di-
rections determine a triangle of oriented area k (Fig. 2). Once the geometric
construction is done, the user imposes the condition that the oriented area
of MNP is, say, 1, area(M,P,N) = 1. The geometric predicates are auto-
matically translated by GDI into polynomials, and CoCoA [4] is used (in the
background) to perform the elimination task. Finally, the locus equation is
returned to the dynamic environment, where the curve is plotted (Fig. 3)

Note that since the locus equation is now known by the system, this new
object can be used to construct new objects. For instance, if the imposed
condition was the alignment of M,N,P , GDI could compute the envelope of
lines MNP , a tricuspidal hypocycloid.
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Fig. 2. Find the locus of X such that the oriented area of MNP is constant

Fig. 3. An ellipse (43890x2−16139xy +143719y2−43890x−76139y −165360 = 0)
and a hyperbola (64470x2 + 87313xy − 521163y2 − 64470x +323036y + 532680 = 0)
in Giering–de Guzmán’s theorem

3 The Algebraic Approach to Automatic Theorem
Proving

For the last 20 years, symbolic algebraic techniques have been successfully
used for automatically proving theorems in elementary geometry (see [19] for
an exhaustive repository of related papers). The practical interest of this goal
(i.e to automate, through the algebraic translation of hypotheses and theses,
theorem proving) could be related, for instance, to its potential applications
in geometric constraint solving and parameterized CAD [10, 5, 6].
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The algebraic approach roughly proceeds as follows. A geometric state-
ment (a finite set of hypotheses and a thesis) is translated into two multi-
variate polynomial systems, H,T . The statement is declared to be true if
the hypotheses variety is contained in the thesis variety, V ar(H) ⊆ V ar(T ).
Different approaches exist to test this inclusion in commutative/algebraic ge-
ometry, mainly Wu–Ritt characteristic sets and Gröbner bases. Moreover, it
usually happens that the inclusion does not happen because of some small set
of points; in this case the algebraic approach takes care of detecting the degen-
erate cases that should be removed from the hypothesis. Both methods work
in an algebraically closed field, so the decision about the truth of a geometric
statement involves not only real solutions, but the complex ones also.

In GDI, following this approach, and through the cooperation of the
graphic environment with a symbolic computation program (such as Math-
ematica or CoCoA, at user’s choice), the user can state and prove (opening
a suitable Menu) or disprove different conjectures on a given construction.
Moreover it can discover complementary hypothesis (but not only for degen-
erate cases, when we have a nearly true statement, but in generally false
statement), following the approach of [16]. The following example shows how
this is done through some Internet application (but, of course, it can be also
locally computed).

4 webDiscovery

The GDI symbolic algorithms have been used to develop an Internet applica-
tion. webDiscovery (rosalia.uvigo.es/sdge/web/2D) is an open web–based
tool for automatic discovery in elementary Euclidean geometry. It accepts
user–defined geometric constructions, which are uploaded to a Java Servlet
server, where two computer algebra systems, CoCoA and Mathematica, re-
turn the discovered facts about the construction. As a simple illustration, we
consider a triangle ABC and its circumcircle O. In order to discover the nec-
essary conditions for the collinearity of B,O and C, the user uploads a text
file, that is output by GDI as a by-product of the construction, as follows

Points

C(u[1],u[2])

B(1,0)

A(0,0)

D(x[1],x[2])

E(x[3],x[4])

O(x[5],x[6])

LingProperties

Midpoint(D,B,A)

Midpoint(E,C,A)

Perpendicular(B,A,O,D)

Perpendicular(C,A,O,E)
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LingConditions

Aligned(B,O,C)

DiscProperties

and the application finds as conditions the rightness of the angle BAC
and a degenerated condition (Fig. 4).

Fig. 4. The necessary conditions for the alignment of the circumcenter

5 Conclusions

Perhaps the most astonishing fact is that GDI performs quite well for an
endless collection of examples, from trivial facts to rather complicated ex-
plorations of new results –too long to be detailed here–, due to the high
performance of the current algebraic elimination engines and to the careful
connection of the graphic and symbolic engines. In the near future, GDI and
webDiscovery will be able to export/accept geometric constructions coded in
OpenMath.



References 91

References

1. Botana, F.: Interactive versus symbolic approaches to plane loci generation in
dynamic geometry environments. Proc. I Int. Workshop on Computer Graphics
and Geometric Modelling (CGGM’2002), LNCS, 2330, 211–218 (2002)

2. Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci.
Mathematics and Computers in Simulation, 61(2), 141–154 (2003)

3. Botana, F., Valcarce, J.L.: Automatic determination of envelopes and other
derived curves within a graphic environment. Mathematics and Computers in
Simulation, to appear

4. Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Com-
putations in Commutative Algebra. Available via anonymous ftp from:
cocoa.dima.unige.it

5. Gao, X.S., Chou, S.C.: Solving geometric constraint systems. I. A global prop-
agation approach. Computer–Aided Design, 30, 47–54 (1998)

6. Gao, X.S., Chou, S.C.: Solving geometric constraint systems. II. A symbolic
approach and decision of Rc–constructibility. Computer–Aided Design, 30, 115-
122 (1998)

7. Gao, X.S., Zang, J.Z., Chou, S.C: Geometry expert (Nine Chapters Publ., Tai-
wan, 1998)

8. Giering, O.: Affine and projective generalization of Wallace lines. Journal of
Geometry and Graphics, 1(2), 119–133 (1997)

9. de Guzmán, M.: An extension of the Wallace–Simson theorem: projecting in
arbitrary directions. American Mathematical Monthly, 106(6), 574–580 (1999)

10. Hoffmann, C., Bouma, W., Fudos, I., Cai, J., Paige, R.: A geometric constraint
solver. Computer–Aided Design, 27, 487–501 (1995)

11. N. Jackiw, The Geometer’s Sketchpad (Key Curriculum Press, Berkeley, 1997)
12. King, J., Schattschneider, D.: Geometry turned on (Mathematical Association

of America, Washington DC, 1997)
13. Kortenkamp, U.: Foundations of dynamic geometry, Ph.D. Thesis, ETH, Zurich,

1999.
14. Laborde, J.M., Bellemain, F.: Cabri Geometry II (Texas Instruments, Dallas,

1998)
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Introduction

The popularity of elliptic curves in the algorithmic community has greatly
increased during the past few decades due to their applications to factoring,
primality testing and cryptography. The Hasse theorem from 1934 already
states that for an elliptic curve E defined over the finite field Fq , the order of
its point group E(Fq) is an element of the ‘Hasse interval’

Hq = [q + 1− 2
√
q, q + 1 + 2

√
q]

around q. There are several algorithms that compute the order of E(Fq) effi-
ciently, i.e. polynomial in log q. A mathematical natural question to ask is the
‘inverse problem’ of point counting, a problem for which no efficient algorithm
is currently known:

Problem. Given an integer N ≥ 1, find a finite field Fq and an elliptic

curve E/Fq for which the number of Fq-rational points equals N .

Clearly, a necessary condition for this problem to be solvable is that N
is contained in some Hasse interval Hq . We would therefore like that prime
powers q are not that far apart, i.e. we want that

⋃

q Hq = Z≥1. The contri-
bution of the true prime powers to this union is negligible, so we may as well
restrict to a prime field Fq. Although we then know that all integers in the
Hasse interval do occur as the group order of E(Fq) for some curve E/Fq, we
can’t prove that for given N we can actually find a prime q such that N ∈ Hq .
The reason is that it can’t be proven at the moment that the gap between
two consecutive primes q1 and q2 is less than 4

√
q1. From a practical point of

view however there are lots of primes q for which N ∈ Hq , since we expect
(by the prime number theorem) that in the neighbourhood of N one out of
every logN integers is prime.
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A first näıve approach to solving our problem might be to simply pick a
prime q such that N ∈ Hq and write down curves over Fq until we find one
having N points. Although the time spent per curve is very small, we expect
that we need to try about

√
N curves before finding a correct one. In practice,

it turns out that this algorithm becomes quite impractical if N � 1015.

CM-approach

We can do considerably better than this 1015 with the deterministic algorithm
described in this section. If we take any q for which N ∈ Hq and write N =
q + 1− t, then the Frobenius morphism Fq

Fq : E → E (x, y) 7→ (xq , yq)

of our desired curve E satisfies the quadratic relation

F 2
q − tFq + q = 0

of discriminant ∆ = t2 − 4q < 0. For given q, specifying N is therefore
the same as specifying the trace t of Frobenius, i.e. specifying the subring
Z[Fq ] ⊆ End(E). We want to find an elliptic curve E whose endomorphism
ring contains the Frobenius morphism of trace t. The first step of the algorithm
will be to select the prime q that we will use, which will also determine ∆ =
∆(q) = (q − 1−N)2 − 4N . If we would take a prime q such that N is at the
end of Hq we expect ∆ ≈ N1/2. But if we also remove the square factors of
∆ by varying q a bit, we can often achieve much better than N 1/2.

For the rest of this abstract, we assume that q is fixed. If we write N =
1 + q − t again, then the miraculous fact is that for t 6= 0 (which ensures
that End(E) is an order in the imaginary quadratic field Q(

√
D)), we can lift

E together with its Frobenius to characteristic 0. More precisely, there is a
number field H ⊇ Q(

√
∆) and an elliptic curve Ẽ/H such that

• • there is ϕq ∈ End(Ẽ) satisfying ϕ2
q − tϕq + q = 0;

• • q splits completely in H/Q and for every prime q|q in H the reduced
curve Ẽ mod q is an elliptic curve having q + 1− t points.

It turns out that we can actually compute the j-invariant of this curve
Ẽ. Namely, if we denote the discriminant of Q(

√
∆) by D and compute a set

Cl(D) of reduced binary quadratic forms of discriminant D, then j(Ẽ) is a
root of the following polynomial:

fD =
∏

[a,b,c]∈Cl(D)

(

X − j
(

−b+
√
D

2a

))

∈ Z[X ].

The j-function used in the expression above is now the well known modular
function H→ C with q-expansion j(q) = 1

q +744+196884q+ . . . and fD is in
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fact the minimal polynomial for j(Ẽ). Since f is actually a polynomial with
integer coefficients, we can approximate j((−b+

√
D)/2a) upto high enough

precision, expand the product above and then round the coefficients to the
nearest integer.

Knowing the minimal polynomial for j(Ẽ), we can reduce it modulo q
to obtain fD ∈ Fq[X ] which splits completely (an excellent check of our
computations so far). Its roots are the j-invariants of the curves over Fq having
N points. Given a root j, we put k = 27j/(4(j− 1728)) and the curve defined
by y2 = x3− kx− k has j-invariant j. Either that curve or its quadratic twist
has N points.

Whereas the näıve algorithm would take hours to construct an elliptic
curve having 1015 points, this complex analytic algorithm only takes a few
seconds.

A non-archimedean approach

One problem with the previous algorithm however is that we have to compute
j((−b+

√
D)/2a) with very high accuracy because rounding errors occur when

we expand the polynomial fD. Since rounding errors are inherent in working
over the complex numbers, we propose the following solution: embed the num-
ber field H of the previous section in a p-adic field Qp instead of in C! We must

then find a substitute for the computation of the ‘j((−b +
√
D)/2a)’ of the

previous section, since the computation via the q-expansion has no meaning
over Qp.

The first step is to choose the p that we will use for the rest of the algo-
rithm. We can embed H into Qp if and only if p splits completely into H/Q

i.e. if p splits into two principal ideals in Q(
√
D). This in turn is equivalent to

the existence of an elliptic curve Ep/Fp with Frobenius of trace u satisfying
u2 − 4p = Dk2 for some integer k. By construction this includes our desired
curve E, so we could take p = q here. But of course we want to keep p as
small as possible, so given D we find the smallest u such that u2 −D = 4p.
Once we have found our p, we use the näıve algorithm from the introduction
to actually construct an elliptic curve Ep with Frobenius of trace u. (Usually
p� N1/2 so this is a cheap operation.)

Just as in the previous section, we want to lift this curve Ep (with its

Frobenius) to a curve Ẽp which will be defined over Qp. This lift is actually
unique and is called the canonical lift of Ep. We define a lift E1

p/Qp of Ep/Fp

by lifting the coefficients of the Weierstrass equation to elements of Qp. A
trivial, but crucial, observation is that E1

p is the canonical lift accurate upto
1 p-adic digit. There is an entire set S of curves over Qp which have this
property. In [1], we give the following algorithm to compute the canonical lift.
We view S as a subset of Cp via the j-function and we give an analytic map
ρ : S → S which has the canonical lift as its fixed point . Moreover, we can
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compute the derivative at the canonical lift Ẽp, which enables us to use the
Newton iteration process

j(Ek+1
p ) = j(Ek

p )− j(ρ(Ek
p ))− j(Ek

p )

ρ(Ẽp)− 1
k ∈ Z≥1

to converge to the j-invariant of Ẽp itself. The computation of ρ(Ek
p ) is a

non-trivial matter which involves the extensive use of modular and division
polynomials. After some optimalisation steps however, the algorithm in [1] is
quite fast in practice.

Knowing the j-invariant of the canonical lift, we still have to compute the
other roots of fD. These are the j-invariants of the curves which are isogenous
to Ẽp. We compute them by employing the modular polynomials once more.
Once we have all the roots, we expand the polynomial fD and proceed as in
the complex analytic approach.

Further developments

There is still one problem with the complex analytic and the p-adic CM-
algorithm: the coefficients of the polynomial fD are huge. Not only do they
grow exponentially with D, but also 50 digit numbers appear already for
moderately small discriminants. As was already noted by Weber in the early
1900’s, we can decrease the size of the coefficients considerably by employing
other functions than the j-function. For instance, the j-function has a holo-
morphic cube root γ2 and if D 6= 0 mod 3 we can compute a polynomial fγ2

D

very similar to fD. The polynomial fγ2

D ∈ Fq[X ] also splits completely and its
roots are cube roots of the j-invariants of the curves having N points.

For this γ2 the decrease in the size of the coefficients of fD is a factor
three, but we can do even better than that. If the discriminant D is also 1
modulo 8, we can gain a factor 72 by using the classical Weber f. For other
discriminants there are other functions for which the gain is about a factor of
20.

The theory of computing the polynomials f g
D for functions g 6= j is firmly

rooted in complex analytic arguments. Much of it can however be made to
work in a non-archimedean setting. A first approach is given in [1] where it
is explained how to use γ2 and f in a p-adic setting. This time we put an
extra structure on the 3- resp. the 48-torsion, which enables us to work with
these functions in a p-adic setting. Just as for the j-function we have modular
polynomials , which are currently the main algorithmic tool for computing f g

D.
To illustrate the power of our method, we constructed (in about 20 minutes
on a normal PC) an elliptic curve having exactly 1030 points: if we take
q = 1030 + 1999999999167681, then the elliptic curve defined by

y2 = x3 + 669397215131271955483581235905x + 363369366443977510319399421188

over Fq has exactly 1030 rational points.
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Summary. We provide a constructive approach to the stratification of the
representation- and the orbit space of linear actions of compact Lie groups con-
tained in GLn(R) on Rn and we show that any d-dimensional stratum, respectively,
its closure can be described by d sharp, respectively, relaxed polynomial inequali-
ties and that d is also a lower bound for both cases. Strata of the representation
space are described as differences of closed sets given by polynomial equations while
d-dimensional strata of the orbit space are represented by means of polynomial
equations and inequalities. All algorithms have been implemented in SINGULAR

V2.0.

Introduction

In 1983 Abud and Sartori [1] pointed out the relation between spontaneous
symmetry breaking and stratifications of linear actions of compact Lie groups
and presented several applications in particle physics. Spontaneous symmetry
breaking can briefly be described as follows. Let G be a compact Lie group
which acts linearly on Rn, let ϕ0 ∈ Rn be the ground state of a physical system
and let Vγ(z) be a G-invariant potential which determines ϕ0 and depends on
the parameter γ. Varying γ might change ϕ0 into ϕ′

0 and the stabilizer group
Gϕ′

0
of ϕ′

0 may be “smaller” than the stabilizerGϕ0
(i.e., moving from ϕ0 to ϕ′

0

amounts to a loss of symmetry), which can be seen as a breaking of symmetry.
In this way various patterns of spontaneous symmetry breaking occur, which
correspond to distinct phases of the model. It is well-known (see for instance
[15]) that the orbit space Rn/G is a semialgebraic set and there exists a
disjoint decomposition of Rn/G in finitely many semialgebraic sets, called
strata, whereas any stratum consists of points of the same symmetry type. The
knowledge of a description of each stratum in terms of polynomial equations
and inequalities is important for numerous applications (e.g., construction of
invariant potentials, symmetric bifurcation theory, see [1], [4], [9], [10]).
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There are several approaches for constructing the stratification of the orbit
space of a compact Lie group1 starting with Abud and Sartori, see [1], while
Gatermann [9] provides a systematic exposition for compact Lie groups.

These algorithms (except [4], [5]) construct a stratification of the orbit
space Rn/G of a compact Lie group G by using the matrix grad(z) which
is defined on Rn/G. We propose a different approach, namely, to compute a
stratification of the representation space of G, and only then to construct the
stratification of the orbit space (or the images of relevant strata) by means
of elimination theory (equations) and refinements of results of Procesi and
Schwarz (inequalities), see [15]. Additional, our algorithms describe any d-
dimensional stratum and its closure by at most d inequalities, which turns
out to be optimal. This approach has several advantages compared to the
present approach2, namely: Primary decomposition is done before the (non-
linear) Hilbert map is applied, no superfluous components in the orbit space
are computed, the association of strata and their stabilizers is quite obvious
and, finally, it is possible to compute only those strata, which are relevant for
the application under consideration. We also show how to compute inequali-
ties which describe a stratum only up to generic equivalence but contain fewer
terms. For several applications, like the construction of continuous potentials
on the orbit space, this approach may lead to easier computations. For poly-
nomial potentials, inequalities need not be calculated since the Zariski-closure
of a stratum suffices.

In addition, we show that each d-dimensional stratum, respectively its
closure, can be presented by at most d strict, respectively relaxed, inequalities
and that d is also a lower bound.

1 On Invariant Theory of Compact Lie Groups and
Orbit Spaces

We present some background on invariants of compact Lie groups and orbit
spaces. In both sections we use fundamental facts from semialgebraic geometry
like the Tarksi-Seidenberg principle, for which we refer to [7]. For short, an
basic open (basic closed) semialgebraic subset of the algebraic set V ⊆ Rn is
of the form {v ∈ V | gi(v) > 0, 1 ≤ i ≤ r}, respectively, ≥ instead of >,
where g1, g2, . . . , gr ∈ R[x1, x2, . . . , xn]. In the sequel we call an inequality
of the form f > 0, respectively, f ≥ 0 strict, respectively, relaxed. An open

1Explicit algorithms for finite groups, which yield a minimal number of inequal-
ities, are given in [5].

2Equations for the (Zariski-closure) of strata are computed out of rank conditions
on the matrix grad(z). The locus where rank grad(z) ≤ d contains all d-dimensional
strata of the orbit space and must be decomposed in irreducible components in
order to obtain equations defining these strata. Some of these components may be
superfluous, i.e., grad(z) is not positive semidefinite for some points.
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(closed) semialgebraic subset of V is a finite union of basic open (basic closed)
semialgebraic subsets of V .

1.1 Invariants of Lie Groups

Let G be a compact Lie group and ρ : G → GLn(R) be a faithful repre-
sentation. In the sequel we identify G and its image ρ(G) ⊂ GLn(R). It is
well-known that Rn admits a G-invariant scalar product ( , )G on Rn (see for
instance [8]). By the Gram-Schmidt orthonormalization process there exists
A ∈ GLn(n) such that A ·G ·A−1 ⊆ OR, i.e, the representation ρ is equivalent
to an orthogonal representation. From now on we assume G ⊆ OR and that
G acts as usual on Rn. In the sequel let K be one of the fields R or C. For
X ⊆ Kn we define I(X) := {f ∈ K[t1, t2, . . . , tn] | f(x) = 0 for all x ∈ X},
the ideal of X and for an ideal I ⊆ K[x1, x2, . . . , xn] we define V(I) :=
{x ∈ Kn | f(x) = 0 for f ∈ I}, the variety associated to I . A subset U ⊆ Kn

is closed in the Zariski topology if and only if U = V(I) for some ideal
I ⊆ K[x1, x2, . . . , xn]. A polynomial f ∈ K[x1, x2, . . . , xn] is invariant w.r.t.

G if f(g−1 · x) = f(x) for all g ∈ G. The ring K[x1, x2, . . . , xn]
G
, consist-

ing of all invariant polynomials w.r.t. G, is called the invariant ring of G
(ρ will be omitted). By Hilbert’s Finiteness Theorem, the invariant ring is
finitely generated as a K−algebra. Homogeneous generators π1, π2, . . . , πm of
K[x1, x2, . . . , xn]

G
are called fundamental invariants (i.e., each invariant poly-

nomial is a polynomial in π1, π2, . . . , πm). Fundamental invariants define the
projection

π : Kn −→ Kn/G ⊆ Km

x 7−→ (π1(x), π2(x), . . . , πm(x))

of Kn onto an embedding of the orbit space Kn/G ⊆ Km, also called the
Hilbert map. Note that π maps closed sets to closed sets3 and that each fiber
contains precisely one closed orbit (see for instance[13]). For K = C the image
of π(Cn) ⊆ Cm equals the variety of the ideal of relations of π1, π2, . . . , πm (see
for instance[13]). Over R it is well-known that the image of π is a semialgebraic
set.

Proposition 1. Let G ⊂ GLn(R) be a compact Lie group. The orbit space
Rn/G of G is a semialgebraic set semialgebraically homeomorphic to π(Rn).

Proof. It is well-known that the orbits of G can be separated by fundamen-
tal invariants of G (see for instance Theorem 3.4.3. in [14]). By the Tarski-
Seidenberg principle (see for instance [7]) the real image of π is a semialgebraic
set (it equals the projection of the graph, which is a real algebraic set). 2

3Note that the map π is proper.
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Note that the orbit space of an algebraic group parameterizes all closed
orbits. Hence the orbit space of a compact Lie groupG parameterizes all orbits
of G since they are closed. Orbits which are not closed cannot be separated
by polynomials so group actions having non-closed orbits cannot be stratified
by using their invariant rings, see [16].

1.2 Inequalities defining Orbit Spaces

Procesi and Schwarz have constructed polynomial inequalities which have to
be added to the equations coming from the Hilbert map of a compact Lie
group G, which need not be a subgroup of On(R), in order to describe an
embedding of the quotient Rn/G ⊂ Rm. Essential parts of the proof are the
existence of a closed orbit in each fiber of π (see for instance [13]) and the
existence of aG-invariant inner product ( , ) on Rn, which is used to construct
the m×m matrix grad(v) = (dπi(v), dπj(v))i,j=1,...,m for v ∈ Cn where π =
(π1, π2, . . . , πn) is the Hilbert map. Here we have used the identification4 of
Rn with its dual Hom(Rn,R). They proved that a point z ∈ V(I), where I ⊂
R[z1, z2, . . . , zm] is the ideal of relations among π1, π2, . . . , πm, lies in Rn/G
if and only if the matrix grad(z) is positive semidefinite. The constraint that
grad(z) must be semidefinite yields inequalities for describing Rn/G. Recall
that the type of a real m×m Matrix M equals (p, q) where p, respectively, q
denote the number of positive, respectively, negative eigenvalues counted with
multiplicities. Obviously, rankM = p+ q.

Proposition 2. An m×m matrix M over R is positive semidefinite (denoted
by M ≥ 0) iff all symmetric minors of M are non-negative. The matrix M is
positive definite (denoted by M > 0) iff all principal minors of M are positive.

Proof. We refer to, e.g., Section IX.72 in [18]. 2

In order to define the matrix grad(z) on the orbit space we have to show
that all entries are invariant w.r.t. G. By dπ(z) we denote the Jacobian matrix
of π at z.

Proposition 3. Let G ⊂ GLn(R) be a compact Lie group. For σ ∈ Gv the
Jacobian of the Hilbert map π : Rn → Rn/G satisfies dπ(v) = dπ(v) ◦ σ. In
particular, the functions v 7→ grad(v)ij are invariant.

Proof. Follows from π(v) = π(σ · v), the chain rule, and the fact that σ is
linear. 2

Therefore the matrix grad(v) is also defined on Kn/G ⊆ Km and can be
extended to the whole of Km. Procesi and Schwarz provided the following
description of the orbit space.

4Note that dπj is a differential form, so dπj(z) : Rn → R is a linear form.
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Theorem 1. (Procesi-Schwarz [15]) Let G ⊂ GLn(R) be a compact Lie
group and let π = (π1, π2, . . . , πm) be such that π1, π2, . . . , πm generate

R[x1, x2, . . . , xn]G. The quotient space is given by

Rm/G = π(Rn) = {z ∈ Rm | grad(z) ≥ 0, z ∈ V(I)}

where I ⊂ R[y1, y2, . . . , ym] is the ideal of relations of π1, π2, . . . , πm.

Proof. We refer to [15]. 2

Inequalities for the orbit space can be obtained from the condition
grad(z) ≥ 0. This can be checked by means of Proposition 1.2.2, i.e., test-
ing if all 2n − 1 symmetric minors of grad(z) are ≥ 0. In subsequent sections
we use the theorem of Procesi and Schwarz and a modification of Decartes
rule of signs to provide an optimal description5 of the orbit space and all of its
strata and their closures (defined in the following section), which are useful
for several applications.

Example 1. Consider the action of the compact Lie group G = O2 ⊂ GL2(R)
on R4, given by (g · x, g · y), g ∈ G, x, y ∈ R2, and its complexification GC (see
Section 3.1). We may choose three algebraically independent fundamental
invariants π1 = t21 + t22, π2 = t1t3 + t2t4, π3 = t23 + t24. The invariant ring
of G, respectively, GC equals K[t1, t2, t3, t4]

G = K[π1, π2, π3] where K = R,
respectively, K = C. The Hilbert map is π = (π1, π2, π3) : K4 → K3. Since
π1, π2, π3 are algebraically independent, we obtain C4/GC = C3 = im(π).
Over the reals, we apply Theorem 1.2.1 and Proposition 2.2.10 to the matrix

grad(z) =





4z1 2z2 0
2z2 z1 + z3 2z2
0 2z2 4z3



 and obtain the description

R4/G = im(π) =








z1

z2

z3


 ∈ R3

∣∣∣∣
z1 + z3 ≥ 0, z2

1 − 2z2

2 + 6z1z3 + z2

3 ≥ 0,
z2

1z3 + z1z
2

3 − z2(z1 + z3) ≥ 0



 ( R

3.

Remark 1. (a) For practical purposes the dependence on a G-invariant scalar
product may be problematic.

(b) It is not necessary that G ⊆ OR for computing inequalities if a G-invariant
inner product is given in an effective form.

2 On the Stratification of the Representation and Orbit
Space

Consider a compact Lie group G ⊂ GLn(R), the set of points having the
same symmetry type w.r.t. G form a partition of Rn in finitely many distinct

5The description is optimal in the number of inequalities , i.e., we show that this
number is an upper and lower bound.
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open sets, also called a stratification. We present underlying definitions and
properties of of strata and their closures (Zariski- or Euclidean topology).
These properties will be used in subsequent sections to compute equations
and inequalities for describing strata and their closures.

2.1 On the Stratification of the representation- and orbit space

We provide the definition of strata, respectively, stratifications and associated
objects like orbit type, etc. In the sequel G ⊂ GLn(R) denotes a compact Lie
group and clZ(X), respectively, clE(X) denote the closure of the set X in the
Zariski, respectively, Euclidean topology.

Definition 1. Let E ⊆ Rn be a semialgebraic set. A stratification of E is a
finite partition Eλ of E where each Eλ is a semialgebraically connected locally
closed6 equidimensional semialgebraic subset (or a finite set of points) of Rn

such that Eλ∩clE(Eβ) 6= ∅ and λ 6= β implies Eλ ⊂ Eβ and dimEλ < dimEβ.
For λ ∈ Λ the set Eλ is called a stratum and clE(E)λ is called a semi-stratum
of the stratification, and if d = dimEλ then Eλ is called a d−stratum.

Given x ∈ Rn, the set G(x) = {g · x | g ∈ G} is called the orbit of x and
the group Gx = {g ∈ G | g · x = x} is called the stabilizer of x.

Proposition 4. Let G be an algebraic group (defined over the field K) which
acts algebraically (via α) on Kn. For x ∈ Kn the stabilizer Gx and the set
Xd = {x ∈ X | dimGx ≥ d} are closed.

Proof. Let π2 : X × X → X be the projection onto the second component,
ix : G ↪→ G × X, ix(g) = (g, x) be an injection for x ∈ X and define α′ :
G × X → X ×X by α′(g, x) = (α(g, x), x). All maps are continuous (w.r.t.
the Zariski-topology), hence the fibers of π2 ◦ α′ ◦ i are closed. The stabilizer
of x is closed since Gx is isomorphic to α′−1(x, x) = {(g, x) | α(g, x) = x}. We
also obtain that Xd = {x ∈ X | dim(π2 ◦ α′ ◦ i)−1(x) ≥ d} hence the claim
follows from upper-continuity of the fiber dimension. 2

Definition 2. For a subgroup H ⊆ G we denote the conjugacy class of H in
G by by [H ] = {gHg−1 | g ∈ G}. The orbit type of x ∈ Rn is [x] := [Gx]. For
u, v ∈ Rn we define [u] < [v] if Gu ⊂ H for some H ∈ [v]. The associated
stratum, respectively, semi-stratum of [x] is Σx := {y ∈ Rn | [x] = [y]},
respectively, clE(Σx).

The orbit type is a measure for the symmetry of the points of Rn. We
have [x] > [y] if the point x has more symmetries than the point y, i.e.,
gGyg

−1 ⊂ Gx form some g ∈ G. The notation of strata is justified by the
fact that these sets, respectively, their images under the Hilbert map form a
stratification of the representation-, respectively, orbit space.

6The set Eλ is open in its metric closure clE(Eλ).
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Proposition 5. Let G ⊂ GLn(R) be a compact Lie group.

(a) There are only finitely many different orbit types, i.e,. {[Gx] | x ∈ Rn} is
finite.

(b) The orbit types form a lattice.
For v ∈ Σp := {x0 ∈ Rn | rank dπ(x)x0 is maximal} the orbit type [v] is
the least element.

(c) For each v ∈ Rn there exists a small neighborhood U ⊂ Rn of v such that
u ∈ U implies [u] ≤ [v].

Proof. (a) see for instance Ch. IV.10 in [8].
(b) Note that rankdπ(x)v is maximal iff dimN 0

v is maximal (see Section 2.2)
hence the stabilizer of v is contained in [w] for all w ∈ Rn.

(c) We refer, e.g., to [1].
2

The set Σp, which is dense in Rn, is called the principal stratum of G.

Proposition 6. Let G ⊂ GLn(R) be a compact Lie group.

(a) For a subgroup H ⊆ G of G the set Rn
H = {x ∈ Rn | H ⊆ Gx} is a

vectorspace. In particular, the set {x ∈ Rn | Gx = H} is Zariski-open in
Rn

H .
(b) For 0 6= x ∈ Rn each stratum Σx is open in its closure (both metric and

Zariski) and G(x) is a proper subset of Σx.

Proof. (a) Let x, y ∈ Rn
H and g ∈ H . Obviously, g · (x + y) and g · λx, λ ∈ R,

are contained in Rn
H . The set S = {x ∈ Rn

H | Gx ⊃ H} is of dimension less
than Rn

H and can be written as the union of all strata Σy with [y] > [H ]
intersected with Rn

H . By Proposition 2.1.5, the set S is closed, hence Rn
H \S

is Zariski-open.
(b) The first claim follows from Theorem 2.2.2. For the second claim note that

G(x) is compact, hence the set {λx | λ ∈ R, λ > 0} is not contained in
G(x) but in Σx.

2

Note that the closure of a stratum of the representation space need not be
a finite union of vectorspaces, as it is the case for finite groups, see Example
3.4.4. We conclude this section by giving a description of the orbit space (and
its stratification) in terms of equations and relaxed inequalities obtained from
Procesi’s and Schwarz’s Theorem. Here strata are described as differences of
closed semialgebraic sets.

Corollary 1. Let G ⊂ GLn(R) be a compact Lie group, let x ∈ Rn and
y = π(x).

(a) Let Σx ⊆ Rn be a stratum. Then clE(Σ̂y) = π(clE(Σx)) =
{z ∈ Rm | grad(z) ≥ 0, z ∈ V(J)} where J ⊂ R[z1, z2, . . . , zm] is the ideal
of the image of Σx under π.
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(b) Let clE(Σx) = Σx ∪Bx be a disjoint union (Bx is a finite union of lower-
dimensional strata). Then Σ̂x = π(Σx) = π(clE(Σx))− π(Bx), i.e.,

Σ̂x = {z ∈ Rm | z ∈ clZ(π(Σx)), z 6∈ π(Bx), grad(z) ≥ 0}

2.2 Properties of Strata

We describe properties of strata and semi-strata on the representation and
orbit space. In the representation space closures of strata, respectively, strata
can be described by closed sets, respectively, differences of closed sets. For a
description of the orbit space Procesi and Schwarz have derived the condition
that grad(z) ≥ 0 (see Theorem 1.2.1), but they only provide the criterium
given in Proposition 1.2.2, which yields 2d − 1 inequalities (provided that d
equals the dimension of the orbit space). These inequalities may also be used
to describe all topological closures of strata on the orbit space and therefore
also all strata by forming differences of closed sets (see Corollary 2.1.1). We
show that a d-dimensional stratum respectively, its closure can be described
by d sharp, respectively, relaxed inequalities and the ideal of its Zariski-closure
in Rn/G and that d is also a lower bound. In particular, we provide effective
descriptions relying on equations and inequalities.

The stratification of the representation space of a compact Lie group
is completely determined by the matrix dπ(x)v. Since Rn admits a G-
invariant inner product ( , )G we may define the orthogonal complement
Nv to Tv(G(v)) and the decomposition N=N

0
v ⊕ N1

v , where N0
v = {w ∈

Nv | w is Gv-invariant} and N1
v is the orthogonal complement of N 0

v in Nv .
Note that G need not be a subgroup of the orthogonal group.

Proposition 7. Let G ⊂ GLn(R) be a compact Lie group. We have

ker dπ(x)x0 = Tx0
G(x0)⊕N1

x0
and imdπ(x)x0

∼= N0
x0
.

Proof. Note that v ∈ Tx0
G(x0) implies v ∈ ker dπ(x0) since π is G-invariant.

Let V be the the vectorspace generated by the gradients (considered as ele-
ments of Rn) dπ1(x0), dπ2(x0), . . . , dπm(x0), i.e., V = im dπ(x0). Note that
v ∈ kerdπ(x0) implies dπi(x0) · v = 0 so v ∈ Nx0

. By Proposition 2.2.3 we
have dπi(x0) ◦ σ = dπi(x0) for σ ∈ Gv, hence V ⊆ N0

v . Now v ∈ N0
x0
\ V

implies v ∈ ker dπ(x0). Hence the rank of the matrix dπ(x0) augmented by
the column v equals the rank of dπ(x0) and so v ∈ V . 2

Proposition 8. Let G ⊂ GLn(R) be a compact Lie group. We have

Tx0
Σx0

= Tx0
G(x0)⊕N0

x0
.

In particular, Tπ(x0)Σ̂x0
∼= N0

x0
.

Proof. One has to show that any curve through x0 and contained in Σx0
has

a tangent vector at x0 which is contained in Tx0
G(x0)⊕N0

x0
. This proof can

be found in Section V of [1]. 2
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Corollary 2. We have dimΣx0
= dimTx0

+dimN0
x0

= dimG − dimGx0
+

dimN0
x0

and dim Σ̂π(x0) = dimN0
x0

.

Theorem 2. Let G ⊂ GLn(R) be a compact Lie group and π : Rn → Rn/G ⊆
Rm be the Hilbert map.

(a) The union Σ(d) of all strata whose image under π is of dimension d equals
the open semi-algebraic set

Σ(d) = {v ∈ Rn | rankdπ(v) = d} .

(b) The union Σd of all strata whose image under π is of dimension at most
d equals the closed semi-algebraic set

Σd = {v ∈ Rn | rank dπ(v) ≤ d}

In addition, clZ(Σ(d)) = clE(Σ(d)) = Σd.

Proof. (a) Note that a stratum is a smooth semi-algebraic set, so by Propo-
sition 2.2.8 we have rank dπ(v) = dim im(dπ(v)) = dimTπ(v)Σ̂π(v) =

dim Σ̂π(v).

(b) The setΣd can be defined by the vanishing of all (d+i)×(d+i) minors of ∂π
∂x

where i ≥ 1. If d ≥ min{n,m} then Σd = Rn. Note that Σ(d) = Σd\Σd−1.
2

So far we have only considered semistrata, respectively, strata on the rep-
resentation space. Unfortunately, we need at most 2n−1 inequalities, obtained
from the symmetric minors of grad(z). A direct description of a d-dimensional
stratum by means of equations and (strict) inequalities can be obtained from
the constraint that the type of grad(z) equals (d, 0). We apply Decartes rule of
sign to the characteristic polynomial of the matrix grad(z) in order to obtain
an optimal number of inequalities.

A sequence a0, a1, . . . , an has a sign change if there exists i, j s.t. aiai+j < 0
and aiai+k ≥ 0 for 1 ≤ k < j. For a polynomial f =

∑n
i=0 ait

i we define the
number of sign changes N+(f) respectively alternative sign changes N−(f) by
the total number of sign changes of the sequence a0, a1, . . . , an respectively
of the sequence a0,−a1, a2, . . . , (−1)iai, . . . , (−1)nan. By Z+(f) respectively
Z−(f) we denote the number of positive respectively negative real roots of f .

Proposition 9. (Descartes rule of sign; see [18]) Let f ∈ R[t] be a nonzero
polynomial. There exist ρ+, ρ− ∈ N s.t. N+(f) = Z+(f)− 2ρ+ and N−(f) =
Z−(f) − 2ρ−. Moreover, if f has only real roots then N+(f) = Z+(f) and
N−(f) = Z−(f).

We state a refinement of a well-known result in matrix analysis (see for
instance Ch. 7 in [12]).
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Corollary 3. Let M ∈ Matn(R) be a symmetric matrix of rankM = d > 0
and p(t) =

∑n
i=0 ait

i be its characteristic polynomial. Then M is of type (d, 0)
iff (−1)ian−i > 0 for 1 ≤ i ≤ d.
Proof. Note that an−d−1 = . . . = a0 = 0 and all roots of p(t) are real. By
Proposition 2.2.9 we have N+(p) = Z+(f) as required. 2

By relaxing all inequalities obtained from conditions about sign changes
of the characteristic polynomial we obtain a criterium for positive semidefi-
niteness without assumptions about the rank. This yields an upper bound for
the description of closures of strata.

Proposition 10. Let M ∈ Matn(R) be a symmetric matrix and p(t) =
∑n

i=0 ait
i be its characteristic polynomial. Then M is positive semidefinite

iff (−1)ian−i ≥ 0 for 1 ≤ i ≤ n.
Proof. Let M be a symmetric matrix of rankM = d > 0 having a negative
eigenvalue. Note that an−d−1 = an−d−2 = . . . = a0 = 0 and an = 1. By
Decartes rule of sign (Proposition 2.2.9) there exists a minimal i > 0 s.t.
(−1)n(−1)n−iai < 0. For n even we obtain (−1)n−iai < 0 a contradiction
to (−1)n−ian−i ≥ 0 since (−1)i = (−1)n−i. In case n odd the sign change
gives (−1)(−1)n−ian−i = (−1)n−i+1an−i < 0, a contradiction to (−1)ian−i =
(−1)n−i+1an−i ≥ 0. 2

Theorem 3. Let G ⊂ GLn(R) be a compact Lie group, let π1, π2, . . . , πm be
fundamental invariants of G and let I be their ideal of relations. Let d ≤
dim Rn/G be an integer and Id be the ideal of all d× d minors of grad(z). By
pd(t) =

∑m
i=0(−1)m−iδit

i we denote the characteristic polynomial of grad z
modulo Id.

(a) We have {z ∈ VR(I) | grad(z) ≥ 0, rankgrad(z) = d} = {z ∈
VR(Id) | δ1(z) > 0, δ2(z) > 0, . . . , δd(z) > 0}..

(b) Relaxing the strict inequalities in part (a) gives the set {z ∈
VR(I) | grad(z) ≥ 0}.

(c) Let J be the ideal of the Zariski-closure of a d-dimensional stratum Σ̂d

and δ′i = δi mod J . Then Σ̂d = {z ∈ VR(J) | δ′1(z) > 0, δ′2(z) >

0, . . . , δ′d(z) > 0}. For the topological closure of Σ̂d we obtain clE(Σ̂d) =
{z ∈ VR(J) | δ′1(z) ≥ 0, δ′2(z) ≥ 0, . . . , δ′d(z) ≥ 0}.

(d) Let J be the ideal of the Zariski-closure of a d-dimensional stratum Σ̂d and
suppose that grad(z) is so arranged that the first d principal minors do not
vanish identically on Σ̂d. Then Σ̂d is generically equivalent (the symmetric
difference has codimension at least 1) to {z ∈ VR(J) | ∆1(z) > 0, ∆2(z) >
0, . . . , ∆d(z) > 0} where ∆1, ∆2, . . . , ∆d are the first d principal minors
of grad(z).

(e) Suppose that π1, π2, . . . , πd are algebraically independent. The principal
stratum of Rn/G is given by Σ̂p = {z ∈ Rd | ∆1(z) > 0, ∆2(z) >
0, . . . , ∆d(z) > 0} where ∆1, ∆2, . . . , ∆d are all principal minors of
grad(z).
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Proof. Part (a),(b), and (c) follow from Proposition 2.2.9. For Part (d) note
that ∆i(z) = 0 defines a hypersurface in Σ̂d. Part (e) follows from I = {0},
i.e, V(I) = Rd and from rank grad(z) = d for all z ∈ Σ̂p. 2

For a given d-dimensional stratum respectively its topological closure, the
number of d inequalities obtained from the previous theorem is optimal, as
shown by the following example.

Example 2. Let G ⊂ GLn(R) be the finite group generated by all n × n
diagonal matrices of the form (1, 1, . . . , 1,−1, 1, . . . , 1). Fundamental invari-
ants are given by t21, t

2
2, . . . , t

2
n. Hence the orbit space is the positive orthant

z1 ≥ 0, z2 ≥ 0, . . . zn ≥ 0 and any d-dimensional stratum respectively its
topological closure is given by equations zi1 = . . . = zin−d

= 0 and inequali-
ties zin−d+1

> 0, . . . , zin
> 0 respectively ≤ instead of >, where i1, i2, . . . , in

is a permutation of 1, 2, . . . , n. It is well-known that any such set cannot be
described by fewer than d inequalities (see for instance [7]).

We obtain the following geometric statement:

Corollary 4. Let Σ̂d be a d-dimensional stratum of a compact Lie group G ⊂
GLn(R). The semialgebraic set Σ̂d is basic open in its Zariski-closure. The
topological closure of Σ̂d is a basic closed semialgebraic set in its Zariski-
closure. Moreover both sets can be described by at most d strict respectively
relaxed inequalities, which is optimal.

Remark 2. (a) Bröcker and Scheiderer have proved that any basic open set of
dimension d can be described by at most d sharp inequalities (unpublished,
see Chapter 6.5 in [7]) and that d is also a lower bound. For basic closed

sets of dimension d Scheiderer has proved that d(d+1)
2 is an upper and lower

bound for the number of (relaxed) inequalities required for a description
(see [17]). Since Theorem 2.2.3 states that for the (topological) closure
of a d-dimensional stratum d inequalities suffice, closures of strata (in
particular orbit spaces) form a class of basic closed sets which are easier
to describe. Note that the dimension is still a lower bound. Hence there
is no gain in efficiency when using generic descriptions.

(b) Suppose that there exist algebraically independent fundamental invari-
ants π1, π2, . . . , πm of G. If |G| < ∞, any d-dimensional stratum can be
described by the first d principal minors of grad(z) (after a permutation
of π1, π2, . . . , πm), see [5]. If G is not finite, this is no longer true, see, e.g.,
Example 3.4.4 or Example 3 in [1].

(c) The upper bound d holds for all d-dimensional basic closed sets, where
inequalities are obtained from positive-semidefiniteness conditions on ma-
trices.
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3 Constructing the Stratification

As shown in Section 2.2 the d-dimensional components of the strata can be
computed by conditions on the rank of the matrix dπ(v). In this section we
provide an algorithm together with necessary tools for the construction of a
stratification of the representation- and the orbit space.

More precisely, given a d-dimensional connected component C of a stratum
(obtained from rank conditions), the corresponding stratum is given by the
orbit of C. The same holds true for the associated semistrata. In this way we
construct the stratification of the orbit space out of the stratification of the
representation space by computing the image of π (recall Corollary 2.2.1). It
remains to add a set of inequalities obtained from the Theorem of Procesi and
Schwarz (Theorem 1.2.1), and its refinement (Corollary 2.2.3 and Theorem
2.2.3). We also present an algorithm for computing the stabilizer of a given
vector subspace of Kn, which may be used to distinguish the symmetry type
of strata7 of the same dimension.

All used algorithms but the computation of inequalities rely on alge-
braically closed ground fields. For this reason we present properties of com-
plexifications of real varieties below.

3.1 On the Complexification of a Group-Action

We briefly mention some relations between a compact Lie group G and its
complexification and the real- and complex orbit space. More precisely, given
fundamental invariants π1, π2, . . . , πm ∈ R[x1, x2, . . . , xn] of G, in order to
describe the orbit space we have to compute the image of the morphism
π by Elimination Theory, i.e., one computes the ideal I of relations among
π1, π2, . . . , πm, which requires an algebraically closed ground field. As we have
already seen, the orbit space of G may be properly be contained in the real
algebraic set V(I) ⊆ Rm. Therefore we have to take care if the computations
performed over an algebraically closed field are valid over R. Several important
results are based on Kempf-Ness Theory. We refer, e.g., to [19].

Let G ⊂ GLn(R) be a compact Lie group defined by the ideal8 IG ⊂
R[s1, s2, . . . , sm]. The complexification of G is the zero set of IG over the
complex numbers, denoted by GC. Note that GC is a complex reductive group
with coordinate ring C[s1, s2, . . . , sm]/IG = R[s1, s2, . . . , sm]/IG⊗RC and that
G is Zariski-dense in GC. The ideals defining the (real) orbit and the stabilizer
of a point v ∈ Rn can be computed by Elimination Theory from the ideal IG
and the necessary constructions.

By Hilbert’s Finiteness Theorem the invariant ring of G is finitely gen-
erated, hence R[t1, t2, . . . , tn]G = R[h1, h2, . . . , hm] for some homogeneous in-
variants h1, h2, . . . , hm. The action of G complexifies to an action of GC on Cn

7Strata of the same dimension may have different stabilizers of the same dimen-
sion but different number of connected components

8Compact Lie groups are algebraic groups, see for instance [14].
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and the invariant ring ofGC equals C[t1, t2, . . . , tn]GC = R[h1, h2, . . . , hm]⊗RC.
Hence the Hilbert map π : Rn → Rm complexifies to πC : Cn → Cm and
πC(Cn) = clZ(π(Rn)) (closure in Cm). Let I be the ideal of relations of
h1, h2, . . . , hm. Since V(I) = clZ(π(Rm)) over R, by Procesi and Schwarz
(see Theorem 1.2.1) we have Rn/G = {z ∈ V(I) ∩ Rm | grad(z) ≥ 0} where
the latter closure is taken in Rm.

3.2 Stratification of the Representation Space

By using the results stated in Section 2 we are now able to provide an al-
gorithm for computing a stratification Σ1, Σ2, . . . , Σr of the representation
space of a compact Lie group G. The stratification of the orbit space Rm/G is
obtained by computing the ideals of the images π(Σ1), π(Σ2), . . . , π(Σr) and
adding appropriate inequalities to each set of equations.

Algorithm 1 RepSpaceStrata(IG , ψ)
In: Ideal defining a compact Lie group G ⊂ GLnR, ψ a list of polynomials in
R[s1, s2, . . . , sk, t1, t2, . . . , tn] defining the action of G.
Out: list of equations defining the closures Σ1, Σ2, . . . , Σr of G and their
generic stabilizer .
begin
π = (π1, π2, . . . , πr); // algebra generators of R[t1, t2, . . . , tn]

G
;

d = dim Rm/G // dimension of the orbit space
for i = 1 to d do

Jd = d× d minors of dπ; // all d× d minors of the Jacobian
collectedSpaces = primary decomposition of

√
Jd.

c := 1;
for each V ∈ collectSpaces[i] do

orbitV = ψ(G, V ); // orbit of V

if orbitV 6∈ ⋃c−1
j=1 Semistrata[d][j] then begin

Semistrata[d][c] = Semistrata[d][c] ∪ orbitV ;
stabilizer[d][c] = Stabilizer(IG, ψ, V ); // representative of the

orbit-type
c = c+ 1;

end
end-for;

end-for;
return([Semistrata, stabilizer]);
end RepSpaceStrata.

A set of fundamental invariants for G may be computed by the algorithm
given in [6], which works for all reductive groups. Algorithms restricted to
compact Lie groups can be found in [9].

We are left with the problem of computing a representative of an orbit type
[v], i.e, given the closure clZ(Σx), find equations for the ’generic’ stabilizer Gξ
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of clZ(Σx). By computing a primary decomposition of the ideal of Gξ we
obtain the index Gξ/(Gξ)0

Proposition 11. Let G be an algebraic group defined by the ideal
IG ⊆ K[s1, s2, . . . , sm], let α : G × Kn → Kn be a lin-
ear action, let V ⊆ Kn be a subspace of dimension d and let
ϕ = (ϕ1, ϕ2, . . . , ϕn), ϕi ∈ K[a1, a2, . . . , ad], be a parametriza-
tion of V . Define the ideal I = 〈IG, αi(s, t)− ti, ti − ϕi : 1 ≤ i ≤ n〉 ⊂
K(a1, a2, . . . , ak)[s1, s2, . . . , sm, t1, t2, . . . , tn] as well as the ideal J = I ∩
K(a1, a2, . . . , ak)[s1, s2, . . . , sm] and the (partial) substitution map ϕb :
K(a1, a2, . . . , an) → K, ai 7−→ bi for (b1, b2, . . . , bn) ∈ Kn. There exists
a non-empty Zariski-open set U ⊆ V such that

u ∈ U =⇒ ϕu(J) ∼= I(Gu).

Proof. After a finite number of steps we obtain a Gröbner basis of I . In each
step we collect the following data: If multiplication by a polynomial f occurs
then let Pf be the set of all coefficients of monomials in f which contain some
ai. When computing f − g then add all rational functions in a1, a2, . . . , an

which are obtained from solving f − g = 0 by comparing coefficients. Exclude
these sets from Kn. 2

Algorithm 2 Stabilizer(IG, ψ, IV )
In: ideal IG of a compact group G, ideal IV of a component of a stratum.
Out: equations of the stabilizer
Note: Basering is K(a1, a2, . . . , ak)[s1, s2, . . . , sk, t1, t2, . . . , tn].
begin
I = GroebnerBasis(IV );
c = 0;
for i = 1 to n do

if deg(NormalForm(ti, I)) > 0 then begin
c := c+ 1;
I = GroebnerBasis(I ∪ {ti − ac});

end-if
end-for
I = I ∪ {ψi − ti : 1 ≤ i ≤ n};
J = GroebnerBasis(I) ∩K(a1, a2, . . . , ak)[s1, s2, . . . , sk];
return(J);
end Stabilizer.

Remark 3. An alternative way to compute the number of connected compo-
nents of the stabilizer is as follows. Compute the generic orbit G(ξ) of V and
determine a primary decomposition and the multiplicity of G(ξ) (see [4]).

3.3 Stratification of the Orbit Space

Given a (semi-)stratification of the representation space, the computation of
the stratification of the orbit space is essentially the computation of the matrix



3 Constructing the Stratification 113

grad(z) and its symmetric minors. If G is not finite then the dimension of the
representation space is strictly greater than the dimension of the orbit space.

The algorithm returns a list of strata of the orbit space of G
sorted by dimension. Each stratum Σ̂d,i is described as a triple

[[f1, f2, . . . , fr], [g1, g2, . . . , g2d−1], [h1, h2, . . . , hs]] where Σ̂d,i = {z ∈
Rm | f1(z) = 0, . . . , fr(z) = 0, g1(z) > 0, . . . , g2d−1(z) > 0, h1(z) 6=
0, . . . , hs(z) 6= 0}.
Algorithm 3 OrbitSpaceStrata(π, repStrata)
In: π = π1, π2, . . . , πm fundamental invariants of G ⊆ OR,list of closures of
strata of the representation space. Assume that d = dim Rn/G.
Out: list of strata of the orbit space (given by equations and inequalities)
begin
grad(z) = (dπi, dπj)

j=1..n
i=1..n ;

c = 0;
p(t) = det(grad(z) − t · idn); // assume p(z) = tm−d

∑d
i=0(−1)iδit

i, charac-
teristic polynomial of grad(z)
for k = 1 to |repStrata| do

for i = 1 to |repStrata[k]| do
J = image of repStrata[k][i] under π. // by Elimination Theory
ineq = {NormalForm(δi, J) > 0 | 1 ≤ i ≤ d}
strata[d][i] = [semistratum[k][i], I, J ];

end-for
end-for
return(strata);
end OrbitSpaceStrata.

Remark 4. A stratification up to generic equivalence can be obtained by re-
placing the line defining I by the line

I := set of first d× d principal minors of grad(z); // grad(z) arranged
s.t. no principal minor vanishes identically on repStrata[k][i].

Example 3. We consider the compact Lie group G = O1×Z2 ⊂ GL2(R) ( On1
acting on the first two coordinates, Z2 acting on the third coordinate) defined
by the ideal

〈
s21 + s22 − 1, s23 + s24 − 1, s1s3 + s2s4, s

2
5 − 1

〉
. The Jacobian of π :

R3 → R2, (t1, t2, t3) 7→ (t21 + t22, t
2
3) equals

(
2t1 2t2 0
0 0 2t3

)

, hence we have (all

variables range over R)

Σ0 = {v = (a, b, c) | rank dπ(v) = 0} = {(0, 0, 0)}

Σ1,1 ∪ Σ1,2 = {v = (a, b, c) | rank dπ(v) = 1} = {(a, b, 0) | a 6= 0 or b 6= 0} ∪ {(0, 0, c) | c 6= 0}

Σ2 = {v = (a, b, c) | rank dπ(v) = 2} = {(a, b, c) | ac 6= 0 or bc 6= 0}

By using the algorithm Stabilizer we obtain for the associated stabilizers
the table
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Stratum Σ0 Σ1,1 Σ1,2 Σ2

Stabilizer G Z2 × Z2 O1 Z2

As an example, the ideal I ⊂ R(a1, a2)[s1, s2, . . . , s5] defining the generic
stabilizer of Σ1,1 is given by

I = 〈a1s3 + a2s4 − a2, a
3
1s2 + a1a

2
2s3 + a2

1a2 + a3
2s4 − a2

1a2 − a3
2,

a1s1 + a2s2 − a1, s
2
5 − 1, a2

1 + a2
2s

2
4 + a1a2s3 − a2

2s4 − a2
1〉

Substitution of (a, b) ∈ Σ1,1 for (a1, a2) yields the the ideal of the stabilizer of
the point (a, b). Inequalities for describing strata of the orbit space are derived

from the matrix grad(z) =

(
z1 0
0 z2

)

:

Σ̂0 = {(0, 0)}
Σ̂1,1 ∪Σ1,2 = {(z1, 0) | z1 > 0} ∪ {(0, z2) | z2 > 0}

Σ̂2 = {(z1, z2) | z1 > 0, z1z2 > 0}

3.4 Examples

Example 4. (See Example 1.2.1) We consider the action of the representa-
tion id⊕ id on R4 of G = O2 ⊂ GLn(2)R, where id : G → GLn(2)R.
Note that the chosen fundamental invariants are algebraically independent.
The representation- and orbit space can be decomposed in three strata of
dimension 0, 2, 3 respectively. The matrix grad(z) is given by grad(z) =




4z1 2z2 0
2z2 z1 + z3 2z2
0 2z2 4z3



. Strata of the representation space are obtained from rank

conditions on dπ(x).

Dim. strata on rep. space strata of orbit space

0 Σ0 = {(0, 0, 0, 0)} Σ̂0 = {(0, 0, 0)}

2 Σ2 =

















t1
t2
t3
t4






|t1t4 − t2t3 = 0











\ Σ0











z1

z2

z3



 ∈ R
3

∣

∣

∣

∣

z2
2 − z1z3 = 0

z1 + z3 > 0, z2
1 + 4z1z3 + z2

3 > 0







3 Σ3 = R
4 \ (Σ0 ∪ Σ2)











z1

z2

z3



 ∈ R
3

∣

∣

∣

∣

z1 + z3 > 0, z2
1 − 2z2

2 + 6z1z3 + z2
3 > 0,

z2
1z3 + z1z2

3 − z2(z1 + z3) > 0







Note that the inequality z2
1 + 4z1z3 + z2

3 > 0 for the description of Σ̂2 can
be omitted. The inequality z1 + z3 > 0 cannot be substituted by the principal
minors z1, respectively z3, which do not vanish identically on clZ(Σ̂2), since
such a choice excludes points of the form z = (0, 0, z3), z3 > 0, respectively
z = (z1, 0, 0), z1 > 0. By using the algorithm Stabilizer we obtain for the
associated stabilizers the table

Stratum Σ0 Σ2 Σ3

Stabilizer G Z2 {id}
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Example 5. The action of id⊕ id of the group G = SO2 (cf. Example 1 in [1]).
The polynomials π1 = t21 + t22 + t23 + t24, π2 = t21 + t22 − t23 − t24, π3 = −2t1t4 +
2t2t3, π4 = 2t1t3 + 2t2t4, as given in [1], form a minimal set of fundamental

invariants of R[t1, t2, . . . , t4]
G

. Since π1, π2, . . . , π4 satisfy the relation π2
1 −

π2
2 − π2

3 − π2
4 , the orbit space is embedded in the hypersurface of R4. There

are only two strata of the orbit space. The 4× 4 matrix grad(z) has rank at

most 3 and is given by grad(z) =







4z1 4z2 4z3 4z4
4z2 4z1 0 0
4z3 0 4z1 0
4z4 0 0 4z1







. We obtain the following

description.

Dim. strata on rep. space strata of orbit space
0 Σ0 = {(0, 0, 0, 0)} {(0, 0, 0, 0)}

3 Σ3 = R4 \Σ0













z1
z2
z3
z4






∈ R4

∣
∣
∣
∣
∣
∣

z2
1 − z2

2 − z2
3 − z2

4 = 0
z2
4 > 0, z2

2 + z2
3 + z2

4 > 0,
z1z

2
2 + z1z

2
3 + z1z

2
4 > 0







( R4.

The stabilizer associated to Σ0, respectively, Σ3 is G, respectively, {id}.

Conclusion

We have presented an alternative approach for the computation of stratifica-
tions of compact Lie groups and have pointed out, that the dimension of a
stratum, respectively, its closure is an upper and lower bound for the num-
ber of inequalities, which are necessary in order to describe it. In particular,
the number of inequalities for describing orbit spaces is bounded by their
dimension. The advantage of the approach lies in the fact, that several ap-
plications (like the construction of polynomial potentials) do not necessarily
need inequalities at all, and that primary decomposition is faster on the rep-
resentation space than on the orbit space. Additionally, if the representation
of G is not orthogonal, out approach may be used to compute the Zariski-
closures of the strata of the orbit space. From a practical point of view, the
dependence on orthogonal representations should be avoided.
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Summary. In this paper we present newly developed functions in Maple-package
SyNRAC, for solving real algebraic constraints derived from various engineering prob-
lems. The current version of SyNRAC provides quantifier elimination (QE) for the
quadratic case and a new environment dealing with first-order formulas over the
reals (including new simplifiers of formulas) on Maple.

1 Introduction

We presented Maple-package SyNRAC for solving real algebraic constraints in
2003 [4]. SyNRAC stands for a Symbolic-Numeric toolbox for Real Algebraic
Constraints and is aimed to be a comprehensive toolbox composed of a col-
lection of symbolic, numeric, and symbolic-numeric solvers for real algebraic
constraints derived from various engineering problems.

In this paper we show the current status of development of SyNRAC. In
the previous version of SyNRAC [4] the following algorithms were available

• a special QE by the Sturm-Habicht sequence for sign definite condition,
• a special QE by virtual substitution for linear formulas,
• some naive simplifications of quantifier-free formulas.

Besides, the current version of SyNRAC provides the following:

• an environment dealing with first-order formulas over the reals,
• a special QE by virtual substitution for quadratic formulas,
• some new standard simplifiers of formulas.
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Since we firstly presented SyNRAC, we have introduced some new operational
symbols and fixed a notation system for expressing formulas. We are now de-
veloping our tool under the basis of the new environment. The QE algorithms
previously equipped have also been reimplemented after the latest setting.
These new features greatly extend the applicability and tractability of SyN-

RAC for solving real algebraic constraints in engineering. The current notation
for first-order logic over the reals is much easier to read than the previous one.
This helps users describe mathematical formulas for various types of real alge-
braic constraints. A special QE for quadratic formulas widens the application
areas of SyNRAC in actual problems (see [9]). The simplifiers basically reduce
the size of a given formula. This contributes not only to improve recogni-
tion of formulas but also to remarkably improve the efficiency of special QE
procedures based on virtual substitution.

Furthermore, using SyNRAC as a kernel, we are now pushing the further
development of design tools based on computer algebra (in particular, QE)
in various application fields: One successful attempt is the development of a
toolbox for parametric robust control design on MATLAB [12] based on the
authors’ previous works concerning QE-based robust control design [1, 2, 3, 5].

2 A new environment for first-order formulas over the
reals

When we say a real algebraic constraint, what we have in mind is a first-order
formula over the reals. We describe what type of formulas we are dealing with
and how they are expressed in SyNRAC.

An atomic formula is an equality or inequality represented by polynomials
in a finite number of indeterminates over Q:

f(x1, . . . , xn) ρ g(x1, . . . , xn) ,

where ρ is one of the relational operators {=, 6=,≤, <}. A formula is a string
obtained by appropriately arranging atomic formulas, logical operators, and
existential/universal quantifiers. Here is an example of existential formulas
with respect to x, y, and z

∃x∃y∃z (f1 ∧ f2 ∧ (h1 ∨ h2) ∧ f3) =⇒ ¬(g1 ∧ g2) ,

where fi, gi, and hi are atomic formulas.
To express formulas in SyNRAC, we need to prepare and fix notational

symbols for ∃, ∀, ∧, ∨, ¬, and so forth. In the earlier stages of implementa-
tion, we were using relational and logical operators bundled in Maple. As we
proceeded, it turned out that some of the Maple’s operators are unsuitable
for our purpose. Let us show a simple example. Let x be just an indetermi-
nate. The evalb command, which evaluates a relation in Boolean context, in
Maple returns false when x = 0 is input. This behavior does not meet our
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Table 1. The relational operators in SyNRAC

Operator = 6= ≤ < ≥ >

Notation &= &<> &<= &< &>= &>

Table 2. The logical operators in SyNRAC

Operator ∧ ∨ ¬ =⇒ ⇐= ⇐⇒

Notation &and &or &not &impl &repl &equiv

Table 3. The quantifiers in SyNRAC

Operator ∃x1 · · · ∃xnϕ ∀x1 · · · ∀xnϕ

Notation &Ex([x1, . . . , xn], ϕ) &All([x1, . . . , xn], ϕ)

expectation, because we want to remain x = 0 unchanged unless x is assigned
a value.

To avoid such reactions, we have introduced a user-defined operator &=1

and replaced it for the Maple’s equality symbol ‘=’. To maintain consistency,
the other relational operators are redefined by adding “&” at the forefront of
the respective commands (see Table 1). Some of them are just an alias for the
Maple’s corresponding command. Logical operators and quantifier symbols
have also been redefined in the same way as in Tables 2 and 3. In SyNRAC,
the example formula above is expressed in the following:

&Ex([x,y,z], (f1 &and f2 &and (h1 &or h2) &and f3) &impl &not(g1 &and g2)) .

The operators &and and &or can also be used as a prefix operator, taking
a list of operands as an argument. The expression

&and([f1, f2, ..., fn])

is equivalent in SyNRAC to

f1 &and f2 &and · · · &and fn .

According to these notational rules, QE algorithms has been
(re)implemented in SyNRAC. In addition, several basic utility functions on
formulas are provided in SyNRAC, for example, functions for counting the
number of atomic formulas, extracting atomic formulas from a formula as a
list, and so on. Moreover, some computations for the disjunctive normal form2

are also available.

1A Maple user can form a neutral operator symbol by using &name (the amper-
sand character “&” followed by one or more characters).

2A formula is called a disjunctive normal form if it is a disjunction (a sequence of
∨’s) consisting of one or more disjuncts, each of which is a conjunction (a sequence
of ∧’s) of one or more atomic formulas.
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3 Solving quadratic algebraic constraints over the reals

Here we briefly explain a special QE by virtual substitution of parametric test
points that is applicable to formulas in which the quantified variables appear
at most quadratically (see [13] for details). We call a formula whose atomic
subformulas are at most quadratic (linear) with respect to its quantified vari-
ables a quadratic (linear) formula, respectively.

Let

ψ(p1, . . . , pm) ≡ Q1x1 · · ·Qnxnϕ(p1, . . . , pm, x1, . . . , xn)

be a linear or quadratic formula, where Qi ∈ {∀, ∃} and ϕ is a quantifier-
free formula. By using the equivalence ∀xϕ(x)⇐⇒¬(∃x¬ϕ(x)), we can
change the formula into an equivalent formula of the form (¬)∃x1 · · · (¬)∃xn

(¬)ϕ. The negation ‘¬’ that precedes a quantifier-free formula can be eas-
ily eliminated (use De Morgan’s law and rewrite the atomic subformulas),
which is not essential part of quantifier elimination. Therefore we may fo-
cus our attention on an existential formula, i.e., a formula of the form
∃x1 · · · ∃xnϕ(p1, . . . , pm, x1, . . . , xn). Furthermore, it is sufficient to show how
to eliminate ∃x in ∃xϕ, since all the quantifiers in the formula can be elimi-
nated by removing one by one from the innermost one.

Now our main purpose is to eliminate the quantified variable ∃x in

ψ′(p1, . . . , pm) ≡ ∃x ϕ(p1, . . . , pm, x),

with ϕ(p1, . . . , pm, x) quantifier-free and quadratic, and obtain an equiva-
lent quantifier-free formula ψ′(p1, . . . , pm). For fixed real values q1, . . . , qm
for the parameters p1, . . . , pm, all polynomials appearing in ϕ(x) are linear or
quadratic. Therefore, the set M = {r ∈ R|ϕ(q1, . . . , qm, r)} of real values r for
x satisfying ϕ is a finite union of closed, open, or half-open intervals over R.
The endpoints of these intervals are among ±∞ and the real zeros of atomic
formulas in ϕ. Then candidate terms, say, t1, . . . , tk, for those zeros can be
constructed by the solution formulas for linear or quadratic equations.

If ϕ does not contain any strict inequalities, all the intervals composing M
are either unbounded or closed. In the closed case such an interval contains its
real endpoint. SoM is nonempty if and only if the substitution of±∞ or of one
of the candidate solutions tj for x satisfies ϕ. Let S be the candidate set S =
{t1, . . . , tk,±∞}. Such a set is called an elimination set for ∃xϕ. We obtain a
quantifier-free formula equivalent to ∃xϕ by substituting all candidates in S
into ϕ disjunctively:

∃xϕ⇐⇒
∨

t∈S

ϕ(x//t).

We note that there is a procedure assigning the expression ϕ(x/t) obtained
from ϕ by substituting t for x an equivalent formula [13]. We denote the
resulting formula by ϕ(x//t).
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If ϕ contains strict inequalities, we need to add to S other candidates of
the form s± ε, where s is a candidate solution for some left-hand polynomial
in a strict inequality and ε is a positive infinitesimal.

For improving the efficiency of this method, the following two points are
crucial: (i) refining the elimination set S by a scrupulous selection of a smaller
number of candidates in S; (ii) integrating with sophisticated simplifications
of quantifier-free formulas. SyNRAC now employs three types of elimination
sets proposed in [11]. Simplifications in SyNRAC are discussed in the next
section.

Moreover, (heuristic) techniques for decreasing the degree during elimina-
tion are important for raising the applicability of quadratic QE, because after
one quantifier is eliminated for a quadratic case the degree of other quan-
tified variables may increase. Only a simple degree-decreasing functions are
implemented in the current version of SyNRAC.

4 Simplification

In the present paper, the term simplification is used for simplification of
quantifier-free formulas. When a quantifier is eliminated in a given first-
order formula with a special QE procedure, its quantifier-free part usually
gets larger. During a QE algorithm, formulas under manipulation tend to get
extremely large, deeply nested and highly redundant. That is why simplifica-
tion procedures, which equivalently change a quantifier-free formula into more
concise one, are important in QE. Utilizing simplification algorithms combined
with a special QE algorithm contributes to improve not only readability of
the resulting formula but efficiency of the computation.

As for simplification, Maple, on which we implement our toolbox SyN-

RAC, can simplify certain formulas. By using Maple’s evalb command for
the inequality 3 < 5, the value true are obtained. But it does not work for,
say, ‘x < 3 and x < 5’; the evalb command does nothing and just returns
‘x < 3 and x < 5’, not ‘x < 5’. Dolzmann and Sturm [8] summarize the rule
for simplifying such formulas, to be precise, the formula ‘f ρ1 0 and/or g ρ2 0’,
where f and g differ only by a constant c, and ρ1 and ρ2 are an (in)equality.
They called these laws ordering theoretical smart simplification when c = 0,
i.e., f = g and additive smart simplification when c 6= 0, respectively.

Automatic formula simplifiers are implemented in REDLOG3 and QEP-
CAD4 (see [10, 8] for possible simplifications). Several simplification rules in-
cluding ordering theoretical and additive smart simplification are implemented
in SyNRAC, which greatly increase the efficiency of the QE commands in SyN-

RAC. These rules dramatically work especially when the number of quantified
variables are large.

3REDLOG is a QE package based on virtual substitution on REDUCE.
4QEPCAD is a general QE package that is applicable to all first-order formulas

based on cylindrical algebraic decomposition (CAD) [6, 7].
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5 Commands in SyNRAC

In this section we show some computational examples to illustrate how com-
mands in SyNRAC are used.5

First, you need to load the packages:

> read "synrac"; with(combinat);

You can use qe sdc to solve the formula ∀x > 0, f(x) > 0, called the sign
definite condition (SDC). The first argument of qe sdc is polynomial f and
the second is the variable to be eliminated. The next example shows how to
use the command to solve the problem ∀x > 0, a2x

2 + a1x+ a0 > 0,

> qe_sdc(a2*x^2+a1*x+a0, x);

( -a0 &< 0 &and a1 &< 0 &and -4*a0+a1^2 &< 0 ) &or

( -a0 &< 0 &and -a1 &< 0 &and -4*a0+a1^2 &< 0 ) &or

( -a0 &< 0 &and -a1 &< 0 &and 4*a0-a1^2 &< 0 )

time = 0.02, bytes = 123614

By using qe lin command, you can solve the existential linear QE problem.
This command takes two arguments; the former is a list of quantified variables
and the latter a quantifier-free formula. In the following example, qe lin
eliminates the two quantified variables in ∃x∃y(y > 2x + 3 ∧ x > 0 ∧ y < s)
and returns a condition with regard to s.

> qe_lin(&Ex([x,y], y&>2*x+3 &and x&>0 &and y&<s));

-1/2*s &< -3/2

time = 0.03, bytes = 144686

The qe quad command can deal with quadratic QE problems. You can solve
the quadratic QE problem ∃x∃y(x2 − 4x − 5 ≤ y ∧ 3 ≤ x ∧ y ≤ −5s+ 6)
as follows:

> qe_quad(&Ex([x,y], &and[(x^2-4*x-5)&<=y, 3&<=x, y&<=(-5*s+6)]));

-14+5*s &<= 0

time = 0.03 sec, bytes = 233514

The two examples below show that if a decision problem is given, i.e., the
input contains no free variables, each command returns the true or false
value:

> qe_sdc(x^5-x^2+3*x-9,x);

false

time = 1.11, bytes = 8774262

5All computations were executed on a Pentium III 1 GHz processor.
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> qe_lin(&Ex([x,y], y&<2*x+2 and y&<=-3*x+12 and y&>(1/3)*x+5));

true

A sample point: [x, y], [52/25, 144/25]

time = 0.03, bytes = 155078

A sample point is one that makes the formula true.
By calling the qfsimple command, you can simplify quantifier-free formu-

las with ordering theoretical and additive smart simplification.

> qfsimple((x&<5 &and x&<c &and x&>=10) &or (x&<=3 &and x&<=5 &and x&>=-5

&and x&<>3) &or (x&>7 &and x&<=d));

(-3+x &<= 0 &and -5-x &<= 0) &or (-x &< -7 &and -d+x &<= 0)

time = 0.00, bytes = 44974

The substsimple command simplifies quantifier-free formulas by making use
of simple atomic equations. This command repeats the following two proce-
dures: (i) solving the linear atomic equations with only one variable in each
conjunctive formula and substituting its solution for the variable as far as its
influence goes; (ii) calling the qfsimple command and simplifying the result-
ing formula. These are redone until such linear equations run out.

In the next example, z in the input formula is firstly substituted by 3/2
except the 4th atomic one, and then by using the resulting 1st equation, x is
replaced by 3/5 in three places.

> substsimple(5*x&=2*z &and 9&>=3*y-x &and x+4*y+z&>0 &and 2*z-3&=0

&and 5*x+2*y&<=z+3);

x &= 3/5 &and -40*y &< 21 &and z &= 3/2 &and -3+4y &<= 0

time = 0.00, bytes = 97406

Example 1. We show an example problem and solve it with SyNRAC. Consider
the following convex quadratic programming:

minimize x2
1 + x1x2 + 2x2

2,
subject to x1 + 4x2 ≥ 16, 3x1 + 2x2 ≥ 18, x1 ≥ 0, x2 ≥ 0.

To obtain a description of the first-order formula, we add an unqualified vari-
able z and express the problem in

∃x1∃x2(z−(x2
1+x1x2+2x2

2) ≥ 0∧x1+4x2 ≥ 16∧3x1+2x2 ≥ 18∧x1 ≥ 0∧x2 ≥ 0) .

Eliminating the quantified variables x1 and x2, we can obtain a condition on
z, from which we would get the range of the objective function. Quantifier
elimination procedure in SyNRAC outputs the condition below in 1.78 sec:
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&or([46 - z &<= 0, &and([567 - 16 z &<= 0,

&or([(46 - z) &= 0, &and([46 - z &<= 0, -162 + z &<= 0]),

&and([-466 + z &<= 0, 2659 - 40 z &<= 0]), 2659 - 40 z &<= 0])]),

&and([46 - z &<= 0, -256 + z &<= 0])]).

A little computation tells us that this formula is equivalent to z ≥ 46.
Thus the minimum of the objective function x2

1 + x1x2 + 2x2
2 equals 46.

6 Conclusion

We presented a newly developed functions in Maple-package SyNRAC. The
current version of SyNRAC, in particular, provides quantifier elimination for
quadratic case and some standard simplifiers of formulas over the new envi-
ronment for first-order formulas over the reals on Maple. The new features
greatly extend the applicability and tractability of SyNRAC for solving real al-
gebraic constraints in engineering. We are continually improving the efficiency
of implemented algorithms and are going to implement other algorithms (in-
cluding symbolic-numeric algorithms) for solving real algebraic constraints
into SyNRAC.

Now we note that based on SyNRAC the development of a toolbox for
parametric robust control design on MATLAB is ongoing.

We are aware that there is still a considerable way for SyNRAC to be a
sophisticated symbolic-numeric tool. Hence we will keep progressing to bridge
the gap. Our goal is to develop innovative symbolic-numeric methods and to
build novel design tools via SyNRAC for various fields in engineering.

Acknowledgements The authors would like to thank Volker Weispfenning
for his invaluable advice.
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1 Introduction

In many applications, multivariate polynomials are encountered in such a
way that an implicit representation is the most cost effective for compu-
tation. A black-box representation of a multivariate polynomial is a pro-
cedure such that, for any given input, it outputs the evaluation of the
polynomial at that input. Black-box polynomials appear naturally in ap-
plications such as multivariate polynomial systems, both approximate and
exact [Corless et al.(2001)Corless, Giesbrecht, Kotsireas, and Watt], and the
manipulation of sparse polynomials, such as factoring
[Kaltofen and Trager(1990), Dı́az and Kaltofen(1998)].

We consider the problem of sparse interpolation of a multivariate polyno-
mial given by a floating-point black box. That is, both the inputs and outputs
of the black box are precise up to a fixed number of digits. As a result, the
coefficients in the target polynomial can only be known up to a certain preci-
sion.

For example, a floating-point black box can be a procedure that, for any
given input, computes the value of the determinant of a matrix of multivari-
ate polynomials with floating-point coefficients. Such a black-box evaluation
procedure could be constructed from a number of effective numeric algorithms
for finding a determinant, for example Gaussian elimination.

A typical problem with black-box representations is to convert such ob-
jects into a standard representation. That is, given a multivariate polynomial
f(x1, . . . , xn) in black-box form, we want to find powers (dj1 , . . . , djn

) and
non-zero coefficients cj such that

f(x1, · · · , xn) =
t∑

j=1

cjx
dj1

1 · · ·xdjn
n .
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In the case of multivariate polynomials, one often expects such a
representation to be sparse. The best known interpolation meth-
ods that are sensitive to the sparsity of the target polynomial are
the Ben-Or/Tiwari algorithm [Ben-Or and Tiwari(1988)] and Zippel’s
method [Zippel(1979)]. Although both approaches have been general-
ized and improved [Zippel(1990), Kaltofen and Lakshman Yagati(1988),
Grigoriev et al.(1990)Grigoriev, Karpinski, and Singer,
Zilic and Radecka(1999)], they all require exact arithmetic. In a different
model, Mansour [Mansour(1995)] gives an impressive randomized algorithm
for interpolating a sparse integer polynomial from (limited precision) inter-
polation points. While the algorithm guarantees an answer with controllably
high probability, its cost is quite dependent on the size L (regardless of its
precision) of the largest coefficient in f , as well as the sparsity t and degree:
it requires about O((logL)8t log deg f) bit operations.

In numeric arithmetic, a procedure comparable to Ben-Or/Tiwari algo-
rithm dates back to Baron de Prony in 1795 [Prony(1795), Brezinski(1991)],
which actually considers the interpolation problem of fitting a sum of univari-
ate exponential functions:

F (x) =

t∑

j=1

cje
µjx.

Prony’s method determines cj and µj from the evaluations of F (x) at
equally spaced points F (0), F (1), . . .. There are many interesting variations
of this numeric interpolation problem, for example, the problem of shape
from moments [Milanfar et al.(1995)Milanfar, Verghese, Karl, and Wilsky,
Golub et al.(1999)Golub, Milanfar, and Varah]. Some other examples are
tomography [Milanfar et al.(1995)Milanfar, Verghese, Karl, and Wilsky] and
signal decomposition [Marple, Jr.(1987)].

We develop sparse interpolation algorithms for multivariate polynomials
in floating-point arithmetic. We also take advantage of current state-of-the-
art algorithms and look at the accuracy for numeric subproblems. Finally, we
conclude with a discussion of relavant topics and future research.

2 Preliminaries

In this section we describe Prony’s method for interpolating sums of expo-
nentials and the Ben-Or/Tiwari algorithm for multivariate polynomials. We
show that these two algorithms are closely related.

2.1 Prony’s method

Prony’s method [Prony(1795)] seeks to interpolate a univariate F (x) that is
a sum of exponential functions. That is, it tries to determine cj and µj such
that
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F (x) =

t∑

j=1

cje
µjx with cj 6= 0.

Since there are 2t unknowns, one would expect a system of at least the same
number of equations. However, these equations are not linear. Prony’s method
converts the nonlinear component to the root finding of a single, univariate
polynomial. All other steps involve solving systems of (structured) linear equa-
tions.

Let bj = eµj , then F (x) =
∑t

j=1 cje
µjx =

∑t
j=1 cjb

x
j . Consider the poly-

nomial ΛF (z) having the bj ’s as zeros:

ΛF (z) =

t∏

j=1

(z − bj) = zt + λt−1z
t−1 + · · ·λ1z + λ0.

The key facts used in the algorithm are that the sequence F (0), F (1), F (2), . . .
is linearly generated, and its minimal generating polynomial is ΛF

[Hildebrand(1956), Ben-Or and Tiwari(1988)].
The polynomial ΛF (z) can be determined by solving a Hankel system:








F (0) F (1) . . . F (t− 1)
F (1) F (2) . . . F (t)

...
...

. . .
...

F (t− 1) F (t) . . . F (2t− 2)















λ0

...
λt−2

λt−1








= −








F (t)
F (t+ 1)

...
F (2t− 1)







, (1)

which is also called the Yule-Walker equations for the series
∑

j≥0 F (j)zj .
Finding zeros for ΛF can determine b1, . . . , bt (thus µ1, . . . , µt). The co-

efficients c1, . . . , ct can be computed by solving a transposed Vandermonde
system:








1 · · · 1
b1 · · · bt
...

. . .
...

bt−1
1 · · · bt−1

t















c1
c2
...
ct








=








F (0)
F (1)

...
F (t− 1)








(2)

2.2 The Ben-Or/Tiwari method

For a given black-box polynomial f with n variables, the Ben-Or/Tiwari
method [Ben-Or and Tiwari(1988)] finds coefficients cj and integer exponents
(dj1 , . . . , djn

) such that

f(x1, . . . , xn) =

t∑

j=1

cjx
dj1

1 · · ·xdjn
n with cj 6= 0.

Let βj(x1, . . . , xn) = x
dj1

1 · · ·xdjn
n be the j-th term in f , and set bj =

βj(p1, . . . , pn) = p
dj1

1 · · · pdjn
n with p1, . . . , pn pairwise relatively prime. Note

that bkj = βj(p
k
1 , . . . , p

k
n) for any power k.



130 Mark Giesbrecht, George Labahn, and Wen-shin Lee

Then we consider the function F (k) = f(pk
1 , . . . , p

k
n). Designed for exact

arithmetic, the Ben-Or/Tiwari algorithm solves Yule-Walker equations in (1)
by the Berlekamp/Massey algorithm from coding theory. Once the terms bj

are found through the root finding of ΛF (z) = 0, the exponents (dj1 , . . . , djn
)

can be determined via repeatedly dividing bj by p1, . . . , pn that are relatively
prime. Finally, the coefficients cj are determined by solving a Vandermonde
system similar to (2).

3 Numerical methods in sparse interpolations

We give two sparse algorithms for interpolating black-box multivariate poly-
nomials in floating-point arithmetic. One basically follows the steps of the
Ben-Or/Tiwari algorithm [Ben-Or and Tiwari(1988)], while the other takes
advantage of the generalized eigenvalue reformulation of Prony’s method
[Golub et al.(1999)Golub, Milanfar, and Varah]. We also look at the stabil-
ity of the main subproblems in these algorithms.

3.1 Ben-Or/Tiwari algorithm in floating-point arithmetic

If the steps of the Ben-Or/Tiwari algorithm are directly executed in floating-
point arithmetic, severe difficulties arise at various stages of the computa-
tion. First, to solve the Yule-Walker equations in (1), rather than using the
Berlekamp/Massey algorithm in exact arithmetic, we need to solve a Hankel
system that is often ill-conditioned, especially in the case of real numbers
[Beckermann(2000)]. Even worse, the solutions λj to such Hankel system are
coefficients of the generating polynomial Λ(z) = zt +λt−1z

t−1 + · · ·+λ1z+λ0

for root finding, while root finding is usually very sensitive to the perturba-
tions in λj . Finally, the coefficients cj of our target polynomial are determined
by solving a Vandermonde system, which might be ill-conditioned.

The above difficulties are also shared by Prony’s method for interpolating
a sum of exponential functions, even though it was designed and used as a
numerical method. Special challenges also exist for multivariate polynomial
interpolations. For example, unlike the case in exact arithmetic, we can no
longer use integer factorizations to recover the exponent of each variable in a
multivariate term.

By evaluating each variable at powers of an appropriate primitive root of
unity, we can improve the conditioning of the associated Hankel system, the
computation of zeros for the generating polynomial, and the Vandermonde
system. Furthermore, the exponent of each variable in a multivariate term
can also be recovered.

Our strategy is to evaluate at powers of primitive roots of unity whose or-

ders are pairwise relatively prime. Let f(x1, . . . , xn) =
∑t

j=1 cjx
dj1

1 · · ·xdjn
n =

∑t
j=1 cjβj(x1, . . . , xn) with cj 6= 0. If p1, . . . , pn ∈ Z>0 are pairwise relatively
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prime and pk > degxk
f for 1 ≤ k ≤ n (assume we have an upper degree bound

for every variable in f). Consider the following sequence for interpolation:

αs = f(ωs
1, ω

s
2, . . . , ω

s
n) for 0 ≤ s ≤ 2t− 1

with ωk = exp(2πi/pk). Set m = p1 · · · pn and ω = exp(2πi/m), then ωk =
ωm/pk for 1 ≤ k ≤ n.

In f(ω1, . . . , ωn), each term βj(x1, . . . , xn) is mapped to value βj(ω1,
. . . , ωn)=ωdj . In a numeric setting, each dj can be computed by
rounding logω(βj(ω1, . . . , ωn)) to the nearest integer. Then the ex-
ponent for each variable (dj1 , . . . , djn

) ∈ Zn
>0 can be uniquely de-

termined by the reverse steps of the Chinese remainder algorithm
(cf. [Geddes et al.(1992)Geddes, Czapor, and Labahn]). That is, dj mod pk ≡
djk

for 1 ≤ k ≤ n, and3

dj = dj1 ·
(
m

p1

)

+ · · ·+ djn
·
(
m

pn

)

. (3)

In the remainder of this subsection, we look at the numerical sensitivity of
solving the associated Hankel system and the root finding of generating poly-
nomial Λ(z). The separation of powers for polynomial terms and the solving
of the associated Vandermonde system will be addressed in subsections 3.3
and 3.4.

Solving the associated Hankel system

Consider polynomial f(x1, . . . , xn) =
∑t

j=1 cjx
dj1

1 · · ·xdjn
n =

∑t
j=1 cjβj(x1, . . . , xn) and the evaluation sequence αs = f(as

1, . . . , a
s
n) for

0 ≤ s ≤ 2t− 1. We need to solve the following Hankel systems H0,t−1:







α0 α1 . . . αt−1

α1 α2 . . . αt

...
...

. . .
...

αt−1 αt . . . α2t−2








︸ ︷︷ ︸

H0,t−1








λ0

λ1

...
λt−1








= −








αt

αt+1

...
λ2t−1








In general, if a polynomial f is evaluated at powers of a real value, the differ-
ence between the scale of varying powers contributes to the ill conditioning of
the Hankel system. This problem is avoided in our method, since our H0,t−1

is formed from the evaluations on a unit circle.
Now let bj = βj(ω1, . . . , ωn), D = diag(c1, . . . , ct), and

V =








1 1 . . . 1
b1 b2 . . . bt
...

...
. . .

...
bt−1
1 bt−1

2 . . . bt−1
t







.

3Recall that in exact arithmetic, the original Ben-Or/Tiwari algorithm evaluates
variables at values that are pairwise relatively prime.
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The Hankel system H0,t−1 can be factored as H0,t−1 = V DV Tr. We make use
of this factorization for investigating the condition of H0,t−1.

Lemma 1.

‖H−1
0,t−1‖ ≥

1

t
max

j

1

|cj |
.

Proof. Let Dj be the matrix derived from D by using 0 to replace cj in the
diagonal, then matrix V DjV

Tr is singular for 1 ≤ j ≤ t.
Using the Eckart-Young theorem and the fact that the bj ’s are on the unit

circle,

1

‖H−1
0,t−1‖

= min{‖H0,t−1 −A‖, A singular }

≤ min{‖H0,t−1 − V DjV
Tr‖}

≤ ‖[1, bj , . . . , bt−1
j ]‖2 · |cj | ≤ t · |cj |.

Lemma 2.

‖H−1
0,t−1‖ ≤ ‖V −1‖2 · t ·max

j

1

|cj |
.

Proof. Consider H−1
0,t−1 = (V Tr)−1D−1V −1, then

‖H−1
0,t−1‖ ≤ ‖V −1‖2‖D−1‖ ≤ ‖V −1‖2 ·

t∑

j=1

‖D−1ej‖

≤ ‖V −1‖2 · t ·max
j

1

|cj |
.

An upper bound for ‖H−1
0,t−1‖ involves the conditioning of the Vander-

monde system V , which will be discussed in subsection 3.4.

Root finding of the generating polynomial
The solutions of the associated Hankel system λj are coefficients in the

polynomial Λ(z) = zt + λt−1z
t−1 + · · ·+ λ1z + λ0. In our floating-point Ben-

Or/Tiwari interpolation steps, the zeros of Λ(z) are bj = βj(ω1, . . . , ωn), where

f(x1, . . . , xn) =
∑t

j=1 cjx
dj1

1 · · ·xdjn
n =

∑t
j=1 cjβj(x1, . . . , xn), and bj are on

the unit circle.
It is well known that root finding for a polynomial is generally poorly con-

ditioned with respect to perturbations in the coefficients [Wilkinson(1963)].
However, the conditioning is greatly improved when all the roots are on the
unit circle.

Let bk be a zero of Λ(z) and b̃k a zero of Λ(z) + εΓ (z), where

Γ (z) = γtz
t + γt−1z

t−1 + · · · γ0,

then b̃k ≈ bk + ζ1ε and Λ(bk + ζ1ε) + εΓ (bk + ζ1ε) ≈ 0. By a Taylor expansion
with respect to bk, we see
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t∑

j=0

1

j!
Λ(j)(bk) · (ζ1ε)j + ε

t∑

j=0

1

j!
Γ (j)(bk) · (ζ1ε)j ≈ 0.

Recall that Λ(bk) = 0, and consider only the first order terms in ε, we have
Λ(1)(bk) · ζ1ε+ εΓ (bk) ≈ 0 and

|ζ1| ≈
∣
∣
∣
∣

Γ (bk)

Λ(1)(bk)

∣
∣
∣
∣
≤

∑t
j=0 |γj |

|∏j 6=k(bk − bj)|
.

Therefore,

|bk − b̃k| < ε · K1

|∏j 6=k(bk − bj)|
+K2ε

2.

The size of |∏j 6=k(bk − bj)| depends on the distribution of bj ’s on the unit
circle (cf. subsection 3.4).

3.2 Generalized eigenvalue reformulation

We present an alternative interpolation algorithm by adapting the reformu-
lation of Prony’s method that combines the solving of a Hankel system and
the root finding of a polynomial into a single generalized eigenvalue problem
[]GMV99. As a result, both solving the Hankel system and finding roots for
a polynomial can be avoided.

Consider the polynomial f(x1, . . . , xn) =
∑t

j=1 cjx
dj1

1 · · ·xdjn
n =

∑t
j=1 cjβj(x1, . . . , xn) and the evaluation sequence αs = f(as

1, . . . , a
s
n) for

0 ≤ s ≤ 2t− 1. Define Hankel systems

H0,t−1 =






α0 . . . αt−1

...
. . .

...
αt−1 . . . α2t−2




 and H1,t =






α1 . . . αt

...
. . .

...
αt . . . α2t−1




 ,

so that H1,t is one row shifted up from H0,t−1. Let bj = βj(a1, . . . , an). If we
set Z = diag(b1, . . . , bt), D = diag(c1, . . . , ct), and

V =








1 1 . . . 1
b1 b2 . . . bt
...

...
. . .

...
bt−1
1 bt−1

2 . . . bt−1
t







,

then H0,t−1 = V DV Tr, H1,t = V DZV Tr. The solutions λ to the generalized
eigenvalue problem

H1,tv = λH0,t−1v (4)

are b1, . . . , bt, the terms βj(x1, . . . , xn) evaluated at (a1, . . . , an). If a1, . . . , an

are chosen as ω1, . . . , ωn in subsection 3.1, the multivariate terms βj(x1, . . . ,
xn) can be recovered accordingly.
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[Golub et al.(1999)Golub, Milanfar, and Varah] show that the generalized
eigenvalue problem

(H1 − λH0)v = 0 (5)

can be analyzed for errors to the first order. For a given eigenvalue λ and the
associated eigenvector v, suppose

(H1 + εĤ1)(v + εv(1) + · · · ) = (λ+ ελ(1) + · · · )(H0 + εĤ0)(v + εv(1) + · · · )
is an ε-perturbation of our eigenvalue problem. Looking only at first order
errors gives

(H1 − λH0)v
(1) = (λ(1)H0 + λĤ0 − Ĥ1)v. (6)

Since v is both a left and right eigenvector (both H0 and H1 are symmetric),
the left side of (6) is annihilated by multiplication on the left by vTr:

λ(1) =
vTr(Ĥ1 − λĤ0)v

vTrH0v
. (7)

Assume the perturbations are of the same size as the precise value, that is,
‖Ĥ0‖2 = ‖H0‖2 and ‖Ĥ1‖2 = ‖H1‖2, and v is normalized as a unit vector,
then (7) gives the error bound

‖λ(1)‖ ≤ ‖H1‖2 + ‖λ‖‖H0‖2
|vTrH0v|

.

Assuming ‖H1‖2 = ‖H0‖2 (which is reasonable since the matrices have such
close structures) and recalling λ is a root of unity so that ‖λ‖ = 1 give

‖λ(1)‖ ≤ 2‖H0‖2
|vTrH0v|

. (8)

Since the norm of H0 can always be bounded by scaling when necessary, the
interesting quantity in the error bound (8) is

1

|vTrH0v|
. (9)

The coefficients cj ’s play a role in bounding the errors of the generalized
eigenvalues. Notice that the columns of (V T )−1 give both the right and left
eigenvectors of (5). If λj is the eigenvalue corresponding with the j-th column
of (V T )−1, that is vj = (V T )−1ej for (5), then (9) can be reduced to

|vTr
j · vj |2
|vTr

j H0vj |
=

‖vj‖2
|vTr

j · V ·D · V Tr · vj |
=
‖(V T )−1ej‖2

|cj |
≤ ‖(V

T )−1‖2
|cj |

.

An eigen-
value is well-disposed [Golub et al.(1999)Golub, Milanfar, and Varah] if the
quantity (9) is “small”. From (8) we see that a well-disposed eigenvalue will
result in a small error in the computation of the associated eigenvalue. The
advantage of solving the generalized eigenvalue problem in (4) is that there
are stable numerical methods for such a problem and those methods do not
require b1, . . . , bn to be on a unit circle.
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3.3 Separation of powers

After determining the term values bj ’s, we still needs to consider the precision
required for correctly recovering the integer exponents through taking the
logarithms of bj = ωdj with ω = exp(2πi/m).

Since two consecutive m-th roots of unity on the unit circle are separated
by an angle of radian 2π

m , the distance between these two points is bounded
below by twice the sine of half the angle between them. Thus, in order to
separate any two such points by rounding one must have values correct to

1

2
|2 sin(

π

m
)| ≈ π

m
and m = p1 · · · pn

with pk primes and pk > deg fxk
.

3.4 Recovering the coefficients

Once the term values bj ’s have been determined, it still remains to com-
pute their coefficients cj ’s, which can be done in a number of ways
[Golub et al.(1999)Golub, Milanfar, and Varah]. If the term values are deter-
mined as general eigenvalues in (5) by the QZ algorithm, the computed eigen-
vectors vj can be put to use here. Let M be the matrix whose columns are
eigenvectors vj , then the coefficients can be computed by

cj = (vT
j H0vj)(Tj,1)

2,

with T = M−1 = S−1V T and S a diagonal scaling matrix
[Golub et al.(1999)Golub, Milanfar, and Varah]. Alternatively, we can di-
rectly solve the Vandermonde system (2) to determine the cj ’s.

The conditioning of the associated Vandermonde system
While Vandermonde matrices can have poor conditioning, especially

over the reals [Beckermann(2000), Gautschi and Inglese(1988)], our prob-
lem is better behaved because all our points lie on the unit circle. For
example, for a t × t Vandermonde matrix, if the nodes happen to be all
the t-th roots of unity, the condition number for the 2-norm is 1, which
is optimal [Gautschi(1975), Example 6.4]. A Vandermonde matrix can be
well conditioned even if it is roots of unity which are not perfectly uni-
form. One particular distribution of roots of unity has been studied in
[Córdova et al.(1990)Córdova, Gautschi, and Ruscheweyh]. They consider a
Van der Corput sequence, that is, {aj}∞j=0 for

aj =

∞∑

k=0

jk2−(k+1) with j =

∞∑

k=0

jk2k for jk ∈ {0, 1}.

For a t × t Vandermonde matrix with nodes exp(2πia0), . . ., exp(2πiat−1),
the 2-norm condition number is less than

√
2t

[Córdova et al.(1990)Córdova, Gautschi, and Ruscheweyh, Corollary 3].
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In general, the conditioning of a Vandermonde matrix depends on the dis-
tance between different nodes, which follows from a well-known explicit for-
mula for the inverse. If V is a t× t Vandermonde matrix with nodes z1, . . . , zt,
then V −1 = [aj,k] where

`j(z) = aj,1 + aj,2z + · · ·+ aj,tz
t−1 =

t∏

u=1

u6=j

z − zu

zj − zu

is the j-th Lagrange polynomial of points z1, . . . , zt. In our case, z1, . . . , zt

are all on the unit circle. We have the following upper and lower bounds for
‖V −1‖ in the infinity norm [Gautschi(1975)]:

max
1≤j≤t

t∏

u=1

u6=j

1

|zj − zu|
< ‖V −1‖∞ ≤ max

1≤j≤t

t∏

u=1

u6=j

2

|zj − zu|
.

Now we look at the condition of our associated Vandermonde system.
Suppose p1, . . . , pn are distinct primes, pk > degxk

f , and ω = exp(2πi/m) for
m = p1 · · · pn. If the target polynomial f is evaluated at powers of (ω1, . . .,
ωn) for ωk = ωm/pk , the distribution of term values on the unit circle is fixed
because the polynomial terms are fixed.

To scrutinize the distribution of term values, instead of f =
∑t

j=1 cjx
dj1

1 · · ·xdjn
n , we consider the univariate f1(x) =

∑t
j=1 cjx

dj with

dj = dj1 · (m/p1) + · · ·+ djn
· (m/pn). Now the term values are ωd1 , . . . , ωdn ,

and their distribution on the unit circle depends on m and the differences be-
tween exponents dj and dk for j 6= k. If some of them are bunched together,
then comparing to m some dj ’s are relatively close to each other, which may
lead to the ill-conditioning of the Vandermonde system.

Therefore, we propose to randomize the distribution of term values on the
unit circle. Under the condition that p1, . . . , pn are given (hence their product
m), we randomly pick an integer r such that 0 < r < min(p1, . . . , pn) and con-
sider f evaluated at powers of (ωr

1, . . . , ω
r
n). Now the corresponding univariate

f1 are evaluated at powers of ωr, but it can also be viewed as another univari-

ate polynomial f
[r]
1 =

∑t
j=1 cjx

dj ·r evaluated at powers of ω. In other word,
the difference between ever pair of exponents is now multiplied by a random
r in mod m, and may produce a distribution of term values that provides a
better condition for the Vandermonde system. (As for the interpolation result,
the original polynomial terms can be recovered by dividing each exponent by
r in mod m.)

We implement the randomization strategy as the following: the user de-
termines an integer threshold ζ > 0 and randomly picks ζ distinct integers
r1, . . . , rζ such that 0 < rk < min(p1, . . . , pn) for each interpolation attempt.
It is very likely that at least one of these ζ interpolation results is based on
the computation of a “well-distributed” term values. If ζ ≥ 2, we may check
whether there are two (or more) interpolation results that are very closed to
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each other. Such results are likely to be good approximations of the target
polynomial.

We can further randomize the multiples of differences for exponents in each
variable. For each interpolation attempt, we pick n random integers r1, . . . , rn
such that 0 < rk < pk for 1 ≤ k ≤ n, then interpolate the polynomial f
evaluated at the powers of (ωr1

1 , . . . , ω
rn
n ). Rather than being multiplied by

a random r in mod m, the exponent difference dj − dk becomes a sum of
random multiples of its components in mod m. That is,

r1 · (dj1 − dk1
) ·
(
m

p1

)

+ · · ·+ rn · (djn
− dkn

) ·
(
m

pn

)

.

Similarly, to recover the original terms in the interpolation result, the expo-
nents in each variable xk are divided by rk accordingly.

4 Future directions

We have implemented our methods in Maple and are currently conducting
experiments. A full sensitivity analysis, to obtain stronger guarantees, is being
pursued. Furthermore, the generalized eigenvalue approach may be exploited
for interpolation at real values.

On the other hand, based on the polynomial relations between trigono-
metric functions, we have extended our sparse interpolation methods to the
interpolation of trigonometric functions. We intend to further investigate the
sensitivity and experiments in this context as well.
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