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Solving nonlinear Volterra integral equations by an 

efficient method 
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Abstract 

The purpose of this article is to use M-iteration method to approximate the solution a nonlinear Volterra 

integral equations in Banach spaces. Our results are achieved through the concept of fixed point theory. 

The results in this paper are new and interesting. 
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Introduction 

Fixed point theory has received massive attention for some decades now. This is as a result of 

its application to certain areas in applied science and engineering such as: Optimization theory, 

Game theory, Approximation theory, Dynamic theory, Fractals and many other subjects.  

One of the first fixed point theorems is the Banach fixed point theorem. This theorem is also 

known as the Banach contraction principle. Banach contraction principle is important as a 

source of existence and uniqueness theorem in diverse branches of sciences. This theorem 

gives a demonstration of the unifying power of functional analytic methods and usefulness of 

fixed point theory.  

The Banach contraction principle uses the Picard iterative method which is defined as follows: 

 

1 ,s sG s     , (1.1) 

 

for contraction mappings in a complete metric space. It is well known that this principle does 

not hold for nonexpansive mappings since Picard iteration method fails to converge to the 

fixed point of nonexpansive mappings even when the existence of fixed point is guaranteed in 

a complete metric space.  

Some many authors have constructed several iterative methods for approximating the fixed 

points of nonexpansive mappings and other more general classes of mappings. An efficient 

iterative method is one which; converges to the fixed point of an operator, has a better rate of 

convergence, gives data dependent result and guarantees stability with respect to G . 

Some notable iterative schemes in the existing literature includes: Mann iteration [19], Ishikawa 

iteration [16], Noor iteration [22], Argawal et al. iteration [2], Abbas and Nazir iteration [1], SP 

iteration [23], S* iteration [15], CR iteration [8], Normal-S iteration [25], Picard-S iteration [12], 

Thakur iteration [31], Thakur iteration [32], M iteration [34], M* iteration [33], Garodia and Uddin 

iteration [10], Two-Step Mann iteration [30] and many others. 

Very recently, Ullah and Arshad [34] defined M iteration scheme as follows: 

 

1

(1 ) ,

, 1,

,

s s s s s

s s

s s

k r r G

Gk s

G

 



 

  


  
 

 (1.2) 
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where  sr  is a sequence in [0,1]. The authors showed that (1.2) converges faster than several existing iterative methods. 

On the other hand, several problems which arise in mathematical physics, engineering,biology, economics and etc., lead to 

mathematical models described by nonlinear integral equations (see [20] and the references therein). In particular, Volterra-

Fredholm integral equations arise from parabolic boundary value problems, from the mathematical modeling of the spatio-

temporal development of an epidemic, and from various physical and biological models (see) [21, 36]. 

In this article, we will use M-iterative method (1.2) to solve the following Volterra-Fredholm integral equation which have been 

considered by Lungu and Rus [18]: 

 

0 0

( , ) ( , , ( ( , ))) ( , , , , ( , ))u g h u k m n u m n dmdn

 

           , (1.3) 

 

For all ,   . Let ( , . )  be a Banach space. Let 0   and 

 

 2 ( )( ) ( ) 0 : ( , ) ( )X u C M u u e M u  

    

        

 

We now consider Bielecki’s norm on X  as follows: 

 
( )

,

sup ( ( , ) )u u e


  

 

 


 



  

 

Obviously, ( , . )X


  is a Banach space (see) [5]. 

 

The following result which was given by Lungu and Rus [18] will be useful in proving our main result. 

 

Theorem 1.1. [18] Suppose the following conditions are fulfilled: 

 

1( )V 2 4( , ), ( , )g C K C          

 

2( )V :h X X   is such that 

 
( )0: ( ( , )) ( ( , )) .h hl h u h v l u v e           , for all ,    and ,u v X ; 

 

3( )V
1 2 1 20: ( , , ) ( , , )g gl g e g e l e e         for all ,    and 1 2,e e  ; 

 

4( )V
1 1 2 1 1 2( , , , ) : ( , , , , ) ( , , , , ) ( , , , )K Kl m n K m n e K m n e l m n e e           ,  

 

for all , , ,m n    and 1 2,e e  ; 

 

5( )V 4( , )Kl C      and 
( ) ( )

0 0

( , , , ) m n

Kl m n e dmdn le

 

        , for all ,   ; 

 

6( )V 1g hl l l  . 

 

Then, the equation (1.3) has a unique solution z X and the sequence of successive approximations 

 

1

0 0

( , ) ( , , ( ( , ))) ( , , , , ( , ))s s su g h u K m n u m n dmdn

 

            ,  (1.4) 

 

for all s  converges uniformly to z . 

 

We now give our main result in this section. 
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Theorem 1.2. Let  s be M-iterative method defined by (1.2) with sequences  sr and  sp  in [0,1] such that 

0

s

s

r




 . If 

all the conditions 1( )V  - 6( )V in theorem 8.1 are satisfied, then the equation (1.3) has a unique solution z in X and the
*A

iterative sequence (1.2) converges strongly to z . 

 

Proof. Let  s  be an iterative sequence generated by 
*A  iterative method (1.2) for the operator :A X X   defined by  

0 0

( ( , )) ( , , ( ( , ))) ( , , , , ( , ))A u g h u K m n u m n dmdn

 

            (1.5) 

 

We will prove that 0s   as s . Using (1.2), we obtain 

 
( )

1
,

sup ( ( ( , )) ( ( , )) )s sz A A z e


  

 

     


 




   . 

 

Now, 

 

0 0 0 0

0 0

( )

( ( , )) ( ( , ))

( , , ( ( , ))) ( , , ( ( , )))

( , , , , ( , )) ( , , , , ( , ))

( ( , )) ( ( , ))

( , , , , ( , )) ( , , , , ( , ))

s

s

s

g s

s

g h s

A A z

g h g h z

K m n m n dmdn K m n z m n dmdn

l h h z

K m n m n K m n z m n dmdn

l l z e

   

 

  



    

        

    

    

    

 



 

 

 

 

  

   

 

0 0

( ) ( )

( )

( , , , ) ( , )) ( , )

( )

K s

g h s s

g h s

l m n m n z m n dmdn

l l z e l z e

l l l z e

 

     

 

  



  

 



 





   

  

 

 

 

Hence, 

 

1 ( )s g h sz l l l z
 

                           (1.6) 

 

Again from (1.2), we have 

 
( )

,

sup ( ( ( , )) ( ( , )) )s sz A g A z e   


 

    


 



   . 

 

Now, 

 

0 0 0 0

0 0

( )

( ( , )) ( ( , ))

( , , ( ( , ))) ( , , ( ( , )))

( , , , , ( , )) ( , , , , ( , ))

( ( , )) ( ( , ))

( , , , , ( , )) ( , , , , ( , ))

s

s

s

g s

s

g h s

A g A z

g h g g h z

K m n g m n dmdn K m n z m n dmdn

l h g h z

K m n g m n K m n z m n dmdn

l l g z e

   

 

  



   

       

   

   

   





 

 

 

 

  

   

 

0 0

( ) ( )

( )

( , , , ) ( , )) ( , )

( )

K s

g h s s

g h s

l m n g m n z m n dmdn

l l g z e l g z e

l l l g z e

 

     

 

  



 

 





   

  

 
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0 0 0 0

0 0

( )

( ( , )) ( ( , ))

( , , ( ( , ))) ( , , ( ( , )))

( , , , , ( , )) ( , , , , ( , ))

( ( , )) ( ( , ))

( , , , , ( , )) ( , , , , ( , ))

s

s

s

g s

s

g h s

A g A z

g h g g h z

K m n g m n dmdn K m n z m n dmdn

l h g h z

K m n g m n K m n z m n dmdn

l l g z e

   

 

  



   

       

   

   

   





 

 

 

 

  

   

 

0 0

( ) ( )

( )

( , , , ) ( , )) ( , )

( )

K s

g h s s

g h s

l m n g m n z m n dmdn

l l g z e l g z e

l l l g z e

 

     

 

  



 

 





   

  

 

 
 

Hence, 

 

( )s g h sz l l l g z
 

      (1.7) 

 

Finally, 

 

((1 ) )

((1 )( ) ( )

(1 )

s s s s s

s s s s

s s s s

k z r r A z

r z r A z

r z r A z

 



 

 

 

 

    

    

    

 (1.8) 

 

Now, 

 
( )

,

sup ( ( ( , )) ( ( , )) )s sA Az A A z e   


 

     


 



    

 

And 

 

0 0 0 0

0 0

( )

( ( , )) ( ( , ))

( , , ( ( , ))) ( , , ( ( , )))

( , , , , ( , )) ( , , , , ( , ))

( ( , )) ( ( , ))

( , , , , ( , )) ( , , , , ( , ))

s

s

s

g s

s

g h s

A A z

g h g h z

K m n m n dmdn K m n z m n dmdn

l h h z

K m n m n K m n z m n dmdn

l l z e

   

 

  



    

        

    

    

    

 



 

 

 

 

  

   

 

0 0

( ) ( )

( )

( , , , ) ( , )) ( , )

( )

K s

g h s s

g h s

l m n m n z m n dmdn

l l z e l z e

l l l z e

 

     

 

  



  

 



 





   

  

 

 

 

Thus, 

 

( )s g h sA Az l l l z
 

      (1.9) 

 

From (1.8) and (1.9), we obtain 

 

  

(1 ) ( )

1 1

s s s s g h s

s g h s

k z r g z r l l l g z

r l l l z

 




      

     
 

 (1.10) 

 

By (1.6), (1.7) and (1.10), we have 

 

 2

1 ( ) 1 1 ( )s g h s g h sz l l l r l l l z
 

 
       
 
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Recalling from assumption 6( )C  that 1g hl l l  . Thus, from (1.10), we obtain 

 

 1 1 1 ( )s s g h sz r l l l z
 

 
      
 

 (1.11) 

 

Inductively, from (1.10), we have 

 

 1 0 1 1 ( )
s

s k g h

k

z z r l l l
 

 
      
   (1.12) 

 

Since  0,1kr   for all k  and assumption 6( )C  gives 

 

 1 1 ( ) 1k g hr l l l     

 

From classical analysis, we know that 1 e     for all  0,1  . Thus, (1.12) becomes 

 

 
0

1 1 ( )

1 0

s

k g h k

k

r l l l r

s z z e
 

  

    
 




    

 

which yields lim 0s
s

z





  . This completes the proof. 

 

Conclusion 

In this paper, the concept of fixed point has been employed to approximate the solution of a nonlinear Volterra integral equation. 

The method used in our results is well known to be efficient. Our results complement, improve and generalize several results in 

this research direction. 
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