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Abstract: This work proposes an adaptive beamforming scheme applied to time domain, pre-FFT
(Fast Fourier Transformation), Orthogonal Frequency-Division Multiplexing (OFDM) systems. This
scheme improves the performance and the capacity of OFDM systems, using a supervised adaptive
algorithm, with frequency domain multiplexed pilots of the OFDM system as a reference. The
simplicity of the proposed structure, as well as the method used to obtain reference signals for the
adaptive beamforming, are essential aspects that distinguish this paper from other publications.
Details on the operation of the proposed scheme, as well as the performance curves, are presented in
this manuscript. The proposal investigated here allows a significant reduction in the guard interval
of the OFDM system, thereby increasing its robustness or transmission capacity.

Keywords: OFDM; adaptive beamforming; Least Mean Squares (LMS); guard time

1. Introduction

In digital communication systems, signals are corrupted by various factors, the most common
including white noise and the Intersymbol Interference (ISI) [1]. White noise, which can be
characterized as Gaussian random variables, can be minimized with the use of channel encoders
[1]. However, the ISI, which is caused by different reflections of transmitted signals, is not efficiently
handled by these encoders. The ISI represents the overlapping symbols from the same information
source, that is they interfere with each other in the time domain. The ISI limits channel capacity
and is one of the greatest problems of the current digital communication systems [1]. However, the
receivers can use the spatial filters with the beamforming strategy to reduce the ISI [2,3]. The spatial
filters are sensors of antenna arrays, and they can improve a signal from a specific direction with the
beamforming strategy.

The OFDM systems have reduced transmission capacity due to the use of the Guard Interval (GI),
which in some cases is about 25% of the signal band [4]. On the other hand, the use of a cyclic prefix as
GI decreases the ISI, reducing the problem to changes in phase and amplitude that can be minimized
with the channel equalizer in the frequency domain [4]. The channel equalizer, which is used on
typical OFDM devices, requires adaptive interpolation algorithms associated with frequency domain
multiplexed pilot signals. The referenced pilot signals can be distributed, such as the Ultra High
Definition Television (UHDTV) with the Integrated Services Digital Broadcasting-Terrestrial (ISDB-T)
system [5], Digital Video Broadcasting-Terrestrial (DVB-T), DVB-Second Generation Terrestrial
(DVB-T2-Lite) [6], the Brazilian digital television system (Sistema Brasileiro de TV Digital-SBTVD),
ISDB-T International (ISDB-TB) [7–9], and Long-Term Evolution (LTE-A) [10] or in sequence, as in
IEEE 802.11 [11,12] and IEEE 802.15.3c [10,13].

It is essential to observe that a new solution for optimizing the OFDM system also can be applied
to the next generation networks based on Single-Carrier Orthogonal Frequency Division Multiple
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Access (SC-OFDMA). The SC-OFDMA is another approach technique that is based on the OFDM
[14–18].

Adaptive beamforming strategies on OFDM receivers have been the focus of many previous
papers that addressed different methods. The methods can differ as to the positioning of the gains of
the adaptive beamforming that is placed at pre-FFT (Fast Fourier Transformation) or post-FFT [19–22].
After the FFT, there is the open eye condition in the received symbols; however, for an OFDM
beamforming with K antennas and C subcarriers, the post-FFT scheme needs to execute K FFT
operations, and the adaptive algorithm needs to update K× C gains. In the pre-FFT project, only two
FFT operations and K gains’ updating are necessary [19,22]. There are also methods called analog
beamforming in which the gains of the array are adjusted by Variable Gain Amplifiers (VGAs) in
the Radio Frequency (RF) part [23,24]. The analog beamforming is an attractive technique when the
number of antenna elements increases.

In the works presented in [25,26], the MMSEbeamforming algorithm for the pre-FFT OFDM
system was applied to a channel assumed to be frequency selective fading. However, the scheme
needs the channel estimation to calculate the parameters of the spatial filter. The pre-FFT beamforming
based on eigenanalysis and post-FFT subcarrier diversity was proposed in [27,28]. In this case, the
eigenvalues and the corresponding eigenvectors were used to determine the parameters of the spatial
filter. Similar to the proposal in [25], the work shown in [29] needed the knowledge of the Direction Of
Arrival (DOA) and channel fading information. In [30], a method is proposed that uses the Channel
State Information (CSI) matrix, and [22] developed a performance evaluation of pre- and post-FFT
beamforming. The work in [31] proposed a post-FFT beamformer based on the estimated one-tap
channel coefficient associated with a pre-FFT switched-beam device.

It is crucial to observe that there is no open eye condition in the time domain, pre-FFT device part,
and this forces most works in the literature not to use the adaptive scheme without prior knowledge of
the channel. In other words, there are no reference symbols in the OFDM time domain, and for that,
it is necessary for the channel estimation to update the beamforming gains. The works presented in
[19,22,32–35] proposed the alternative method using beamforming with the Least Mean Squares (LMS)
and Recursive Least Squares (RLS) adaptive algorithms in the time domain, pre-FFT, without channel
estimation. This method updates beamforming gains in the pre-FFT; however, it calculates the error
information in the post-FFT, and after, the error signal returns back to the pre-FFT adaptive algorithm.
However, for each antenna gain updating, the reference signal (the OFDM pilots) arrives delayed in C
samples (or one OFDM symbol) from the antenna input signal, and this desynchronization generates
convergence problems on the adaptive algorithms. The new approaches using machine learning and
optimization algorithms are applied to the adaptive beamforming [36,37]. However, these techniques
have a high computational complexity when compared with the LMS algorithm.

This work presents a new implementation of the pre-FFT beamforming, which uses an adaptive
spatial filter trained with the LMS algorithm with samples of the OFDM symbol in the time domain.
The proposed scheme in this paper does not depend on the channel estimation and uses two operation
modes, called here semi-supervised and semi-unsupervised, where the reference signal is an estimated
OFDM symbol created in the frequency domain. For the semi-supervised mode, the reference signal is
generated from pilot symbols in the frequency domain (or pilot carriers) distributed or in sequence.
For the semi-unsupervised mode, the scheme proposed here uses the pilot symbols associated with
decided data symbols (or decided data carriers) using the Decision Directed (DD) algorithm. Different
from the proposals shown in [19,22,33–35], the error signal is calculated in the time domain, and the
reference signals of the antenna input signal are not delayed.

2. OFDM Communication System and Beamforming

Figure 1 shows the structure of an OFDM discrete baseband system where the source of
information is transmitting symbols a(m). The symbol, a(m), is part of the dataset AM = a0, a1, . . . ,
aM−1 of M symbols, and they are transmitted over a period of ts seconds. Each m-th symbol represents
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a word of B bits, and ts can be called the sampling period or symbol interval. Table 1 lists the major
notations adopted in this paper.

OFDM 

Transmitter

a(m) Channel

h(m)

z(m) Spatial 

Filter

.
.
.

+

+

r0(m)

rK-1(m)

u0(m)

uK-1(m)

OFDM 

Receiver

x(m) ã(m)

Figure 1. Discrete baseband OFDM system with antenna array.

Table 1. Major notations used in this paper.

Notation Description

GI The guard interval.
C Number of the carriers.

CD Number of the data carriers.
CP Number of the pilot carriers.

CZP Zero padding size.
T OFDM symbol period.
ts The sampling period of the OFDM symbol.

NGI The number of the GI samples.
L The number of paths of the channel.
αi The complex gain of the i-th path.
τi The delay of the i-th path.
K The number of the antenna elements.

∆y Space between the antenna elements.

The OFDM transmission technique consists of transforming a Single Carrier (SC) signal,
of bandwidth W Hz, into a signal formed by C carriers of bandwidth W/C Hz. The OFDM scheme
parallelizes one data source in several other data sources transmitted in orthogonal sub-carriers [4].
One advantage of this type of transmission is that each sub-carrier may have a bandwidth smaller
than the coherence bandwidth of the channel. In other words, each OFDM symbol may have a period
longer than the delay spread of the channel, improving the robustness of the system against ISI [4].
The OFDM symbol period, T, is given by:

T = ts · C, (1)

where the symbol interval, ts, also coincides with the sampling period of the OFDM symbol. Figure 2
illustrates the OFDM transmitter where the vector, a (n), expressed as:

a (n) =



a0 (n)
...

ap (n)
...

aCD−1 (n)


=



a (m + nCD)
...

a (m− p + nCD)
...

a (m− CD + 1 + nCD)


, (2)

collects CD symbols, a(m), after the Serial-to-Parallel converter (S/P). In the OFDM transmitter scheme,
the signal ap(n) represents the p-th data carrier associated with the n-th OFDM symbol in the frequency
domain.
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S/P
s(n)

P/S
a(n) b(n)

OFDM Transmitter

IDFT
a(m) Pilots

Insertion

GI

Mux

b(m) z(m)

Figure 2. Illustration of the discrete baseband OFDM transmitter. S/P, Serial-to-Parallel converter;
IDFT, Inverse Discrete Fourier Transform; P/S, Parallel-to-Serial converter; GI, Guard Interval.

The data carriers are multiplexed with CP pilot carriers, o (n), expressed as:

o (n) =



o0 (n)
...

ok (n)
...

oCP−1 (n)


, (3)

where ok (n) is the k-th pilot carrier in the n-th OFDM symbol. After pilot insertion are inserted CZP
zeros (zero padding) generating a set of C = CD + CP + CZP carriers, characterized by:

s (n) =



s0 (n)
...

sj (n)
...

sC−1 (n)


=



s (m + nC)
...

s (m− j + nC)
...

s (m− C + 1 + nC)


(4)

where,

sj (n) =



ok(n), if (j ∈ pilot carrier position)

ap (n) , if (j ∈ data carrier position)

0, if (j /∈ pilot or data carrier position)

. (5)

The vector, s (n), is then processed by the IDFT generating a new n-th OFDM symbol, b (n),
characterized as:

b (n) = IDFT (s (n)) , (6)

where:

b (n) =



b0 (n)
...

bj (n)
...

bC−1 (n)


=



b (m + nC)
...

b (m− j + nC)
...

b (m− C + 1 + nC)


, (7)
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the signal, bj(n), is the j-th sample of the n-th OFDM symbol. The GI (see the GI mux block in Figure
2) insertion in a vector representation can be characterized by:

GI (n) =

 GI (n− C)
...

GI (n− C− NGI + 1)

 , (8)

where NGI is the number of the GI samples. The combination of Matrices 7 and 8 gives:

z (n) =

 b (n)
−−−−
GI (n)

 , (9)

where z(n) is the OFDM symbol composed of C + NGI samples. Usually, the size of GI is expressed as
a fraction of the data carriers, CD, where GI = 1/(CD/NGI).

The symbols are transmitted (by the OFDM transmitter) through a channel, h(m), subject to the
ISI and additive white Gaussian noise (AWGN), r(m). The channel impulse response, h(m), can be
expressed as:

h(m) =
L−1

∑
i=0

αiδ (m− τi) , (10)

where L is the number of paths of the channel, αi is the complex gain of the i-th path and τi is an integer
value representing the delay of the i-th path at time m. The receiver, shown in Figure 1, processes the
signal u(m), resulting from the channel and expressed by:

u (m) =
L−1

∑
i=0

αiz(m− τi), (11)

where z(m) is the symbol at the output of the OFDM transmitter or the sample of the OFDM symbol.
Equation (11) can also be written in vector form, as follows:

u (m) = hTz (m) , (12)

where h (m) is the vector of complex channel gains, with ISI, length L, given by:

h =

 α0
...

αL−1

 , (13)

and z (m) is the vector of channel delays applied to the transmitted signal z(m), given by:

z (m) =

 z (m− τ0)
...

z (m− τL−1)

 . (14)

Rewriting Equation (12) for the n-th OFDM symbol and assuming that NGI ≥ L, the C + NGI
samples of the received OFDM symbol are given by:

u(n) = ZT(n)h, (15)



Sensors 2018, 18, 3558 6 of 15

where Z(n) is the delay matrix formed by the vectors shown in Equation (24), which can be
represented by:

Z (n) =
[

B′ (n) | B′′ (n) | GI (n)
]

, (16)

where B′ (n) is the ISI portion within the OFDM symbol characterized as:

B′ (n) =

 b (m− d0,0) · · · b (m− d0,C−L−1)
...

. . .
...

b (m− dL−1,0) · · · b (m− dL−1,C−L−1)

 , (17)

whereas B′′ (n) is the ISI portion between the OFDM and GI samples, being described as:

B′′ (n) =

 b (m− d0,C−L) · · · b (m− d0,C−1)
...

. . .
...

GI (m− d0,C−L) · · · GI (m− dL−1,C−1)

 , (18)

and the GI (n) matrix describes the interference within the GI. In the B′ (n) and B′′ (n) matrices, the
di,j variable is characterized as:

di,j = τi − j. (19)

Figure 3 shows a Linearly Equally-Spaced (LES) array where the antenna elements are arranged
along the y-axis, with spacing of ∆y. It is assumed that all the multipath arrives at the array in the
vertical plane, with the Angle Of Arrival (AOA) of θ radians with respect to the to the x-axis orthogonal
to the y-axis. Each v-th element of the antenna array is weighted by a complex gain, fv, and the spacing
∆y should generally be greater than or equal to λ/2.

+fv

f0

.
.
.

.
.
.

uv(m)

u0(m)

∆y

fK-1

uK-1(m)

x(m)

.
.
.

.
.
.

GI 

Remotion

GI 

Remotion

GI 

Remotion

Spatial Filter

Figure 3. Antenna array with K equally-spaced sensors.

The signal, u(m), received by the v-th antenna element is expressed as:

uv(m) =
L−1

∑
i=0

αiz(m− τi)e−j(vβ)∆y cos(θi) + rv(m), (20)



Sensors 2018, 18, 3558 7 of 15

where β = (2π)/λ, θi is the AOA associated with the i-th channel path and rv(m) is the noise associated
with each v-th antenna element. Rewriting the Equation (20) based on Equation (15) gives:

uv (n) = BT(n)Ov(θ)h + rv(n) (21)

where B(n) represents the signal after GI remotion, GI(n) (see Figure 3 and Equation (16)), that is:

B (n) =
[

B′ (n) | B′′ (n)
]

(22)

and Ov(θ) is a diagonal matrix expressed as:

Ov(θ) =

 e−j(vβ)∆y cos(θ0) · · · 0
...

. . .
...

0 · · · e−j(vβ)∆y cos(θL−1)

 (23)

and:

θ =

 θ0
...

θL−1

 . (24)

The combined output of the signals of the K antenna elements, x (m), is represented by:

x (m) =
K−1

∑
v=0

f vuv (m) =
K−1

∑
v=0

L−1

∑
i=0

f vαiz(m− τi)e−jβv∆x cos(θi) + f vrv(m). (25)

where using Equation (21), the OFDM symbol received, after the LES, can be shown as:

x (n) =
K−1

∑
v=0

f vuv (n) =
K−1

∑
v=0

f vBT(n)Ov(θ)h +
K−1

∑
v=0

f vrv(n) = BT(n)A(θ)h +
K−1

∑
v=0

f vrv(n) (26)

where:

A(θ) =
K−1

∑
v=0

f vOv(θ) (27)

and x(n) is expressed as:

x (n) =



x0 (n)
...

xp (n)
...

xC−1 (n)


=



x (m + nC)
...

x (m− p + nC)
...

x (m− C + 1 + nC)


, (28)

where xp(n) is the p-th sample of the n-th OFDM symbol. The variable A(θ) is the array factor,
and it determines the antenna pattern and the direction gain. Adjusting the K antenna array gains,
f v (v = 0, . . . , K− 1), it is possible to select any direction for maximum gain [2]. After the spatial filter,
the signal, x(n), is processed by the OFDM receiver, shown in details in Figure 4.
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Figure 4. Illustration of the discrete baseband OFDM receiver. DFT, Discrete Fourier Transform.

The estimated carriers associated with the n-th OFDM symbol is given by:

s̃ (n) = DFT (x(n)) = DFT
(

BT(n)A(θ)h
)
+ DFT

(
K−1

∑
v=0

f vrv(n)

)
= s (n) cTI + g(n) (29)

where c can be expressed as:

c ≡ DFT


 γ

−−−−
0


 = DFT


 A(θ)h
−−−−

0


 . (30)

The vector γ is a “better version” of the channel, h, and it is given by:

γ =

 γ0
...

γD−1

 , (31)

where D ≤ L and 0 is a vector with C− D zeros. The vector g(n) is the OFDM symbol noise in the
frequency domain, and it is indicated as:

g(n) = DFT

(
K−1

∑
v=0

f vrv(n)

)
=

 g0(n)
...

gC−1(n)

 . (32)

The frequency equalizer (see Figure 4) compensates the channel effects, c, using received pilot
carries, õ (n), expressed as:

õ (n) =

 õ0 (n)
...

õCP−1 (n)

 = o (n) cTI + gP(n) (33)

where gP(n) is the pilot noise. There are several techniques and schemes for the OFDM frequency
equalizer, and the conventional strategy uses the interpolation algorithm with pilot carriers to create a
channel estimation [4]. With the channel information, it is possible to compensate the channel effects
and estimate the transmitted data carriers, ã(n).

Equations (29) and (30) show that the beamforming scheme can minimize the ISI problem by
reducing the attenuation (A(θ)h) and length (D ≤ L) of the channel, which helps the frequency
domain equalizer and also enables the reduction of the GI size, NGI < L. Another important point is
that the beamforming is the Single Input Multiple Output (SIMO) system, and the pilot carriers work
with the Signal-to-Noise Ratio (SNR) over the SIMO system; this enables the reduction of the noise
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enhancement in the frequency equalizer [38]. Thus, the question is how to efficiently find the spatial
filters’ gains,

f =

 f0
...

fK−1

 , (34)

that allow these improvements.

3. Proposed Method for OFDM Adaptive Antenna Array

Figure 5 shows the adaptive beamforming proposed in this work, where the K spatial filter gains,
f(m), are adjusted in each m-th sample of the OFDM symbol using the LMS algorithm. The error
signal, e(m), is calculated in time domain and is given as:

e (m) = x̂ (m)− x (m) (35)

where x̂ (m) is part of the vector x̂ (n) expressed as:

x̂ (n) =

 x̂0 (n)
...

x̂C−1 (n)

 = IDFT (ŝ(n)) . (36)

Spatial Filter

+
_ e(m)

x(m)ã(m)

P/S
.
.
.

antenna 0

antenna K-1

s(n)Reference 

Signal 

Control

LMS

x(m)^x(n)^

o(n)

â(n)

ã(n)

^

f(m)

e
DD(n)Slice IDFT

OFDM Receiver

Figure 5. Adaptive antenna array proposed for the OFDM system.

The reference vector, ŝ(n), is created in the frequency domain by the module called Reference
Signal Control (RSC) (see in Figure 5) and is expressed as:

ŝ (n) =



ŝ0 (n)
...

ŝj (n)
...

ŝC−1 (n)


=



ŝ (m + nC)
...

ŝ (m− j + nC)
...

ŝ (m− C + 1 + nC)


(37)
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where,

ŝj (n) =



ok(n), if (j ∈ pilot carrier position)

0, if (j ∈ data carrier position) and
(

eDD
p (n) ≥ EDD or n ≤ NDD

)
âp (n) , if (j ∈ data carrier position) and

(
eDD

p (n) < EDD or n > NDD
)

0, if (j /∈ pilot or data carrier position, zero padding)

(38)

where ôk (n) is the p-th pilot carrier, âp (n) is the p-th decided data carrier (or decided symbol),
the signal eDD

p (n) is the p-th direct decision error expressed as:

eDD
p (n) = âp (n)− ãp (n) = slice

{
ãp (n)

}
− ãp (n) (39)

where ãp (n) is the p-th estimated data carrier (or estimated symbol) and the EDD and NDD are
parameters managed by RSC. The RSC has three inputs: the pilot carriers, o (n), the decided data
carriers, â (n), given by:

â (n) =

 â0 (n)
...

âCD−1 (n)

 =

 slice {ã0 (n)}
...

slice
{

ãCD−1 (n)
}
 =

 slice {ã (m + nCD)}
...

slice {ã (m− C + 1 + nCD)}

 (40)

and the direct decisions errors, eDD
p (n), expressed as:

eDD(n) =


eDD

0 (n)
...

eDD
CD−1 (n)

 . (41)

The RSC uses the rules shown in Equation (38), and it makes a decision if the p-th decided data
carrier (or data symbol), âp (n), will contribute with the reference signal, ŝ (n). The decision is based
on two parameters, EDD and NDD. The parameter EDD is the upper bound of the direct decision error,
and it decides if the p-th data carrier (or data symbol), âp (n), has an appropriate value to use in the
reference signal, ŝ (n), and the parameter NDD controls the time (from that OFDM symbol) the data
carriers can start to contribute to the reference signal ŝ (n). Differently than the works presented in
the literature, the RSC allows the semi-unsupervised mode, where the reference vector ŝ(n) combines
pilot carriers with decided data carriers using the Decision Directed (DD) algorithm.

The LMS algorithm is executed in the OFDM sample time, ts (see Equation (1)), and this enables
one to adjust the antenna array gains, f(m), faster than the works proposed in [19,22,32–35]. The LMS
implements the equation given as:

f (m) = f (m− 1) + ηe (m) u (m) (42)

where u (m) (see Figure 3) is expressed as:

u (m) =



u0 (m)
...

uv (m)
...

uK−1 (m)


(43)
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and η is the adaptation step.
It is important to observe that when n ≤ NDD(n = 0, . . . , NDD), the reference signal, ŝ (n), uses

just pilot carriers and zeros, and it creates a estimated version of the reference OFDM symbol, ŝ (n).
Differently than the works proposed in [19,22,32–35], the reference signal, ŝj (n), does not need to wait
for the C OFDM samples (or one OFDM symbol) to update (see Equation (42)).

4. Simulations and Results

To validate the adaptive beamforming scheme proposed here, several simulations were performed
with the OFDM system. Table 2 shows the constant parameters used in all simulations where they
were based on the SBTVD standard [8]. Three channel scenarios (Channel 1, Channel 2 and Channel 3)
were simulated according to the parameters presented in Table 3. For each channel, the Bit Error Rate
(BER) curves were created for distinct values of the number of antennas (K = 1, K = 4, K = 6, K = 8
and K = 10) and GI size (GI = 1/2 and GI = 1/512). Channel coding was not used in any simulation.

Table 2. Constant parameters used in all simulations.

Space between the Antenna Elements (∆y) λ/2

Sampling period of the OFDM symbol (ts) 0.1230 µs
Number of the data carriers (CD) 1248 carriers
Number of the pilot carriers (CP) 156 carriers
Zero padding size (CZP) 644 carriers
Number of the carriers (C) 2048 carriers
OFDM symbol period (T) 251.9040 µs
Modulation 16-QAM
Pilots Spread (SBTVDstandard [8])
Channel coding none

Table 3. Simulated channels.

Channel 1 µs 0.00 0.30 3.50 4.40 9.50 12.70
dB 0.00 −12.00 −4.00 −7.00 −15.00 −22.00

AOA 30◦ 50◦ 90◦ 120◦ 150◦ 170◦

Channel 2 µs 0.00 0.15 0.42 1.51 2.32 2.80
dB 0.00 −3.09 −6.02 −10.45 −20.00 −26.02

AOA 30◦ 50◦ 90◦ 120◦ 150◦ 170◦

Channel 3 µs 0.00 0.74 1.11 1.48 1.85 2.10
dB 0.00 −20.00 −20.00 −10.00 −14.00 −18.00

AOA 30◦ 50◦ 90◦ 120◦ 150◦ 170◦

Figure 6 shows the BER performance curve for Channel 1 (see Table 3). Channel 1 is a long
channel, L ≈ 104 OFDM samples (see Equations (10) and (11)), that is 12.7 µs/ts ≈ 104. Based on
Equations (16)–(18), the minimum number of GI samples, NGI , may be greater than 104 (NGI ≥ 104) in
order to avoid the OFDM symbol interference. Regarding the study of the improvements associated
with the adaptive beamforming, GI = 1/512 (NGI = 4) and GI = 1/2 (NGI = 740) were used for
three numbers of antennas, K = 5, K = 6 and K = 8. The results show that the adaptive beamforming
proposal had an excellent performance where, when the BER = 10−4, the gain was about 10 dB,
15 dB and 17.5 dB for K = 5, K = 6 and K = 8, respectively; even for the cases where NGI < 104
(GI = 1/512), which enables one to work with more bandwidth efficiency. It is essential to observe
that there is a small gain, about 2 dB, between GI = 1/2 and GI = 1/512 for all beamforming results
(K = 5, K = 6 and K = 8), and this proves the shortest of the channel presented by Equations (29)–(31).
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Figure 6. BER performance curve for Channel 1 (see Table 3).

The BER performance curve for Channel 2 (see Table 3) is presented in Figure 7 where it is a typical
wireless network channel. The length of the channel L is ≈ 23 OFDM samples (see Equations (10)
and (11)), that is 2.8 µs/ts ≈ 23. For this case, the minimal number of the GI samples, NGI , may be
greater than 23 (NGI ≥ 23) to avoid the OFDM symbol interference (see Equations (16)–(18)). Similar
to the Channel 1 simulations, GI = 1/512 (NGI = 4) and GI = 1/2 (NGI = 740) were used for three
numbers of antennas, K = 4, K = 6 and K = 8. The results also show improved performance when
compared to the OFDM system (K = 1). Using the value of BER = 10−4, the gain was about 12 dB,
17 dB and 18.5 dB for the K = 4, K = 6 and K = 8, respectively. For cases with NGI < 23 (GI = 1/512),
the adaptive beamforming worked, and similar to Channel 1, there is a small gain, <2 dB, between
GI = 1/2 and GI = 1/512 for all beamforming results (K = 4, K = 6 and K = 8).
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Figure 7. BER performance curve for Channel 2 (see Table 3).

Finally, Figure 8 shows the BER performance curve for Channel 3 (see Table 3). Channel 3 has L ≈ 17
OFDM samples (see Equations (10) and (11)), that is 2.1 µs/ts ≈ 17. Based on Equations (16)–(18), the
minimum number of GI samples, NGI , may be greater than 17 (NGI ≥ 17) to not allow the OFDM symbol



Sensors 2018, 18, 3558 13 of 15

interference. The results were obtained for two numbers of antennas K = 8 and K = 10, and the gains
(using BER = 10−4 as reference) were about 6 dB and 7.5 dB for K = 8 and K = 10, respectively. Such as
other cases, the beamforming worked even for the cases where NGI < 17 (GI = 1/512).
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Figure 8. BER performance curve for Channel 3 (see Table 3).

The works presented in [19,22,32–35] had results with a guard interval great than channel length
NGI > L, and this is mandatory for solutions where the array beamforming is updated in each OFDM
symbol in the time domain. In this work, the array beamforming proposed was updated in each
m-th sample in the frequency domain, and this allows one to work with a guard interval smaller than
channel length NGI < L. The BER curves presented in the works [19,22,35] used the OFDM system
with K = 8 antennas, C = 64 carriers (CD = 56 and CP = 8) and GI = 1/4 (NGI = 16) in the three-path
channel (L = 3), that is NGI > L. However, in all simulations presented in this work (see Figures 6–8),
the size of the guard interval (NGI) had little influence on the BER performance (<1 dB), and this is a
significant contribution when compared with other works presented in the literature. It is important to
highlight that the reduction of the GI improves the channel capacity of the OFDM systems.

5. Conclusions

This paper proposed a novel beamforming scheme for OFDM systems, with the pre-FFT adaptive
algorithm. This adaptive beamforming allows a very low guard interval of the OFDM system, and it
enables one to work with more bandwidth efficiency. This strategy used a simple, fast and efficient
solution for the OFDM receiver compared to pre-FFT structures found in the literature. The results
suggest the feasibility of implementing the proposed scheme in different OFDM receivers, such as
for digital TV and wireless LANs standards. Another important aspect concerns the simplicity of the
adaptive structure, which does not change the conventional algorithms, reinforcing the feasibility of
the proposed scheme.
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