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Abstract: Avian colibacillosis and salmonellosis are considered to be the major bacterial 

diseases in the poultry industry world-wide. Colibacillosis and salmonellosis are the most 

common avian diseases that are communicable to humans. This article provides the vital 

information on the epidemiology, pathogenesis, diagnosis, control and public health 

concerns of avian colibacillosis and salmonellosis. A better understanding of the information 

addressed in this review article will assist the poultry researchers and the poultry industry in 

continuing to make progress in reducing and eliminating avian colibacillosis and 

salmonellosis from the poultry flocks, thereby reducing potential hazards to the public health 

posed by these bacterial diseases. 
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1. Introduction  

Avian colibacillosis is an infectious disease of birds caused by Escherichia coli, which is considered 

as one of the principal causes of morbidity and mortality, associated with heavy economic losses to the 

poultry industry by its association with various disease conditions, either as primary pathogen or as a 

secondary pathogen. It causes a variety of disease manifestations in poultry including yolk sac 

infection, omphalitis, respiratory tract infection, swollen head syndrome, septicemia, polyserositis, 
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coligranuloma, enteritis, cellulitis and salpingitis. Colibacillosis of poultry is characterized in its acute 

form by septicemia resulting in death and in its subacute form by peri-carditis, airsacculitis and peri-

hepatitis [1]. On the other hand, Salmonella infection caused by a variety of Salmonella species is one 

of the most important bacterial diseases in poultry causing heavy economic losses through mortality 

and reduced production [2]. Avian salmonella infection may occur in poultry either acute or chronic 

form by one or more member of genus Salmonella, under the family Enterobacteriaceae [3]. Besides, 

motile Salmonellae (paratyphoid group) infection cause salmonellosis in chickens and have  

zoonotic significance.  

Avian colibacillosis has been noticed to be a major infectious disease in birds of all ages. This 

disease has an important economic impact on poultry production worldwide. The majority of economic 

losses results from mortality and decrease in productivity of the affected birds [4]. Infectious bursal 

disease (IBD), mycoplasmosis, coccidiosis, Newcastle disease or infectious bronchitis, as well as 

nutritional deficiencies all predispose the birds to this disease [5]. However, faecal contamination of 

egg may result in the penetration of E. coli through the shell and may spread to the chickens during 

hatching and is often associated with high mortality rates, or it may give rise to yolk sac infection. On 

the other hand, with the great expansion of poultry rearing and farming, avian salmonellosis is the most 

devastating disease worldwide. The epidemiology of fowl typhoid and pullorum disease in poultry, 

particularly with regard to transmission from one generation to the next is known to be closely 

associated with infected eggs [6]. The birds that survive from clinical disease when infected at a young 

stage may show few signs of infection but can become carriers [7].  

At slaughter, resistant strains from the gut readily soil poultry carcasses and as a result poultry meats 

are often contaminated with multiresistant E. coli [8-14]; likewise eggs become contaminated during 

laying [15]. Hence, resistant faecal E. coli from poultry can infect humans both directly and via food. 

These resistant bacteria may colonize the human intestinal tract and may also contribute resistance 

genes to human endogenous flora [16]. Similarly, the emergence of multidrug resistance among 

Salmonella spp. is an increasing concern. Salmonella serovar Hadar has been reported as one of the 

most resistant Salmonella serotypes [17-19].   

Microbial food safety is an increasing public health concern worldwide. Epidemiological reports 

suggest that poultry meat is still the primary cause of human food poisoning [20]. Poultry meat is more 

popular in the consumer market because of advantages such as easy digestibility and acceptance by the 

majority of people [21]. However, the presence of pathogenic and spoilage microorganisms in poultry 

meat and its by-products remains a significant concern for suppliers, consumers and public health 

officials worldwide. E. coli and Salmonella has been consistently associated with foodborne illnesses 

in most countries of the world. 

There are many poultry diseases transmissible to human, among them avian colibacillosis and avian 

salmonellosis are the prime concerns. But the detailed information about avian colibacillosis and avian 

salmonellosis in connection to the public health concerns are not available yet in one place. So, I intend 

to write this review article focusing on the various aspects of avian colibacillosis and avain 

salmonellosis in connection to the public health concerns. 
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2. Epidemiology of Avian Colibacillosis and Avian Salmonellosis 

2.1. Epidemiology of Avian Colibacillosis 

 

E. coli is a gram-negative, non-acid-fast, uniform staining, non-spore-forming bacillus that grows 

both aerobically and anaerobically and may be variable in size and shape. Many strains are motile and 

have peritrichous flagella. E. coli is considered as a member of the normal microflora of the poultry 

intestine, but certain strains, such as those designated as avian pathogenic E. coli (APEC), spread into 

various internal organs and cause colibacillosis characterized by systemic fatal disease [22,23]. E. coli 

isolates pathogenic for poultry commonly belong to certain serogroups, particularly the serogroups O78, 

O1, and O2, and to some extent O15 and O55 [24,25]. In domestic poultry, avian colibacillosis is 

frequently associated with E. coli strains of serotypes O78:K80, O1:K1 and O2:K1 (2- Filali E). The 

avian colibacillosis was found widely prevalent in all age group of chickens (9.52 to 36.73%) with 

specially high prevalence rate in adult layer birds (36.73%) [26]. 

The most important reservoir of E. coli is the intestinal tract of animals, including poultry. In 

chickens, there are about 10
9
 colony forming units (CFU) of bacteria per gram of feces and of these, 

10
6
 CFU are E. coli. E. coli has also been commonly isolated from the upper respiratory tract. In 

addition, it is present on the bird’s skin and feathers. These strains always belong to both pathogenic 

and non-pathogenic types [27]. In the caecal flora of healthy chickens, 10 to 15% of the E. coli strains 

may belong to an O-serotype that can also be isolated from colibacillosis lesions [28]. As soon as the 

first hours after hatching, the birds start building up their E. coli flora. The bacteria drastically increase 

their numbers in the gut. In a single bird a large number of different E. coli types is present, obtained 

via horizontal contamination from the environment, more specifically from other birds, faeces, water 

and feed [29]. Moreover, rodents may be carriers of APEC and hence a source of contamination for the 

birds [22]. 

The risk for colibacillosis increases with increasing infection pressure in the environment. A good 

housing hygiene and avoiding overcrowding are very important. Other principal risk factors are the 

duration of exposure, virulence of the strain, breed, and immune status of the bird [30-34]. Every 

damage to the respiratory system favours infection with APEC. Several pathogens, like NDV, IBV and 

MG, both wildtype and vaccine strains, may play a part in this process. An unfavourable housing 

climate, like an excess of ammonia or dust, renders the respiratory system more susceptible to APEC 

infections through deciliation of the upper respiratory tract [22]. 

 Pulsed field gel electrophoresis (PFGE) is considered to be the most reliable molecular finger-

printing technique to differentiate organisms but restriction fragment length polymorphism (RFLP) is 

the one that is used most frequently. However, both techniques require large quantities of DNA, are 

time consuming, and require expensive equipment [35]. Other techniques such as ERIC–PCR and 

REP–PCR [36,37] and random amplification of polymorphic DNA (RAPD)–PCR [38] have been 

proposed as alternatives and used to characterize Escherichia coli isolates of avian origin [39,40]. 

Other molecular techniques such as ribotyping and isoenzyme profile have also been used to evaluate 

the clonality of avian E. coli [41]. Some clones are specific to APEC and a small-scale comparison of 

commensal and pathogenic isolates revealed that 83% of pathogenic strains belong to only five clones, 

whereas each of the 10 non-pathogenic strains belong to different clones [42]. On the other hand, 
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clonal relationships were found for O2:K1 isolates from humans and chickens [43] and for O78 

isolates from humans, cattle, sheep, pigs and chickens [44], indicating that these species too might act 

as a source of infection for chickens.  

Even though certain O-types are more frequently detected in APEC than in commensal E. coli [45], 

the isolates are very heterogenous, both in their pheno- and genotype [43,45-47]. On the other hand, the 

prevalence of certain serotypes is linked with the geographical localisation of a flock [48].  

Since avian pathogenic E. coli (APEC) and human uropathogenic E. coli (UPEC) may encounter 

similar challenges when establishing infection in extraintestinal locations, they may share a similar 

content of virulence genes and capacity to cause disease. In this regard, Rodriguez-Siek et al. [49] 

compared 200 human uropathogenic E. coli (UPEC) and 524 avian pathogenic E. coli (APEC) isolates 

for their content of virulence genes (Table 1), including many implicated in extraintestinal pathogenic 

E. coli (ExPEC) virulence as well as those associated with APEC plasmids for assessing the potential 

of APEC to cause human extraintestinal diseases and a well-documented ability of avian E. coli to 

spread to human beings, the potential for APEC to act as human UPEC or as a reservoir of virulence 

genes for UPEC should be considered.  

Avian pathogenic E. coli strains are often resistant to antimicrobials approved for poultry including 

cephradine [66], tetracyclines [66-70], chloramphenicol [66], sulfonamides [67,69-71], amino-

glycosides [68-70,72,73] and β-lactam antibiotics [66,67,69,71]. Resistance to fluoroquinolones was 

reported within several years of the approval of this class of drugs for use in poultry [45,71,74,75]. 

There is reason for concern that genes conferring resistance to extended-spectrum beta-lactams will 

emerge in avian pathogenic E. coli strains [76] and reduce the efficacy of ceftiofur, which is currently 

used on a limited basis in poultry breeding flocks and hatcheries. In one study, conducted at the 

University of Georgia, 97 of 100 avian pathogenic E. coli isolates were resistant to streptomycin and 

sulfonamide and 87% of these multiple antimicrobial resistant strains contained a class 1 integron, 

intI1, which carried multiple antibiotic resistance genes [70]. Multiple antimicrobial resistance traits of 

avian pathogenic E. coli have also been associated with transmissible R-plasmids [77]. 

 

2.2. Epidemiology of Avian Salmonellosis 

 

Avian Salmonella infections are important as both a cause of clinical disease in poultry and as a 

source of food-borne transmission of disease to humans. Under the family of Enterobacteriaceae, the 

genus Salmonella is a facultative intracellular pathogen causing localized or systemic infections; as 

well as a chronic asymptomatic carrier state [78]. The etiological agent of fowl typhoid and pullorum 

disease is Salmonella enterica subsp. enterica serovar Gallinarum, which is divided into two distinct 

biovars under the serogroup D1, Gallinarum and Pullorum, which are denoted as S. gallinarum and S. 

pullorum, respectively [78,79]. In addition to S. gallinarum-pullorum, other salmonellae such as S. 

enteritidis, S. panama and S. dublin also belong to the serogroup D1 [79]. The various motile and  

non-host adapted highly invasive serotypes such as Salmonella enteritidis and Salmonella typhimurium 

are commonly referred to as paratyphoid salmonellae [80]. Age wise prevalence of avian salmonellosis 

showed highest infection rate in adult layers (53.25%) in comparison to brooding (14.55%), growing 

(16.10%) and pullet (16.10%) chickens [26]. 
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Various routes of infection have been described. Oral route of infection represents the normal route 

of infection [81]. Although infection in newly hatched chicks by nasal and cloacal route are also 

considered as the important route of transmission. Chicks may be infected early by vertical 

transmission either from an infected ovary, oviduct or from the infected eggs during the passage 

through the cloacal faeces from infected or carrier hens. The birds survive from clinical disease when 

infected in young stage may show few signs of infection but they become carriers [82]. In adult carriers 

the reproductive organs are the predilection sites that often lead to the infection of ovarian follicles and 

as a result transovarian transmission of the disease occurs. The bacteria are passed out through the 

faeces and lateral spread takes place through the fecal contaminated feeds, water and litter [78]. 

Table 1. ExPEC/APEC genes used in virulence genotyping 
*
. 

Gene Description Reference 

pTJ100-related genes   

cvaC+ Structural gene for the colicin V operon [50] 

iroN± Catecholate siderophore receptor gene [51] 

iss+ Increased serum survival gene [52,53] 

iucC± Involved in aerobactin synthesis [54,55] 

iutA± Ferric aerobactin receptor gene;  [55] 

 iron transport  

sitA± Putative iron transport gene [56] 

traT+ Outer membrane protein gene; [57,58] 

 surface exclusion; serum resistance  

tsh≠ Temperature-sensitive hemagglutinin gene [59] 

Iron-Related   

feoB Gene which mediates ferric iron uptake [56] 

ireA Encodes an iron-responsive element;  [60] 

 putative sideropohore receptor gene  

irp-2 Iron repressible gene associated with  [61] 

 yersiniabactin synthesis  

Toxins   

hlyD Transport gene of the hemolysin operon [62] 

Miscellaneous   

fliC (H7) Produces flagellin protein associated [63] 

  with the H7 antigen group   
* 

Descriptions of genes encoding components of certain adhesins (i.e., genes encoding parts of the P pilus, 

papA; papC; papEF; papG, including papG alleles I, II, and III; the S pilus, sfa and the gene encoding the S 

fimbrial tip, sfaS; the Type 1 fimbrial adhesin, fimH; the F1C fimbrial tip, focG; and other genes encoding 

portions of miscellaneous adhesins, iha; afa; gafD; and bmaE); toxins (cnf-1 and cdtB); protectins (kpsMT K1; 

kpsMT II; kpsMT III; and rfc); siderophores (fyuA); and other miscellaneous structures (ibeA; ompT; and 

PAI(CFT073), a fragment from archetypal UPEC strain CFT073) can be found in Johnson and co-workers [64]. 

Also, the description of papG allele I’ can be found in Johnson and Stell [65].   

 + These genes are listed as pTJ100-related, but they could also be listed as protectins.  

 ± These genes are listed as pTJ100-related, but they could also be listed with the iron-related genes. 

 ≠ These genes are listed as pTJ100-related, but they also could be listed in the miscellaneous group. 
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Although more than 2,300 serotypes of Salmonella have been identified, only about 10% of these 

have been isolated from poultry [80]. Chickens are the natural hosts for the highly host adapted biovar 

S. gallinarum and S. pullorum, but natural outbreaks have also been reported in turkeys, guinea fowl, 

quail and pheasants [83]. Fowl typhoid is a peracute, acute or chronic form of disease affecting mostly 

adult chickens, whereas pullorum disease affects the very young chickens, mostly 2−3 weeks of age. In 

the adult it tends to be chronic [78,84]. Fowl typhoid is frequently referred to as a disease of adult birds; 

still, there are also reports of high morbidity and mortality in young chickens [85]. S. gallinarum can 

produce lesions in chicks, which are indistinguishable from those associated with pullorum  

disease [78]. A certain percentage of chickens that survive from the initial infection become carriers 

with or without presence of clinical signs and pathological lesions [83]. Crowding, malnutrition, and 

other stressful conditions as well as unsanitary surroundings can exacerbate mortality and performance 

losses due to salmonellosis, especially in young birds [86]. The potential risk factors responsible for 

Salmonella contamination of broiler-chicken flocks are summarized in Table 2.  

Table 2. A list of risk factors responsible for Salmonella contamination of broiler-chicken flocks. 

Risk factors Reference 

Inadequate level of hygiene [87,88] 

  

Salmonella contamination of the previous flock [89,90] 

with a persistence inside the house [91] 

  

Contaminated day-old chicks and feed [89,92-94] 

  

The farm structure (>3 houses on the farm) [89] 

  

Wet and cold season [89] 

  

Litter-beetle infestation of the house [91] 

 

In more recent years, the use of DNA-related techniques such as plasmid analysis [95,96], 

ribotyping [97-100], and PFGE [101,102] have proved to be useful in discriminating isolates of 

Salmonella species. Lapuz et al. [103] investigated the prevalence of Salmonella in four layer farms in 

eastern Japan between 2004 and 2006 to determine the role of roof rats (Rattus rattus) in the 

epizootology of Salmonella enterica subsp. enterica serovar Enteritidis (S. enteritidis) and they 

suggested that roof rats were carriers of S. enteritidis and S. infantis and that persistent S. enteritidis 

and S. infantis infections in a rat population might play an important role in the spread and 

maintenance of these pathogens inside the layer premises. 

Fowl typhoid and pullorum disease are distributed in many countries of the world, and have 

economic significance [104]. They are mainly distributed in Latin America, the Middle East, the Indian 

subcontinent, Africa and perhaps other parts of the world [78,105]. Salmonellosis has also been 

reported in many countries of South-East Asia including Bangladesh [106,107], India [108,109], 
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Pakistan [110,111] and Nepal [112]. Fowl typhoid is common in both backyard chickens and in 

commercial poultry [113]. 

Salmonella and other food borne pathogens acquire antibiotic resistance by random chromosomal 

mutations, mutation of existing genes, and through specific mechanisms such as transduction, 

tranformation, and conjugation [114]. These mechanisms involve transfer of drug resistant genes by 

means of circular DNA plasmids such as R-factor, conjugative plasmid, or chromosomal  

elements [115-122]. The occurrence and proliferation of antibiotic-resistant Salmonella in 

environmental samples, poultry, and other animals and humans may be due to the use of medicated 

feeds [123-125], the practice of dipping hatching eggs in solutions containing antimicrobial  

agents [126-128], routine inoculation of day-old poults with antibiotics [126-128] and treatment of 

other animals [129] and humans [117] with antibiotics. Salmonella strains of avian origin are also often 

resistant to variety of antimicrobials approved for poultry including tetracycline [130-133], 

oxytetracycline [134], penicillin [66,130-134], aminoglycosides [130,132,133], sulfisoxazole [133] and 

fluoroquinolones [135]. On the other hand, Manie et al. [136] found several strains of multiple 

antibiotic-resistant Salmonella strains in chicken. 

 

3. Pathogenesis and Disease Syndromes of Avian Colibacillosis and Avian Salmonellosis 

 

3.1. Pathogenesis and Disease Syndromes of Avian Colibacillosis 

 

The mechanisms by which avian pathogenic E. coli cause infection are largely unknown. The 

virulence factors contributing to the pathogenesis of avian colibacillosis are summarized in Table 3.  

 

Table 3. A list of virulence factors contributing to the pathogenesis of avian colibacillosis. 

Virulence facors Reference 

F (type 1) and P fimbrial adhesins [137-140] 

Curli [141,142] 

Factors contributing to adhesion,  [143] 

resistance to immunologic defense,   

survival in physiologic fluids, and   

cytotoxic effects   

Factors conferring resistance to  [138,140,144,145] 

serum and phagocytosis  

Aerobactin siderophores [138,146] 

hylE, a hemolysin gene  [147] 

The tsh gene encoding temperature [141,148] 

sensitive hemagglutinin  

K1 Capsular antigen [149] 

Cytotoxins [150-152] 

Outer membrane proteins  [153] 

Coligenicity [151] 

The heat-labile chick lethal toxin (CLT) [154] 

Verotoxin-2 like toxin  [152] 
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Recently, Hughes et al. [155] described a cross-sectional study of wild birds in northern England to 

determine the prevalence of E. coli-containing genes that encoded Shiga toxins (stx1 and stx2) and 

intimin (eae), important virulence determinants of STEC associated with human disease and they 

stated that while wild birds were unlikely to be direct sources of STEC infections, they did represent a 

potential reservoir of virulence genes. 

APEC are responsible for a considerable number of various diseases at different ages. Neonatal 

infection of chicks can occur horizontally, from the environment, or vertically, from the hen. A laying 

hen suffering from E. coli-induced oophoritis or salpingitis may infect the internal egg before shell 

formation. Faecal contamination of the eggshell is possible during the passage of the egg through the 

cloaca and after laying. The latter possibility is considered as the main route of infection for the  

egg [22]. Before hatching, APEC causes yolk sac infections and embryo mortality. The chick can also 

be infected during or shortly after hatching. In these cases, retained infected yolk, omphalitis, 

septicemia and mortality of the young chicks up to an age of three weeks is seen [22]. Broilers may be 

affected by necrotic dermatitis, also known as cellulitis, characterized by a chronic inflammation of the 

subcutis on abdomen and thighs [22]. 

Swollen head syndrome (SHS), mainly a problem in broilers, causes oedema of the cranial and 

periorbital skin. SHS can cause a reduction in egg production of 2 to 3%, and a mortality of 3 to 4% 

[156]. Data on this disease are contradictory. Picault et al. [157] and Hafez & Löhren [158] considered 

SHS as a disease caused by avian pneumovirus (APV), usually followed by an opportunistic E. coli 

infection. Nakamura et al. [159] however reported that APEC were probably playing a significant part 

in the disease, but that the role of APV was not at all clear. This had been confirmed by Georgiades  

et al. [160], who did not detect APV in any of the flocks affected by SHS during a field study, but 

instead detected infectious bronchitis virus (IBV), avian adenovirus, avian reovirus, and Newcastle 

disease virus (NDV), as well as Mycoplasma synoviae and M. gallisepticum (MG). 

APEC probably do not cause intestinal diseases. Nevertheless, enterotoxigenic E. coli (ETEC) are 

occasionally isolated from poultry suffering from diarrhoea [161-163] and diarrhoea was 

experimentally induced after intramuscular inoculation of APEC [164]. On the other hand, 

enteropathogenic E. coli (EPEC) were isolated from clinically healthy chickens [165]. In turkeys, 

experimentally inoculated EPEC can only cause enteritis in combination with coronavirus [166]. 

Layers as well as broilers may suffer from acute or chronic salpingitis [167,168]. Salpingitis can be 

the result of an ascending infection from the cloaca [167,168] or an infection of the left abdominal 

airsac [22], although Bisgaard and Dam [167] considered the latter possibility less likely than an 

ascending infection. Salpingitis can lead to the loss of egg-laying capacity [163]. In the case of chronic 

salpingitis, the oviduct has a yellowish-gray, cheese-like content, with a concentric structure [168]. In 

layers, salpingitis can cause egg peritonitis if yolk material has been deposited in the peritoneal cavity, 

characterised by a sero-fibrinous inflammation of the surrounding tissues [22]. 

Airsacculitis is observed at all ages. The bird is infected by inhalation of dust contaminated with 

faecal material, which may contain 10
6
 CFU of E. coli per gram [169]. This aerogenic route of 

infection is considered as the main origin of systemic colibacillosis or colisepticemia [33,143,170]. 

Septicemia also affects chickens of all ages, and is mainly described in broilers. It is the most 

prevalent form of colibacillosis, characterised by polyserositis [143]. It causes depression, fever and 
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often high mortality. Although its pathogenesis has not been elucidated, several routes of infection are 

possible: neonatal infections [22], infections through skin lesions [171], infection of the reproductive 

organs [22,167,168], of the respiratory tract [33] and even infection per os [172]. When E. coli reaches 

the vascular system, the internal organs and the heart are infected. The infection of the myocard causes 

heart failure [173]. Septicemia occasionally also leads to synovitis and osteomyelitis [22,174] and on 

rare occasions to panophthalmia [22]. Coligranuloma or Hjarre’s disease is characterised by 

granulomas in liver, caeca, duodenum and mesenterium, but not in the spleen. It is a rare form of 

colibacillosis, but in affected flocks it may cause up to 75% mortality [22]. 

Further studies are needed to determine the role of newly identified putative virulence genes and 

genes with unknown functions as virulence markers of APEC to strengthen the current understanding 

of mechanisms underlying the pathogenesis of avian colibacillosis. 

 

3.2. Pathogenesis and Disease Syndrome of Avian Salmonellosis 

 

The pathogenicity of Salmonella depends on the invasive properties and the ability of the bacteria 

to survive and multiply within the cells, particularly macrophages [175]. The main site of 

multiplication of these bacteria is the digestive tract, which may result in widespread contamination of 

the environment due to bacterial excretion through feces. Following invasion through the intestinal 

mucosa, cecal tonsils and Peyer’s patches, the organisms are engulfed by macrophages, and through the 

blood stream and/or lymphatic systems, they spread to organs rich in reticuloendothelial tissues (RES), 

such as liver and spleen, which are the main sites of multiplication [176]. In case of inadequate body 

defense mechanism, they may lead to second invasion and be localized in other organs, particularly 

ovary, oviduct, myocardium, pericardium, gizzard, yolk sac and/or lungs [177]. In the bird challenge, S. 

typhimurium rapidly caused inflammation of the intestinal mucosa, but S. pullorum preferentially 

targeted the bursa of Fabricius prior to eliciting intestinal inflammation [178]. Pullorum disease 

manifests itself predominantly as an enteric disease of chickens, while fowl typhoid shows signs of 

septicemic disease [78]. Both biovars can cause septicemic infections, which may be acute or chronic, 

but unlike S. pullorum, S. gallinarum is capable of producing peracute infection and hemolytic anemia 

in both young and adults [84]. S. gallinarum is extremely pathogenic to young broiler chicks [179].  

Fowl typhoid is indistinguishable from pullorum disease unless the etiological agent is isolated and 

identified [113]. Clinical signs in chicks and poults include anorexia, diarrhea, dehydration, weakness 

and high mortality [83]. In mature fowls, fowl typhoid and pullorum disease are manifested by 

anorexia, drop in egg production, increased mortality, reduced fertility and hatchability [83]. S. 

pullorum infected adult birds may or may not exhibit any clinical signs, or they cannot be detected by 

their physical appearance [78]. Furthermore, the exact mechanisms of getting these poultry diseases are 

still remained to be obscured. 

 

4. Diagnosis of Avian Colibacillosis and Avian Salmonellosis  

 

Colibacillos is suspected based on the clinical features and the typical macroscopic lesions. The 

diagnosis is obtained by E. coli isolation from cardiac blood and affected tissues, like liver, spleen, 
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pericard or bone marrow. Experimentally it was shown that in acute cases, isolation is possible from 

six hours to three days after infection; in subacute cases, isolation is only possible until seven days after 

infection [180]. Contamination from the intestines is rarely a problem, if fresh material is used and 

standard bacteriological procedures are applied [181]. Selective media like McConkey, eosin-

methylene blue or drigalki agar are used for isolation. Further identification of the isolated colonies is 

based on biochemical reactions (indol production, fermentation of glucose with gas production, 

presence of ß-galactosidase, absence of hydrogen sulphite production and urease, and the inability to 

use citrate as a carbon source) [29]. O-serotyping is a frequently used typing method. An ELISA, based 

on sonicated E. coli, has been developed for detection of antibodies against two important pathogenic 

serotypes of E. coli: O78:K80 and O2:K1 [182]. Another ELISA was based on fimbrial antigen [183]. 

Both have limited value because they can only detect homologous APEC types. All currently known 

virulence-associated factors, detected in strains isolated from colibacillosis lesions, can also be 

detected in faecal isolates from clinically healthy chickens. For this reason, none of these traits can be 

used for APEC identification. 

Diagnosis of avian salmonellosis should be confirmed by isolation, identification, and serotyping of 

Salmonella strains. Infections in mature birds can be identified by serologic tests, followed by necropsy 

evaluation complemented by microbiologic culture and typing for confirmation. A serological ELISA 

test for the diagnosis of avian salmonellosis either with S. typhimurium or S. enteritidis has been 

established [184]. Szmolka et al. [185] established a diagnostic and a real-time PCR system for rapid 

and reliable genus- and serovar- (S. enteritidis and S. typhimurium) specific detection of Salmonella for 

monitoring purposes in the poultry food chain.  

 

5. Preventive Measures for Controlling Avian Colibacillosis and Avian Salmonellosis 

 

5.1. Avian Colibacillosis 

 

A first step is the prevention of egg contamination by fumigating them within two hours after lay, 

and by removing cracked eggs or eggs soiled with faecal material. It is recommended to vent the 

incubators and hatchers to the outside and to have as few breeder flocks as possible per breeding  

unit [22]. In chicks, contamination with APEC from the environment must be controlled by reduction 

and control of intestinal infection. This can be achieved using competitive exclusion (CE) [186-190], 

i.e., inoculating day-old chicks with normal bacterial flora of healthy adult chickens or a monoculture, 

for instance of Bacillus subtilis. Birds also need to be protected against pathogens that promote 

infections with APEC. This is possible by using Mycoplasma-free birds [22] and protecting the birds 

against mycoplasmas and viral diseases by vaccinations [170]. Disease introduction must also be 

avoided [170] by a suitable house infrastructure, the correct use of a transition zone (for changing 

clothes and shoes, and washing hands), and pest control: rodent faeces are a source of pathogenic  

E. coli [22]. The housing climate must be kept optimal for bird density, humidity, ventilation, dust and 

ammonia [29,170].  

The great diversity among APEC strains limits the possibilities of vaccination, and vaccines are not 

used on a large scale. Several vaccines based on killed or attenuated strains have been tested 
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experimentally. In general, they give sufficient protection against infection with homologous strains, 

but protection against heterologous strains is less efficient [29]. However, Melamed et al. [191] 

reported a certain degree of heterologous protection obtained with an inactivated vaccine. Passive 

immunisation of young birds via the breeder hens is efficient for two weeks [192], if the birds are 

challenged with homologous strains. Vaccines based on virulence factors like fimbriae, also give a 

good homologous protection, i.e., against APEC possessing the same fimbriae [193]. 

  

5.2. Avian Salmonellosis 

 

Although fowl typhoid and pullorum disease are widely distributed in most parts of the world, the 

diseases have been eradicated from commercial poultry in developed countries such as the United 

States of America, Canada and most countries of Western Europe [78]. Successful control programs 

can be achieved by developing good hygiene and management together with routine serological tests 

and slaughter policy [177]. The principal management procedures should include chicks free from 

infections, and the chicks should be placed in a cleaned, sanitized and S. gallinarum and S. pullorum 

free environment with strict biosecurity measures [194]. The feed and water should be free from 

Salmonella contamination. The dead birds need to be well disposed. Adequate precautions are needed 

to prevent infections from mechanical carriers like footwear, human clothing, hatchery disciplines, 

equipments, litters, crates, trucks and processing plants [195]. Wray et al. [196] described that the birds 

need to be tested at the age of 16 weeks due to immunologic maturity, at the point of lay due to stress 

and two consecutive times one month apart to provide the acceptable evidence that the flock is free 

from fowl typhoid [177]. Kabir et al. [189] and Kabir [190] demonstrated the potential role of 

probiotics for the controlling of Salmonella strains of poultry via the mechanisms of competitive 

exclusion. Vaccines may be used to control the disease, and antibiotics can be used for the treatment of 

fowl typhoid and pullorum disease. 

 

6. Public Health Concerns of Avian Colibacillosis and Avian Salmonellosis 

 

E. coli of the O2:K1 serotype isolated from human urinary tract infections and from septicemic 

chickens are phenotypically highly related. A distinction between both groups was only possible by 

examining their plasmid contents [43]. Cherifi et al. [44] obtained similar results for a group of O78 

isolates and concluded that chickens might be a source of septicemic human O78 infections. However, 

contrasting results were obtained in a study by Caya et al. [197]. In this study, avian E. coli isolates 

from healthy and diseased birds (airsacculitis and cellulitis) and E. coli strains isolated from sick 

humans during the same period and in the same geographical area as the avian isolates were compared. 

The study results suggested that these avian isolates possessed very few of the attributes required to 

cause disease in humans. Reversely, human isolates can be pathogenic to day-old chicks after 

subcutaneous inoculation. Strains tested were of the serotypes O1, O2, O18 and O78 [198]. Although 

O157 verotoxigenic E. coli (VTEC) had been detected in broilers [158], the chicken was not 

considered as an important reservoir for this zoonotically often reported serotype. Experimental studies 

showed that chickens might be functioned as a reservoir: O157 strains easily infected the young birds, 
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even at a low dose, and persisted in the caecum for up to three months [199]. The study by Stavric  

et al. [200] showed that layers were also susceptible to colonisation by O157:H7 and other VTEC after 

inoculation per os. The intestines were increasingly colonised if increasing inoculation doses were used. 

The older the bird, the more restricted the colonisation and persistence were. All birds involved in the 

experiment remained clinically healthy. Histologically, attachment and effacement lesions were 

detected in the proximal caeca. Chapman et al. [199] reported that at that time no bacteriologically 

confirmed human cases of O157 infections had been observed, caused by poultry. Nonetheless, chicken 

meat was sometimes positive for VTEC [201,202]. In addition, Manges et al. [203] conducted a  

case-control study between April 2003 and June 2004 and they demonstrated that antimicrobial 

resistant, urinary tract infection (UTI) causing E. coli could have a food reservoir, possibly in poultry 

or pork. Uncontrolled, avian E. coli represents a serious animal welfare concern and risk to public 

health as it is a zoonotic organism with avian E. coli species known to adapt to humans. 

Salmonellosis is of public health concern because most of the strains of Salmonella are potentially 

pathogenic to humans and animals. Avian salmonellosis can pose a health risk to people if exposed. 

Symptoms appear similar to food poisoning, such as diarrhea and acute gastroenteritis. However, it 

appears that birds mainly acquire the disease from the environment and that infected birds play a 

relatively small role in the transmission of disease to domestic animals and humans. Public health 

concerns and the potential for foodborne zoonotic transmission have made Salmonella the subject of 

numerous international, national, and local surveillance programs [204]. 

 

7. Strategies for Reducing Public Health Hazards 

 

The risk of colibacillosis can be reduced through simple precautions. 

i.  By thorough cleaning of poultry houses. 

ii.  By ensuring proper ventilation of the poultry houses and chlorination of drinking water. 

iii.  By washing hands carefully before and after food preparation and after toileting. 

iv.  By avoiding eating raw or undercooked poultry. 

v.  By wrapping fresh meats in plastic bags at the market to prevent fluids from dripping on other 

foods. 

vi.  By ensuring the correct internal cooking temperature especially when using a microwave. 

 

The risk of salmonellosis can be also reduced through simple precautions. 

i.  By washing hands carefully before and after food preparation and after toileting or changing 

diapers. 

ii.  By avoiding eating raw or undercooked eggs (or foods made with raw eggs) and poultry.  

iii. By wrapping fresh meats in plastic bags at the market to prevent fluids from dripping on other 

foods. 

vi.  By ensuring the correct internal cooking temperature especially when using a microwave. 

v.   By avoiding chicks and ducklings as pets for small children.  
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8. Conclusions 

 

Avian colibacillosis and salmonellosis are considered to be the major bacterial disease problems in 

the poultry industry world-wide and these diseases constitute a major public health burden and 

represent a significant cost in many countries. The economic and public health burden of these diseases 

have made this topic time demanding. It is suggested from this review article that more effective 

application of existing control methods would greatly reduce the hazards to public health.  
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