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Abstract: Accurate information about the location and extent of irrigation is fundamental to many
aspects of food security and water resource management. This study develops a new method for
identifying irrigation in northeastern China by comparing canopy moisture between the cropland
and adjacent natural ecosystems (i.e., forests). This method is based on two basic assumptions, which
we validated using field survey data. First, the canopy moisture of irrigated cropland, indicated by a
satellite-based land surface water index (LSWI), is higher than that of the adjacent forest. Second,
the difference in LSWI between irrigation cropland and forest is larger in arid regions than in humid
regions. Based on the field survey and statistical dataset, our method performed well in indicating
spatial variations of irrigated areas. Results from this study suggest that our method is a promising
tool for mapping irrigated areas, as it is a general and repeatable method that does not rely on training
samples and can be applied to other regions.
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1. Introduction

Irrigation is one of the most important cropland management measures and plays an important
role in determining crop yield [1,2]. Numerous studies show that yields are generally higher under
irrigated conditions as compared to rainfed fields [3,4]. For example, average crop yields of irrigated
farms exceed the corresponding yields of dryland farms by 15% for soybeans, 30% for maize, 99% for
barley, and 118% for wheat in the United States [5]. Irrigation is a prerequisite for crop production
and serves to increase yields and attenuate the effects of droughts in arid regions [6]. Although only
18% of cultivated area is irrigated globally [7], 40% of global food production comes from irrigated
agriculture [8]. Irrigation information is one of the most important forms of data for creating a crop
growth model for simulating regional crop yield [9]. In addition, cropland irrigation consumes 70% of
all water withdrawn worldwide from rivers and aquifers [10]; in developing countries, more than 90%
of water withdrawal is for cropland irrigation [7]. Water resources management and allocation need to
adequately consider irrigation demand. Therefore, spatial and temporal information about irrigation
is very important for monitoring cropland yields and water resources [11].
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Satellite-based methods offer strong potential for routine monitoring of irrigation, as satellite data
can acquire continuous temporal and spatial information over vegetated surfaces [12]. A satellite-based
method refers to a classification method that uses satellite data to automatically classify irrigated
areas according to the spectral differences between irrigated and non-irrigated pixels. Several
studies have attempted to show the extent and density of irrigated land at different scales [12–18].
Automated classification approaches are commonly used to identifying irrigated areas, including
unsupervised classification [19], single- or multi-stage supervised classification [20], and decision
tree [21,22] methods, as well as supervised learning models such as random forests or support vector
machines [23,24]. All these methods exploit spectral differences—in terms of reflectance, spectral
indices, or other derived features—between irrigated areas and other land cover types [25].

Satellite-based methods always require prior knowledge and ground observations; their success is
highly dependent on the quantity and quality of training samples, which are costly and time-consuming
to obtain through field surveys [11]. Classification results may be specific and lack repeatability, because
differences in classifiers or training samples may significantly alter classification results. This drawback
may limit the large-scale application of these methods [26], therefore more objective and convenient
methods of irrigation information extraction must be developed [13,14].

A second class of methods for identifying irrigation is mostly based on the analysis of spectral
index time series—these techniques aim to identify the specific temporal dynamics of irrigated crops.
Liu et al. [27] indicated a strong regression relationship between the coefficient variation of the
land surface water index (LSWI) and the planting fraction of paddy rice fields compared with other
upland crops, due to the presence of flooding water during the growing season. An analysis of a
SPOT-VEGETATION normalized difference vegetation index (SPOT-VGT NDVI) time series found
multiple NDVI peaks in irrigated fields during the growing season, in contrast with the single peak of
rainfed fields, which can be used for identifying the irrigation [28]. Based on fusing a 480 m time-series
Moderate Resolution Imaging Spectrometer (MODIS) and Landsat imagery to a 30 m spatial resolution,
Chen et al. [29] proposed a new approach that applied a Gaussian process and linear regression
models to detect irrigation attributes, including irrigation extent, frequency, and timing. Dheeravath et
al. [15] also introduced an approach in which they segmented a three year MODIS reflectance time
series acquired at eight day intervals prior to a classification step performed using spectral matching
techniques. Ozdogan and Gutman [13] used temporal analysis of the NDVI signal as a proxy for
detecting crop type, and the data clearly revealed the differences between irrigated and non-irrigated
crops. In addition, previous studies also indicated larger differences in canopy moisture between
irrigated croplands and natural vegetation in arid regions than in humid regions. The contribution of
irrigation to increased crop yield is more effective in arid regions than in humid regions [3,4].

Based on the above methods, several global and regional irrigation products have been generated.
The first global dataset of irrigated areas was produced by the Food and Agriculture Organization
of the United Nations and the University of Frankfurt (FAO/UF), published in 1999 [30]. It showed
the areal fraction of 0.5 arc degree by 0.5 arc degree grid cells that was equipped for irrigation in the
1990s. Since then, the FAO/UF datasets have been updated several times and the map resolution has
increased to 5 arc minutes by 5 arc minutes [31]. A dedicated product, the Global Irrigated Area Map
(GIAM), was produced by the International Water Management Institute (IWMI) using multi-source
data (AVHRR, SPOT-VGT, JERS-1 SAR, rainfall, temperature, and elevation) in an approach applying
segmentation, unsupervised classification, spectral matching, decision tree, and spatial modeling
steps [32]. The GlobCover product, derived from unsupervised clustering of 300 m Medium Resolution
Imaging Spectrometer (MERIS) data and expert labeling rules, provided irrigation classes among
other land cover types [33]. In addition, several regional irrigation maps have also been generated.
For example, Zhu et al. [34] developed three irrigation potential indices and a spatial allocation model,
then downscaled the census data on irrigation from administrative units to individual pixels and
produced a new irrigation map of China around the year 2000.
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In this study, we aim to develop a coupled method, combining the satellite-based method and
spectral index time series analysis for identifying irrigated areas. This coupled method is developed
based on analyzing spectral index time series from MODIS data with 500 m spatial resolution.
The algorithm was to identify irrigated regions by comparing the satellite-based moisture index
of cropland with that of the adjacent natural vegetation (i.e., forests). The coupled method will be
validated using observation sites and statistical data at county, prefecture, and province levels. The area
and spatial distribution of irrigated areas in northeastern China will be quantified.

2. Study Area

The study area is a part of Northeast China, one of the most important commodity grain
production bases in China, which comprises three provinces: Heilongjiang, Jilin, and Liaoning
(Figure 1). According to data from the National Bureau of Statistics of China, in 2017, the planting
area of maize in the study area accounted for 64% of the total cultivated land in northeastern China,
the planting area of rice accounted for 28%, the area of soybean, sorghum, potato, and wheat accounted
for 6%, and the other accounted for 2% [35]. In this region, the period of crop growth is short, i.e., just
2–3 months. The study area contained 13.51% of the irrigated areas in China and produced 19.27% of
the food production [35]. More than 31.77% of northeastern China’s crop land is irrigated [36]. There
are three main sources of irrigation water: rivers, lakes, and groundwater. One-third of this region is
flood plains and the rest mainly comprises hills and mountains. The Sanjiang, Songnen, and Liaohe
plains lie between the Lesser Khingan Mountains and the Changbai Mountains. The study area has
a temperate continental monsoon climate. The average annual precipitation varies widely—from
480 mm in the western plains to 900 mm along the eastern mountains. The annual accumulated air
temperature greater than 10◦C ranges from 1600 to 3600◦ days and the number of frost-free days varies
between 140 days and 170 days. There is only a single season for crops in this region, due to the
limitations imposed by temperature. In this study, we conducted the field survey from 8 July to 21 July,
2016 in Northeast China. Figure 1 shows the location of our validation samples in Northeast China.

Figure 1. Land cover classes and validation samples in Northeast China.
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3. Data and Methods

3.1. Methodology

The principle of our algorithm was to identify irrigated regions by comparing the satellite-based
moisture index of cropland with adjacent natural vegetation (i.e., forests). The algorithm was based on
two fundamental assumptions. First, we assumed that the moisture condition of irrigated croplands is
larger than that of the adjacent forests [13,37]. If the distances between cropland and adjacent forests
are small enough, the precipitation in those areas can be considered the same. Therefore, the moisture
at irrigated croplands should be higher than forests and non-irrigated cropland. So, if we know the
moisture difference between irrigated croplands and forests, the irrigated croplands can be identified.
However, the moisture difference is not same on the regional scale. Therefore, we made the second
assumption that the differences of moisture between irrigated croplands and forests are larger in
arid regions.

In order to validate the first assumption, we used the land surface water index (LSWI) to indicate
the land surface moisture conditions. LSWI was calculated as:

LSWI =
ρnir − ρswir
ρnir + ρswir

, (1)

where ρnir and ρswir represent red and short wave infrared reflectances, respectively. LSWI can
comprehensively represent the moisture conditions of plant and soil [38]. We calculated LSWI
values (LSWIC) during the peak of growing season from the 201st to the 241st day of the year at
all 123 investigated cropland sites (see Section 3.3 Method validation), including 47 irrigated and 76
non-irrigated sites, and compared LSWIC with those of adjacent forests. In general, LSWI strongly
depends on the vegetation index (NDVI) and increases with NDVI [39,40]. Therefore, we compared
the LSWI of cropland with that of forests where there were the same NDVI values, to exclude the
impact of NDVI [38]. Around a given cropland site, we searched the nearest 30 forest pixels where
their mean NDVI (NDVIF) value is close to the NDVI of croplands (NDVIC) (i.e., |NDVIC-NDVIF| <
0.05 × NDVIC). Then, we calculated the mean LSWI value of adjacent forests (LSWIF) and compared
this with the LSWIC at all investigated croplands to examine the first assumption.

To examine the second assumption, at each prefecture, we collected and sorted all pixels by
descending the differences between LSWIC and LSWIF (LSWIDiff =LSWIC-LSWIF). The pixels at the
front of the queue had larger LSWIDiff values, and therefore a greater probability of being irrigated.
Statistical data on irrigation areas at prefecture-level were used to determine the LSWIDiff thresholds.
Prefecture-level statistical data were used to determine the number (N) of pixels with the largest
LSWIDiff as irrigation at a given prefecture. The LSWIDiff value of the Nth is the threshold (LSWIDiff0)
for differentiating the irrigation and non-irrigation. We selected 18 prefectures (half of the area
prefectures) to examine the relationship between LSWIDiff0 and mean annual precipitation (MAP)
proposed by the second assumption. In addition, we used the remaining 17 prefectures to examine
this relationship. The results from examining the two assumptions are included in the Results section.
If this assumption that there is strong correlation between LSWIDiff0 and MAP is verified, we can
calculate LSWIDiff0 for each prefecture based on this correlation. Once the LSWIDiff0 is determined,
then we can identify the cropland pixels where LSWIDiff value is larger than LSWIDiff0 as irrigation.

Based on these two assumptions, we developed the following process to identify the
irrigated croplands.

Step (1) The mean NDVI (NDVIC) and LSWI (LSWIC) values were calculated for each cropland pixel
during the peak of the growing season, from the 201st to the 241st day.
Step (2) The nearest 30 forest pixels for each cropland pixel were selected by comparing NDVIC and
mean NDVI values of forest (NDVIF) as described above.
Step (3) The LSWI difference (LSWIDIff) between the cropland pixel (LSWIC) and the adjacent forest
pixels (LSWIF) was calculated for each cropland pixel.
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Step (4) Based on the relationship between LSWIDiff0 and MAP at the prefectures as described above,
LSWIDiff0 was calculated at all prefectures using MAP.
Step (5) At each prefecture, all pixels were sorted by descending LSWIDiff, and the pixels with
LSWIDiff >LSWIDiff0 were identified as irrigation pixels.

3.2. MODIS Data and Precipitation Data Preprocessing

The eight day surface reflectance product (MOD09A1) of MODIS was used to calculate
NDVI and LSWI. A method based on the Savitzky–Golay filter was used to smooth out noise
in the time series of the vegetation indexes, especially noise related to cloud contamination and
atmospheric variability [41]. The land cover type product (MCD12Q1) was used to search forest pixels.
The land cover types were determined using the MCD12Q1 product reference to the International
Geosphere-Biosphere Programme’s global vegetation classification system.

We used the gridded daily precipitation dataset provided by Yuan et al. (2015) [42]. This dataset
was based on the meteorological observations from 735 stations from the National Climate Center of
China Meteorological Administration, and was interpolated to a gridded climate dataset with a spatial
resolution of 10 × 10 km using the thin plate smoothing splines [42]. In addition, we re-sampled the
precipitation data to the same spatial resolution of MODIS data.

3.3. Method Validation

In this study, the 123 validation samples were obtained from three sources. The first source was
the crop growth and soil moisture dataset provided by the China Meteorological Data Sharing Service
System. These sites were used in our study, for a total of 70 non-irrigated and 10 irrigated samples.
The other source was our field surveys, which we conducted from 8 July 2016 to 21 July 2016 in
Northeast China—6 non-irrigated and 10 irrigated samples in all. The third source was the irrigation
information on large irrigated areas provided by the China Irrigation and Drainage Development
Center and collected by Google Earth. At all sampling sites, a survey was carried out and recorded on
farmland irrigation times, well depth, pesticide and fertilizer use, and yield. In addition, we compared
the estimated irrigation areas derived by this method with statistical data at the county, prefecture,
and province levels. These data were obtained from the statistical yearbooks for Heilongjiang, Jilin,
and Liaoning Provinces [43–45]. We compared our method with three widely used irrigation datasets:
IWMI, FAO/UF, and Zhu datasets. We resampled the IWMI datasets and our new irrigation map to
the same spatial resolution as the FAO/UF datasets because of the resolution differences among the
three irrigation datasets.

4. Results

First, we examined the assumption that the LSWI values of irrigated cropland were larger than
those of adjacent forests. Hence, we compared the LSWI values of the investigated sites with those of
adjacent forests that have the same NDVI values as the cropland. A significant LSWI difference was
found between the irrigated and non-irrigated croplands compared to the adjacent forest (ANOVA
test, P < 0.01) (Figure 2a).

We examined the second assumption proposed in the previous section based on irrigation
statistics and mean annual precipitation (MAP). We found a significant negative linear relationship
between MAP and the LSWIDiff0 thresholds (difference in LSWI between irrigated cropland and forests)
(P < 0.01) (Figure 3). The LSWIDiff0 thresholds decreased with increasing MAP, which indicated that
larger a LSWI difference occurred in dry regions, affirming our second assumption. Therefore, we
used regression to estimate the appropriate thresholds (LSWIDiff0) at all prefectures using MAP.
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Figure 2. The LSWI difference between non-irrigated (left) or irrigated (right) cropland pixels and
their adjacent forests pixels. (a)The irrigated and non-irrigated cropland pixels were selected from
field surveys. Histogram of LSWI values of adjacent forests pixels, irrigated croplands pixels and
non-irrigated croplands pixels in northeastern China. (b)The Latin alphabet (µ) stands for the mean
value of LSWI. The asterisk indicates the significant difference at the P < 0.01.

Figure 3. The linear regression relationship between the (a) half of the area prefectures, (b) other half
of the area prefectures LSWIDiff0 thresholds and the mean annual precipitation at the prefecture level
in northeastern China.

The statistical data validated our method at the county, prefecture, and province levels, showing
that the new method could accurately estimate irrigation areas compared to the statistical data over
three scales (i.e., at the county, prefecture, and provincial levels) (Figure 4 and Table 1). The correlation
coefficient (R2 values) between the identified irrigation areas and the statistical areas was 0.77
(Figure 4a) and 0.40 (Figure 4b) at the prefecture and county levels, respectively. Figure 4a provided
the validation results of the second assumption. The identified irrigation areas were highly consistent
with the statistical areas over the 18 prefecture prefectures used to develop the relationship between
LSWIDiff0 and MAP, as shown Figure 3a. In addition, a good consistence between identified areas
and statistical areas also was found over the remaining 17 prefecture prefectures (Figure 4a). At the
province level, the relative errors of the identified irrigation areas were −26.41%, 26.34%, and 4.10% in
Heilongjiang, Jilin, and Liaoning provinces, respectively (Table 1).

Table 1. Province-level comparison of estimated irrigated areas and statistical areas for 2016.

Province Statistical Areas (km2) Estimated Areas (km2) RPE

Heilongjiang 53,052.00 39,038.56 −26.41%
Jilin 16,248.40 20,527.79 26.34%

Liaoning 14,739.70 15,344.41 4.10%
Total 84,040.10 74,910.76 −10.86%

Note: RPE (Relative predictive error) denotes (Areaestimated − Areastatistics)/Areastatistics × 100%.
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Figure 4. Comparison of irrigated areas in Northeast China, as estimated by the proposed method and
statistical areas at the prefecture (a) and county (b) levels. The dotted line is a 1:1 line. The black dots
in Figure 4a indicate the 18 prefectures used for developing the relationship between LSWIDiff0 and
MAP, and red dots indicate the remaining 17 prefectures for verification. Statistical area refers to the
data of the irrigation area in a given administrative unit (such as a prefecture or a county) that were
obtained from the statistical yearbooks for Heilongjiang, Jilin, and Liaoning.

Based on the new method, we generated a map of irrigated fields in Northeast China in
2016 (Figure 5). Irrigated fields were distributed mainly on three alluvial plains (Songnen, Liaohe,
and Sanjiang plains) and valleys along three rivers (the Songhua, Wusuli, and Heilongjiang Rivers).
Due to the northward expansion of irrigated cropland over the past decade, Heilongjiang Province
accounted for nearly 52.11% of the overall irrigation area in the three provinces, which is consistent
with 2016 statistical data (Table 1) [43].

Figure 5. Spatial distribution of estimated irrigated fields in Northeast China based on this method.
Blue pixels indicate the irrigation areas.



Remote Sens. 2019, 11, 825 8 of 14

5. Discussion

This study developed a new satellite-based method for identifying irrigation areas by comparing the
satellite-based moisture index between croplands and adjacent forests. The results showed similar LSWI
values for non-irrigated croplands and adjacent forests, but higher LSWI values for irrigated croplands
(Figure 2b). Based on 123 surveyed sites, we compared the performance of this method with three other
irrigation datasets: two global irrigation datasets (FAO/UF and IWMI) and an irrigation map of China
derived by Zhu et al. [34] (see method). In general, the overall accuracy of our method was 77.24% and
its kappa coefficient was 0.49; both measures were superior to the 47.15%, 62.60%, and 62.60% overall
accuracies and 0.07, 0.23, and 0.11 kappa coefficients of the FAO/UF, IWMI, and Zhu datasets (Figure 6;
Table 3). In general, the method identified correctly 26 irrigated samples out of total 47 irrigated samples,
and identified correctly 76.67% non-irrigation samples (Figure 7; Table 3).

Figure 6. Comparison of the performance of four datasets (this map, IWMI, FAO/UF, Zhu datasets) at
123 field sites. (a) overall accuracies (%); (b) Kappa coefficients.

Table 2. Validation of four irrigation datasets at 123 field samples.

Class
Ground Observed Samples

Total
User

AccuracyIrrigation Non-Irrigation

This map

Irrigation 26 7 33 78.79%
Non-irrigation 21 69 90 76.67%

Total 47 76 123
Producer accuracy 55.32% 90.79%
Overall accuracy 77.24%
Kappa coefficient 0.49

Zhu datasets

Irrigation 10 9 19 52.63%
Non-irrigation 37 67 104 64.42%

Total 47 76 123
Producer accuracy 21.28% 88.16%
Overall accuracy 62.60%
Kappa coefficient 0.11

FAO/UF

Irrigation 40 58 98 40.82%
Non-irrigation 7 18 25 72.00%

Total 47 76 123
Producer accuracy 85.11% 23.68%
Overall accuracy 47.15%
Kappa coefficient 0.07
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Table 3. Validation of four irrigation datasets at 123 field samples.

Class
Ground Observed Samples

Total
User

AccuracyIrrigation Non-Irrigation

IWMI

Irrigation 27 26 53 50.94%
Non-irrigation 20 50 70 71.43%

Total 47 76 123
Producer accuracy 57.45% 65.79%
Overall accuracy 62.60%
Kappa coefficient 0.23

Figure 7. Method validation proposed in this study at 123 field samples. True Positive: actual irrigated
samples that were correctly classified as irrigated samples. True Negative: non-irrigated samples
correctly classified as non-irrigated samples. False Positive: non-irrigated samples that were incorrectly
labeled as irrigated samples. False Negative: irrigated samples that were incorrectly marked as
non-irrigated samples. The inset indicates the site number of four categories.

Figure 3 showed the significant relationship between MAP and the LSWIDiff0 thresholds, which
was used to identify the irrigation areas. Although there are some uncertainties, the relationship is
statistically significant and indicates the reliable dependence of the threshold of LSWIDiff0 on MAP.
Based on this relationship, we can identify the irrigation areas and avoid the systematic estimation
errors compared to the constant threshold of LSWIDiff0. It is true that the estimation of irrigated
areas performs well at the prefecture level (R2 = 0.77), rather than at the county level (R2=0.40) in
Figure 4. Basically, there are large challenges in identifying the irrigation areas on a small scale
(county) compared to on a large scale (prefecture). Many local environmental conditions will reduce
the estimate accuracy [3,13,46]. For example, there are large estimation errors over the eastern regions
of Jilin province because of the mountainous areas. Optical remotely sensed images in mountainous
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areas are subject to radiometric distortions induced by topographic effects, which need to be corrected
before quantitative applications [47]. In addition, the moisture condition substantially changes with the
topography and slope aspect, and precipitation is not the only factor which determines the moisture
condition of croplands and the adjacent forests [48]. Therefore, further works need to improve the
performance at mountainous areas.

The comparison suggests that the new irrigation map supports statistical areas at the
prefecture-level and overall Northeast China. However, this study has underestimated Heilongjiang
Province by 26.41% (Table 1). Major differences between irrigation patterns derived by the new map
and the statistical data occurred in the Heilongjiang Farms & Land Reclamation Administration,
which are mainly distributed in Heihe, Shuangyashan, and Jixi. Because the irrigation area data from
the Heilongjiang Farms & Land Reclamation Administration are separately counted, they were not
classified to prefectures, so statistics from this area were missing.

There are several limitations of this method which impacted its performance. First, this method
identifies the irrigated croplands by comparing canopy moisture between cropland and adjacent
forests. Therefore, it is important for the forests to be within a close enough distance for the forests
to have the same precipitation as the croplands. Figure 8 shows that more than 50% of the croplands
had forests within a distance of less than 25 km, which indicates that most croplands satisfy these
conditions. However, in Songyuan and Baicheng of the Songnen Plain, the forests are relatively far
away (>100km), and the precipitation conditions of croplands and its reference forests probably have
large differences. Although this is only a small proportion (12%) [43–45], this will result in errors in
the estimated irrigation areas.

Figure 8. Spatial distribution of the distance between cropland pixels and adjacent forests pixels in
Northeast China. (a) the distance from forest to irrigated cropland pixels, (b) the distance from forest
to non-irrigated cropland pixels.

Second, the method did not consider the differences of water storage between croplands and
forests. In general, compared to the croplands, the adjacent forests green-up earlier [49,50]. Therefore,
the forests can store more precipitation in the soil [51,52], which may result in the differences of soil
moisture between the croplands and forests. In addition, previous studies showed that the capacity of
plant transpiration and canopies to intercept water differs among ecosystems of the same leaf area
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index [53,54]. For example, at the same leaf area index (~2 m2 m−2), conifer forests typically store
20% of the precipitation, whereas the deciduous plants store 10% [54]. All crops in this study area
are broadleaf, but the trees are broadleaf and needleleaf. The differences in the plant transpiration
between croplands and forests may result in differences in soil moisture.

Third, this method relies on the regression relationship between LSWIDiff0 and MAP to identify
irrigation areas (see method). In this study, we used regression coefficients, shown in Figure 3, over
Northeast China, and the coefficients may change due to different climate backgrounds. Hence, if this
method is applied to other regions, it is necessary to redefine the relationship between LSWIDiff0
and MAP.

Our method does not depend on field investigation and will be easy to popularize on a larger
scale. The identification of irrigation pixels is consistent with actual irrigation samples in field surveys
and statistical areas (Table 3). It is possible to supervise the distribution and the area of irrigation
automatically using satellite-based datasets, avoiding visual interpretation [55–57] of high-resolution
images [58] and much fieldwork, as well as substantially improving the method’s repeatability
and applicability.

6. Conclusions

In this study, we developed a new method for identifying irrigation in cropland in northeastern
China, based on the relationship between an area’s MAP and the LSWI difference between cropland
and adjacent natural landscape pixels. We validated that the new method can be used to accurately map
irrigation areas. In addition, we compared our method with three existing methods using site-based
survey and county- to province-level statistical data. The results suggest that our method agrees with
the patterns of irrigation distribution compared with the three current methods. Our method is a
promising and effective tool for mapping irrigated regions. Moreover, it will be beneficial for studying
water resource management and food security.
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