
remote sensing  

Article

Machine Learning-Based CYGNSS Soil Moisture
Estimates over ISMN sites in CONUS

Volkan Senyurek 1,* , Fangni Lei 1 , Dylan Boyd 2 , Mehmet Kurum 2 , Ali Cafer Gurbuz 2

and Robert Moorhead 1

1 Geosystems Research Institute, Mississippi State University, Mississippi State, MS 39759, USA;
fangni@gri.msstate.edu (F.L.); rjm@gri.msstate.edu (R.M.)

2 Department of Electrical and Computer Engineering, Mississippi State University,
Mississippi State, MS 39759, USA; db1950@msstate.edu (D.B.); kurum@ece.msstate.edu (M.K.);
gurbuz@ece.msstate.edu (A.C.G.)

* Correspondence: volkan@gri.msstate.edu

Received: 11 March 2020; Accepted: 3 April 2020; Published: 5 April 2020
����������
�������

Abstract: Soil moisture (SM) derived from satellite-based remote sensing measurements plays a
vital role for understanding Earth’s land and near-surface atmosphere interactions. Bistatic Global
Navigation Satellite System (GNSS) Reflectometry (GNSS-R) has emerged in recent years as a new
domain of microwave remote sensing with great potential for SM retrievals, particularly at high
spatio-temporal resolutions. In this work, a machine learning (ML)-based framework is presented
for obtaining SM data products over the International Soil Moisture Network (ISMN) sites in the
Continental United States (CONUS) by leveraging spaceborne GNSS-R observations provided by
NASA’s Cyclone GNSS (CYGNSS) constellation alongside remotely sensed geophysical data products.
Three widely-used ML approaches—artificial neural network (ANN), random forest (RF), and support
vector machine (SVM)—are compared and analyzed for the SM retrieval through utilizing multiple
validation strategies. Specifically, using a 5-fold cross-validation method, overall RMSE values of
0.052, 0.061, and 0.065 cm3/cm3 are achieved for the RF, ANN, and SVM techniques, respectively.
In addition, both a site-independent and a year-based validation techniques demonstrate satisfactory
accuracy of the proposed ML model, suggesting that this SM approach can be generalized in space
and time domains. Moreover, the achieved accuracy can be further improved when the model is
trained and tested over individual SM networks as opposed to combining all available SM networks.
Additionally, factors including soil type and land cover are analyzed with respect to their impacts
on the accuracy of SM retrievals. Overall, the results demonstrated here indicate that the proposed
technique can confidently provide SM estimates over lightly-vegetated areas with vegetation water
content (VWC) less than 5 kg/m2 and relatively low spatial heterogeneity.

Keywords: artificial neural networks; random forest; SVM; CYGNSS; soil moisture retrieval; ISMN;
machine learning

1. Introduction

Soil moisture (SM) is a critical variable for many Earth science models with applications for
hydrology, meteorology, crop forecasting, and Earth thermodynamics [1]. The European Space
Agency (ESA)’s Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space
Administration (NASA)’s Soil Moisture Active Passive (SMAP) missions are two microwave remote
sensing satellite systems dedicated for global SM retrievals [2,3]. They provide critical, global SM
measurements between 25–50 km spatial resolution with±0.04 cm3/cm3 volumetric SM accuracy every
2–3 days. The need for global SM products below 9 km spatial resolution and at a temporal resolution
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of 3 days or less is still present within the hydrology community for applications in hydrometeorology,
atmospheric research, and water resource management at microscale and mesoscale resolutions [4,5].

Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R) is a growing area in
microwave remote sensing with great potential for providing cost-efficient, high-resolution SM
estimations. The GNSS-R technique uses a measured GNSS signal reflected from a scattering surface
to determine geophysical information of the examined surface by cross-correlating the reflected
signal with either a received direct signal or a GNSS signal replica [6]. It has been established as an
effective tool for monitoring ocean surface roughness and wind vectors from airborne and spaceborne
platforms [7–9]. Research is on-going for the use of GNSS-R for other vital remote sensing parameters
such as altimetry [10], sea ice monitoring [11], biomass estimation [12], wetland classification [13], and
SM estimation [14–18].

The Cyclone GNSS (CYGNSS) mission is NASA’s most recent spaceborne GNSS-R application,
orbiting over tropics (within ±38◦ latitudes) [19]. CYGNSS, although designed for the estimation of
ocean wind vectors, has shown particular sensitivity to variations in SM and high correlation with
SMAP SM data products [14–17]. By means of bistatic radar measurements using eight, four-channel
micro-satellites, CYGNSS records reflected signals scattered from Earth’s land surface during the
95-minute orbital period of each satellite. Under a coherency assumption, it is capable of performing
sub-daily observations at a relatively high spatial resolution (on the order of a few kilometers).
However, CYGNSS SM retrieval approaches must contend with many more unknown variables within
the measurement scene and the received signal when compared to traditional microwave remote
sensing. First, a GNSS signal is scattered from the land surface and is received by the CYGNSS receiver,
and this received signal is a composite of coherent and incoherent signals. Second, the received signal
emanates from quasi-random locations (i.e., non-repeating ground tracks). Third, the soil contribution
can be suppressed by a combination of effects from vegetation, topography, surface roughness, soil
type, and water bodies under bistatic geometry. Furthermore, CYGNSS data products have been
through a number of updates that consider non-geophysical factors such as a variation/uncertainty of
the GNSS transmitter power [20,21] as well as the receiver antenna pattern corrections [22]. In order
to determine a SM data product, a model is needed which correctly determines the aforementioned
effects based on the complex scattering environment within CYGNSS’s contributing area. Given
the sensitivity to fine-scale surface features and the pseudorandom sampling of CYGNSS, direct
application of physical models in the SM retrieval process from CYGNSS measurements at high
spatio-temporal resolutions would be much more challenging than SMAP and SMOS which have exact
repeat-pass tracks on a regular interval and relatively coarse resolution. Because of these complications,
previous studies have employed spatio-temporal averaging in their retrieval algorithms to successfully
eliminate measurement uncertainties associated with the measurement configuration and complexity
of scattering contributions [15–17]. This, however, sacrifices CYGNSS’s capability to provide high
spatio-temporal SM datasets.

A SM retrieval approach that considers complex land surface characteristics is needed to obtain
accurate, high spatio-temporal SM information. In order to effectively address the problem for the
uncertainty of coherent/incoherent assumptions as well as the nonlinear relationships among SM,
CYGNSS observations, and geophysical input data at high spatio-temporal resolution, we have recently
implemented a machine learning (ML) framework to retrieve SM from CYGNSS measurements [18].
The approach was realized as a proof-of-concept to obtain a SM data product over limited (a total of 18)
International Soil Moisture Network (ISMN) sites without the need for a model that explicitly requires
(1) incoherent signal detection and modeling, (2) modeling of unpredictable scattering mechanisms
within vegetation, or (3) spatio-temporal averaging. The primary data resources included CYGNSS
Level 1 data, NASA’s Moderate Resolution Imaging Spectrometer (MODIS) which provides normalized
difference vegetation index (NDVI) information, 90 m spatial-resolution digital elevation model data,
and in-situ SM data from ISMN sites. The area surrounding the sites were chosen for low vegetation
and surface roughness regions in order to establish the artificial neural network (ANN) retrieval
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algorithm’s basis from its simplest spaceborne case using non-simulated datasets. The technique
achieved 0.0544 cm3/cm3 retrieval accuracy with Pearson correlation coefficient of 0.9009 for 2017 and
2018 CYGNSS observations.

This paper extends our previous study [18] over larger and more diverse datasets to gain
further insights into the use of ML-based CYGNSS SM retrievals at high spatio-temporal scales.
The present study utilizes in-situ data from over 100 ISMN sites that exist below 38◦ latitudes in the
Continental United State (CONUS) from years 2017 to 2019. The ML-based retrieval model has been
evaluated through three different validation strategies, i.e., 5-fold, site-independent, and year-based
cross-validation methods. Furthermore, the results are evaluated across different land cover types and
soil textures as well as the SM site network types on the SM prediction performance. The effects of
ancillary inputs on SM predictions are also compared.

The rest of the paper is organized as follows: Section 2 describes the CYGNSS L1 and auxiliary
land surface parameters, and preprocessing of combined dataset including associated quality filters
used before the application of ML approaches. Section 3 provides a detailed explanation of the
ML framework as well as the cross-validation approaches. Section 4 illustrates the effectiveness
of the approaches across different land cover types, soil textures, and the SM site network types.
The effects of primary ancillary inputs on the performance are also compared. Section 5 discusses
findings, challenges, and implications for extending the ML-based SM retrieval methodology to a
global coverage. Finally, Section 6 summarizes our conclusions.

2. Datasets

In order to effectively develop an ML-based retrieval algorithm for surface SM from CYGNSS
observations, several datasets must be leveraged. The following subsections detail the input selection
for the retrieval algorithm as well as each input’s physical relationship to SM and GNSS-R sensitivity.
The methods of quality control and multi-resolution dataset combinations are discussed in order to
ensure consistent, accurate SM products.

2.1. Cyclone Global Navigation Satellite System

The CYGNSS mission is a constellation of eight micro-satellite observatories, each of which is
carrying a four-channel GNSS-R bistatic radar receivers to record the reflected Global Positioning
System (GPS) signals. Despite the fact that the constellation primarily orbits the tropics, limiting the
spatial coverage to latitudes ±38◦, it acquires a considerable amount of land observation data that
provides opportunities to exercise SM retrieval approaches.

To retrieve SM over land, the CYGNSS Level-1 (L1) version 2.1 product is used and accessed from
the Physical Oceanography Distributed Active Archive Center (PO.DAAC, https://podaac.jpl.nasa.
gov/). The key observable from CYGNSS L1 data is the Delay-Doppler map (DDM) which represents
the received surface power over a range of time delays and Doppler frequencies (bin-by-bin) for each
observed specular reflection point [23]. DDMs are processed in L1 to account for non-surface related
terms through inverting CYGNSS’ forward-scattering model and obtaining the surface’s bistatic radar
cross section (BRCS) and the effective scattering area. The bin-by-bin BRCS is provided as an 11× 17
array of DDM in L1 data. Additionally, the geometric and instrumental variables are included to
provide detailed acquisition information for each specular point with factors such as incidence angle
as well as the distances between the GPS transmitter, CYGNSS receiver, and the specular point.

Using the observables provided in L1 data, the surface reflectivity can be estimated via several
approaches with different coherence and incoherence assumptions [13,16,18]. Assuming that the
observed GNSS-R signal is dominated by coherent reflections, the approach of [13] is selected for
calculating reflectivity. Namely, the BRCS (variable brcs in CYGNSS L1) (σRL) and the range terms are
used to calculate the reflectivity (ΓRL(θi)) as

https://podaac.jpl.nasa.gov/
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ΓRL(θi) =
σRL(rst + rsr)2

(4π)r2
str2

sr
(1)

where rst and rsr denote the distances between the specular reflection point and the GNSS transmitter
(tx_to_sp_range in L1) and the GNSS-R receiver (rx_to_sp_range in L1), respectively. The peak value of
the brcs DDM is used with the coherency assumption. Furthermore, additional CYGNSS observables
such as trailing edge slope (TES) and leading edge slope (LES) are computed from the reflectivity delay
waveform which is the integration of BRCS within the Doppler domain. Following [13,24], TES and
LES are calculated from the reflectivity delay waveform values at the delay bins m (peak delay bin) to
m+3 and m to m−3, respectively. Both TES and LES are indicators related to the conditions of coherent
or incoherent scattering and provide supplementary information in addition to the CYGNSS reflectivity.
Therefore, the derived reflectivity is combined with TES, LES, and incidence angle (sp_inc_angle in L1)
as input layer features from CYGNSS data for SM retrieval in the ML framework. The CYGNSS data
used in this work span from March 2017 to December 2019.

2.2. International Soil Moisture Network

The aforementioned CYGNSS observables need to be accompanied with several auxiliary land
surface parameters to describe the interaction of received signals with the land surface. To construct the
nonlinear relationship between CYGNSS observations and these parameters including SM information
through ML approaches, labeled in-situ SM measurements are needed. The in-situ SM data available at
the ISMN sites [25] are used as the reference data and are assumed to be representative over a 9 km
× 9 km grid cell [18]. The ISMN has assembled over 50 operational and experimental SM networks
worldwide, providing a global in-situ SM database with uniform data format and pre-processing
quality flags [26]. While there are some sites in Asia, Australia and Europe, sites that provide both
temporally and spatially collocated observations with regards to CYGNSS data are mainly in North
America. In this study, we consider all available sites over CONUS within the CYGNSS spatial coverage
(shown in Figure 1). Detailed information about the ISMN is reported in [25,27]. The ISMN dataset is
publicly accessible (http://ismn.geo.tuwien.ac.at).

Figure 1. The spatial distribution map of the International Soil Moisture Network (ISMN) sites. Sites
shown in gray are excluded based on the masking criteria described in Section 2.4.

The hourly SM data from ISMN are masked using the provided quality flag (identified as ‘good’
with ‘G’) and then averaged to daily values. The surface SM at 5 cm depth is used which is consistent
with the penetration depth of L-band microwave signals. In total, there are more than 200 ISMN
sites with ground-based observations between March 2017 and December 2019 within the CYGNSS

http://ismn.geo.tuwien.ac.at
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spatial coverage in CONUS. These sites are mainly from the Soil Climate Analysis Network (SCAN),
U.S. Climate Reference Network (USCRN), and the COsmic-ray Soil Moisture Observing System
(COSMOS). Since many effects including complex topography and surface open water can significantly
affect CYGNSS received observations, a detailed masking criteria is applied to all ISMN sites as
described in Section 2.4. Quality control masks and the number of ISMN for each utilized network is
provided in Table 1.

2.3. Ancillary Data

Received GNSS-R signals are affected by various land surface characteristics such as land
cover, topography, water bodies, and soil texture in addition to the SM value as stated previously.
To account for the impact of land surface characteristics, various time-varying or static physical remote
sensing-based land surface parameters are utilized as features in the ML framework. The spatial
resolution of CYGNSS observations (that dictates the spatial extent of the ancillary data) is linked to
the nature of the scattering surface. It is determined by the first Fresnel zone (several kilometers) in the
case of specular (coherent) scattering, and by the glistening zone (several tens of kilometers) in the
case of the non-specular (diffuse) scattering. In this study, a coherent reflection is assumed, which is
valid when the contributing area is relatively flat and smooth ground with no or light vegetation cover.
The “effective size” of the first Fresnel zone is highly variable, and depends on the ranges from specular
point to the transmitter and the receiver, specular reflection angle, and operating frequency. It also
gets smeared along the track depending on the coherent integration time of the receiver. For most
applications, the CYGNSS data is usually gridded to regular grid cells with a fixed resolution under the
coherent assumption [13,15]. In our previous work [18], we considered an approximate 4 km × 4 km
grid cell that centered the specular point to generate the mean terrain characteristics. Here, the spatial
resolution of CYGNSS data is assumed to be 3 km × 3 km which leads to the optimal results from
several tests under different spatial resolution assumptions in our pre-test experiments. Therefore, the
auxiliary land surface characteristics are spatially aggregated from their native resolutions to 3 km.
For CYGNSS specular points located within the 9 km grid centered at each ISMN site, the reference
labels are assumed to be the same for one particular day. Each specular point has its own auxiliary
data from a 3 km grid centered at the specular point, including physical parameters of DEM elevation,
slope, NDVI, and soil texture.

The 500 m resolution, 16-day composite NDVI from MODIS (MYD13A1) is utilized for
characterizing the spatio-temporal variations of vegetation conditions. To be consistent with the
assumed spatial resolution of CYGNSS data, MODIS NDVI data has been spatially averaged from its
original 500 m to 3 km for grids centered at specular points. The MYD13A1 dataset can be acquired from
the NASA Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/products/
myd13a1v006/).

A dominant land cover type map at 500 m resolution is also obtained from the MODIS yearly
Land Cover Type (MCD12Q1) product in 2018. This product provides the dominant land cover type
for each grid cell. Six classification schemes are included, and the primary International Geosphere
Biosphere Programme (IGBP) land cover scheme is selected for further analysis. IGBP contains 17
land cover classes, including water, forest, shrublands, grasslands, cultivated land, wetlands, artificial
surfaces, permanent snow and ice, and bareland. For each 3 km grid, the most frequent land cover type
is determined. In addition, the land cover information is used to calculate Vegetation Water Content
(VWC) and surface roughness (H-value) parameters using the same lookup tables as in the SMAP
product [28]. Specifically, both VWC and H-values are obtained using the weighted averages of the
lookup table values with weights determined by the percentages of corresponding land cover types
within each 3 km grid cell.

The topographic information, known to greatly affect the reflectivity of GNSS-R signals [29],
is derived from the 1 km Digital Elevation Model GTOPO30 product. This can be obtained
from the United States Geological Survey Earth Resources Observation and Science archive (doi:

https://lpdaac.usgs.gov/products/myd13a1v006/
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/10.5066/F7DF6PQS). Elevation and slope are calculated and aggregated from 1 km to 3 km. Similar
to other datasets, the spatial regridding for topography is conducted for each 3 km grid centered at the
specular point and averages of elevation and slope are used to represent the underlying topographic
complexities.

The presence of surface inland water body is identified by utilizing a 30 m Global Surface Water
Dataset from the Joint Research Centre (GSW-JRC) [30]. Particularly, the seasonality map in 2018
provides the intra-annual behavior of surface water and the number of months where permanent
or seasonal surface water were present. These 30 m seasonality maps are aggregated to 3 km for
representing the percentages of surface inland water within the CYGNSS observed reflection area.
The water percent is determined by calculating the percentage of 30 m grids within each 3 km grid
indicating the presence of either permanent or seasonal water, and this value is used during the
retrieval algorithm’s quality control phase.

The Global Gridded Soil Information (SoilGrids) [31] is used to represent soil texture that controls
hydraulic properties such as water retention and capillary action within the profile. In SoilGrids, the
soil profile is vertically discretized to seven layers with a maximum depth of 2 m. For each layer, the
soil is classified into 12 standard soil texture classes based on the sand, clay, and silt proportions. Here,
the 5 cm depth is used for consistency with the penetration depth of L-band signals. The product
is available at 250 m and spatially aggregated to 3 km for each specular point. Sand, clay, and silt
proportions are spatially averaged, and the dominant soil texture class is determined by the percentages
of the 12 soil texture classes.

2.4. Quality Control Mechanisms

In total, there are over 160,000 CYGNSS observations available from March 2017 to December 2019
over ISMN sites in CONUS. However, critical screening for the quality of CYGNSS observations and
underlying land surface conditions is needed before conducting SM retrieval. Several filtering criteria
for quality control are applied to CYGNSS observations, ancillary data, and in-situ SM measurements.

CYGNSS metadata contains many quality control flags for both the raw instrument data and
processing information. Thus, observations with relatively low quality can be easily removed by
quality flags that indicate a potentially unreliable GNSS-R observation. In the study, we use the specific
flags (S-band powered up, large spacecraft attitude error, black-body DDM, DDM test pattern, low
confidence GPS EIRP estimate) and methods reported in [13,15]. Additionally, CYGNSS observations
with a negative antenna gain are filtered from the input dataset. Observations with an incidence angle
higher than 65◦ [14] are removed to avoid the inclusion of noisy DDMs. Also, observations with a
DDM peak value outside of 5 to 11 delay bins are removed from the dataset to avoid the inclusion of
high-altitude measurements [13].

Open water near the specular point is a critical error source for SM retrieval products. The power
of a forward-scattered signal emanating from a water’s surface is generally several orders of magnitude
higher than a signal scattered from soil due to the very strong coherency over water surfaces [32].
The SM retrieval near water bodies, thus, becomes infeasible if the surface water is sufficiently large
within the CYGNSS footprint. Hence, a CYGNSS observation is excluded if more than two percent of
the 3 km grid centered on a specular point is covered with permanent or seasonal water.

In addition, CYGNSS observations that fall over forested regions with VWC > 5 kg/m2 (dense
vegetation canopy) [33] and with a dominant urban land cover type [34] are filtered and removed
using the land cover type data described in Section 2.3. Furthermore, CYGNSS observations, which
corresponds to a total of 84 ISMN sites in the CONUS, are also masked out due to a limited elevation
algorithm at the first stage of CYGNSS mission.

Table 1 summarizes some information about the raw dataset, quality mechanisms, and their ratios
on the raw dataset and filtered dataset statistics. From 2017 to 2019, there are 234 sites over CONUS
reporting SM data from COSMOS, SCAN, and USCRN networks. The concurrent number of data
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samples from CYGNSS and ISMN is 160, 400. After applying specified quality control criteria, total of
106 sites with 33, 553 concurrent CYGNSS observations for SM retrieval is achieved.

Table 1. The ISMN data statistics before and after quality control flags.

Initial Quality Control Mechanisms
and the Ratio on the Raw Dataset % Final

# of Sites # of Data # of Sites # of Data

COSMOS 14 7381 CYGNSS quality flags 27 5 1923
SCAN 104 80, 446 Incidence angle > 65◦ 3 68 22, 951
USCRN 53 39, 928 Rx_gain < 0 27 33 8679

2017 225 39, 888 Peak power delay row bin 20 89 7580
2018 219 47, 304 Water land percent > 2% 16.6 99 9485
2019 222 73, 208 Elevation > 600 m (for 2017) 11 100 16, 488

Overall 234 160, 400 Urban areas 0.9 106 33, 553
VWC > 5 kg/m2 12.5

3. Methodology

The accuracy of SM estimation retrieved from GNSS-R observations is dependent on a proper
modeling of the complex and nonlinear relationship between the forward-scattered signal and
environmental variables such as system geometry, surface roughness, topography, and soil properties.
It is highly complex to model all such interactions with high fidelity. Instead, our methodology
uses data-driven ML approaches with physics-based features that have direct, physical relations to
SM estimation. Since ML algorithms are excellent function approximators and have a remarkable
capability in modeling complex and nonlinear relationships, ML is a well-suited approach for the
CYGNSS-based SM retrieval problem. All available ISMN sites over CONUS are utilized to conduct
extensive analysis on both the ML approaches and their performance dependence on utilized physical
features. The overall SM retrieval algorithm used in this study is depicted in Figure 2 and briefly
summarized in Section 3.3.

Figure 2. Flowchart of the proposed soil moisture (SM) retrieval algorithm.

In this study, a supervised learning problem is considered that maps the inputs, which are
physical features related to land scattering characteristics, to the labels, which are the measured SM
values at ISMN sites. CYGNSS and the ancillary dataset that form the input features for the proposed
supervised learning approach are presented in Section 2 along with the preprocessing and quality
control mechanisms. The physical features for CYGNSS-based SM retrieval are separated into four
main groups: CYGNSS observables, topography, MODIS, and soil texture features. All of the 12
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physical features in these groups are listed and described in Table 2. To interpret the effect of different
types of ancillary data, different ML models are trained and validated by excluding one ancillary input
group at a time. Therefore, four different schemes of input feature groups are constructed as below
and discussed in Section 4.1.

Scheme 1: default scheme with {all ancillary inputs} + CYGNSS.
Scheme 2: {Soil + MODIS} + CYGNSS.
Scheme 3: {Soil + Topography} + CYGNSS.
Scheme 4: {Topography + MODIS} + CYGNSS.
In the following subsections, we describe in detail the trade-offs in use of different ML-algorithms,

determination of optimum hyperparameters of the algorithms, selecting most relevant features as well
as strategies to evaluate the performance of the framework.

Table 2. Physical features considered for the machine learning (ML)-based SM retrieval model.

Input Group Feature Name Description

CYGNSS

Reflectivity Reflectivity calculated via [13]
TES Slope of the trailing edge of the reflectivity
LES Leading edge slope of the reflectivity
SP incidence angle Incidence angle of specular point

Topography Elevation Mean elevation for each specular point 3-km grid
Slope Mean Slope for each specular point 3-km grid

MODIS
NDVI Mean normalized difference vegetation index
VWC Mean vegetation water content
H-value Dominant land cover type based roughness parameter

Soil texture
Soil clay ratio Mean clay proportion for each specular point 3-km grid
Soil silt ratio Mean silt proportion for each specular point 3-km grid
Soil sand ratio Mean sand proportion for each specular point 3-km grid

3.1. Machine Learning Algorithm and Feature Selection

The selection of a ML algorithm and its hyperparameters that are most suitable for the SM retrieval
problem is a critical decision and has a significant impact on the performance of SM prediction. We
compare ANN, Random Forest (RF), and Support Vector Machine (SVM) approaches, which are
popularly used for supervised regression problems.

ANN is one of the most common ML algorithms for nonparametric and nonlinear classification
or regression problems [35]. ANNs are networks formed by interconnections between neurons with
nonlinear activations. Each neuron is a model that receives a linearly weighted combination of outputs
from previous layers and outputs a result passing that linear combination through its nonlinear
activation function. A feed-forward ANN of a multi-layer perceptron structure is usually composed
of an input layer, one or more hidden layers, and an output layer. The total number of layers and
number of nodes used in each hidden layer determines the total number of weights that must be
learned through minimizing the total cost between ANN predictions and the actual measured outputs
in the training data.

SVM is a supervised nonparametric learning method [36]. The basic idea of the SVM is to find
hyperplanes that separates training samples into a predefined number of classes. SVM can also
be applied to nonlinearly separable problems by using a kernel function [37]. The accuracy of SVM
depends on the hyperparameters of the error penalty parameter and the parameters of kernel functions.
These two critical parameters need to be optimized if a radial basis function (RBF) is selected.

RF is an ensemble ML algorithm that forms multiple decision trees. Each decision tree contains a
root node, internal nodes, and leaf nodes. In the forest, each decision tree makes its prediction, and
then the mean prediction of the trees is calculated as the output of the RF for a regression problem [38].
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The important hyperparameter defining the RF performance is the number of decision trees utilized in
the RF algorithm.

Hyperparameters are model parameters specified before the learning process. Typical hyperparameters
include the number of hidden layers and neurons in ANN, the regularization coefficients and
parameters in the kernel function of SVM, maximum split size, and the size of the ensemble tree
in RF algorithms, etc. The selection of hyperparameters mainly determines the ML model and thus
has a critical impact on SM prediction performance. Optimal hyperparameters should be used to
prevent overfitting and underfitting of the ML technique to the training dataset. The optimal operating
points of each ML model are obtained by utilizing a grid search method for their hyperparameters as
presented in Section 4.1.

Initially, 12 features from CYGNSS, MODIS, soil texture and topography feature groups are used
(Table 2). However, using too many features or too complex models may lead to an overfitting with
the ML model. A large feature set can contain noisy features or cross-correlated features that might
lead to marginal improvements or even deteriorations in final performance. Moreover, using too
many features will increase the computational cost. Thus, it is highly essential to select a subset of
relevant features. In this work, the sequential feature selection, forward or backward, algorithms are
used to choose the most relevant feature subset. The sequential feature selection is widely used for its
simplicity and speed in many applications [39,40]. Forward sequential feature selection is an iterative
technique that selects at each iteration the subset of features that minimizes the defined cost function.
Starting with the best-performing single feature and sequentially adding the next best feature, the
iteration continues until a certain stopping criterion is satisfied or all features are used. In the backward
feature selection method, the algorithm removes one less significant feature at a time. This process is
repeated until there is no feature to be removed or when a stopping criterion is reached. The feature
selection results are described in Section 4.1.

3.2. Performance Metrics and Evaluation

Results are evaluated in terms of the root-mean-square error (RMSE), unbiased RMSE (ubRMSE),
bias, and correlation coefficient (R) between the predicted SM values and the measured SM from in-situ
sites. To evaluate how well the performance of the proposed method could be generalized, three
different cross-validation techniques are deployed: (1) 5-fold, (2) site-independent, and (3) year-based.

For a 5-fold cross-validation, the data set is first split into 5 folds, then 4 folds are used as the
training set, and the remaining fold is used as the testing set. The final evaluation result is the
averaged result of each fold. To evaluate the capability of the prediction model to be generalized, a
site-independent cross-validation approach is also tested. In this approach, data for a single SM site is
used as test dataset while data for all other SM sites are used in training. By this way, the prediction
performance of ML for a totally unseen site can be analyzed. The RMSE, ubRMSE, bias, and R values
are computed separately for each site under this validation case. For a year-based cross-validation
method, the proposed model is first trained with data from 2017 and 2018 and then tested on data
from the year 2019. This year-based validation process is repeated for each combination of the three
observation years. As seen in Table 1, the number of observations of each year is different. Hence, it
should be noticed that the contribution of years to the training model would not be similar.

3.3. Machine Learning Framework Summary

Figure 1 encapsulates the following, overall workflow of the ML-based SM product. The raw
dataset which contains CYGNSS-based reflectivity and geometry, MODIS-based vegetation
information, GTOPO30-based topography information, and SoilGrid-based soil texture data are
compiled into a single dataset for analysis. These individual datasets are described in detail within
Sections 2.1 and 2.3. Data that contain potentially unreliable information are filtered out using the
dataset quality control processes described in Section 2.4. The optimal hyperparameters for ML
methods are chosen as discussed in Section 3.1. Redundant input features are then eliminated using



Remote Sens. 2020, 12, 1168 10 of 24

the feature selection process described in Section 3.1. Using a portion of the ISMN data described
in Section 2.2 as reference labels, the selected ML method is trained with the filtered input dataset.
The remaining portion of ISMN data is considered a testing dataset and is used for model testing.
The metrics for this model testing are defined in Section 3.2. Finally, this entire process is performed for
different input dataset schemes as defined in Section 3. All analyses and model development processes
are performed using the machine learning toolbox of MATLAB R2019b software.

4. Results

In this section, the SM retrieval results from varying ML-based approaches are presented from
four perspectives. In Section 4.1, the performance of different ML algorithms and input features are
first explored. With the selected ML technique and input features, the overall performance of the ML
model for SM retrieval is evaluated in Section 4.2 through three cross-validation strategies (as described
in Section 3.2). The spatial distribution of the ML-based SM retrieval performance is also presented in
this part. Section 4.3 analyzes the effect of different land cover types and soil texture conditions on the
SM prediction performance via a 5-fold cross validation method. In addition, the impact of different
in-situ SM networks on the performance is examined. In Section 4.4, two representative ISMN sites are
selected and their performance are demonstrated in the temporal domain.

4.1. Examination of Different Machine Learning Algorithms and Input Features

As stated in Section 3.1, hyperparameters and, hence, the ML-based model itself require careful
selection in order to prevent overfitting or underfitting. Here, we first analyze the ML algorithm
performance with a varying set of model parameters with 5-fold cross-validation. The selected grid
search ranges for hyperparameters are the number of trees (from 10 to 1250 with a 10-step interval)
and maximum split size (from 1 to 250 with a 5-step interval) for RF, hidden neuron size (from 5 to
100 with a 5-step interval) and layer size (from 1 to 3) for ANN, kernel scale (from 2−6 to 26) and
penalty parameter (from 10−1 to 103) for SVM. During the grid search process, the model complexity
is determined in terms of total weight number for ANN and total nodes number for RF. In ANN, the
number of weights is a function of the number of features, the number of layers, and the number
of neurons. For an RF model, the total number of nodes is the sum of the number of nodes of each
decision tree. For SVM, the number of features and kernel scale are the main parameters that affect the
model complexity.

Figure 3 shows the validation curves for each evaluated ML approach. The training and validation
RMSE curves are shown as a function of the varying model parameters obtained from the grid search
process for each ML algorithm. The black circle as shown on each ML approach’s validation curve
indicates the optimal model order and hyperparameter selection that generates the minimum RMSE
on the testing dataset. It is clear and expected that the RMSE of the training dataset generally decreases
with increasing model complexity for all compared ML algorithms. However, exclusively minimizing
the RMSE value for the training dataset can produce overfitting if the RMSE of the testing dataset is
not considered during hyperparameter selection. For ANN, a minimum RMSE value of 0.061 cm3/cm3

on the testing dataset is obtained with three layers and 25 hidden neurons for each hidden layer
(Figure 3a). For RF the minimum testing dataset RMSE of 0.052 cm3/cm3 can be obtained with 120
maximum split size and 200 trees (Figure 3b). Similarly, the optimal penalty parameter and kernel
scale of SVM are obtained as one and two, respectively, with a minimum RMSE of 0.065 cm3/cm3

(Figure 3c). Comparing the three ML algorithms, RF delivers the smallest RMSE value on the testing
dataset. Therefore, the RF is chosen as the ML algorithm for SM retrieval in this work and is used in
subsequent analysis.
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Figure 3. Root-mean-square-error (RMSE) of the training and testing data as a function of the model
complexity for three different ML algorithms: (a) Artificial Neural Network (ANN), (b) Random Forest
(RF), and (c) Support Vector Machine (SVM).

To understand the impact of the four raw input datasets depicted in Table 2 on the total RMSE,
four schemes with different combinations of input feature groups (specified in Section 3) are analyzed
using the RF regression model and a 5-fold cross-validation method. Note that the initial 12 features
are separated into four groups and are fully included in the Scheme 1 as a benchmark for evaluating
the effect of each independent ancillary feature group. Figure 4 shows predicted SM values compared
against in-situ observations for four different schemes. For the case with all 12 features as input
data, a minimum ubRMSE of 0.052 cm3/cm3 and a maximum R of 0.894 [-] is obtained via a 5-fold
cross-validation method (Figure 4a). For cases where one of the three ancillary feature groups is
excluded from the input data, e.g., the topography information is excluded in Figure 4b, the ubRMSE/R
values are changed from 0.052 cm3/cm3/0.894 [-] to 0.055 cm3/cm3/0.879 [-] when comparing the
ML model predicted SM and in-situ data. Likewise, the removal of either MODIS (Figure 4c) or soil
information (Figure 4d) leads to degraded model performance. Particularly, soil texture features are
identified as the most influential ancillary input for the SM prediction with a net ubRMSE increase of
0.006 cm3/cm3 in Scheme 4. Both MODIS features (i.e., NDVI, VWC, and H-value) and topography
features (elevation and slope) are critical for predicting SM as indicated in Figure 4b,c. In combination,
the MODIS, topography, and soil texture feature groups provide complementary information of
underlying land surface conditions with respect to CYGNSS observables and therefore are necessary
for accurate SM retrieval in the ML modeling process.

However, within each feature group, there exists repetitive and cross-correlated information that
can slow down the ML modeling process and introduce irrelevant noises. To reduce the input feature
size without reducing the retrieval accuracy, the sequential feature selection is conducted. Figure 5
shows the forward and backward sequential feature selection results via a 5-fold cross-validation
method. For either forward or backward feature selection, a minimum RMSE of 0.052 cm3/cm3 is
achieved with eight input features. Further inclusion of new features, i.e., soil sand ratio, H-value,
slope, and LES, does not introduce any significant improvements to the regression performance
(Figure 5a,b). Thus, an optimal feature number of 8 is determined for the rest of this study. The eight
most relevant input features used for SM retrieval are elevation, soil silt and clay ratios, NDVI, VWC,
reflectivity, TES, and SP incidence angle (see Table 2 for full descriptions).
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Figure 4. Scatter plots of the predicted SM estimates versus in-situ SM observations for ML models
with different input feature groups. The input features are described in Table 2. Color of scatter points
indicates the density of data points where yellow means a dense data sampling.

Figure 5. The RMSE values of the sequential feature selection through (a) forward and (b) backward
selection sequences.

4.2. Overall Performance of the Machine Learning Retrieval Model

Figure 6 and Table 3 show the overall SM prediction performance derived via the RF regression
model with eight input features. The RF method in a 5-fold cross-validation approach reaches an
overall ubRMSE of 0.052 cm3/cm3 and a R value of 0.894 [-] over the whole dataset. For all 106 ISMN
sites, the mean ubRMSE is obtained as 0.047 cm3/cm3 with a standard deviation of 0.016 cm3/cm3

whereas the best and poorest scores are 0.09 and 0.085 cm3/cm3, respectively. The averaged absolute
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biases across sites is 0.011 cm3/cm3 with a standard deviation of 0.013 cm3/cm3 (Table 3). Note that
different ISMN sites can show distinct SM climatology, leading to the prediction biases through the
ML model with incomplete sampling space. For the 5-fold cross-validation method, 80% of the whole
dataset is sampled randomly for use as a training dataset and the ML-based prediction model is
tested on the remaining 20% of the data. The biases suggest that the ML model is dependent on the
representativeness of the sampling set.

Figure 6. (a) The scatter plot of the predicted SM versus in-situ SM through a RF-based model with 8
selected input features and (b) the Taylor diagram for all sites .

Table 3. Overall and site-averaged performance metrics for different cross-validation methods.
Numbers in parentheses are the standard deviation (std.) of metrics across different sites.

Validation Method Overall Performance Average of Sites
RMSE ubRMSE R RMSE (std.) bias (std.) ubRMSE (std.) R value (std.)

5fold 0.0523 0.0523 0.89 0.050 (±0.017) 0.011 (±0.013) 0.047 (±0.016) 0.56 (±0.20)
Site independent 0.0883 0.0883 0.64 0.084 (±0.037) 0.056 (±0.044) 0.054 (±0.021) 0.42 (±0.20)
year based (2019) 0.0639 0.0639 0.84 0.06 (±0.023) 0.027 (±0.025) 0.05 (±0.018) 0.49 (±0.27)
year based (2018) 0.0586 0.0584 0.86 0.055 (±0.02) 0.024 (±0.019) 0.047 (±0.016) 0.43 (±0.30)
year based (2017) 0.0602 0.0599 0.84 0.058 (±0.022) 0.027 (±0.024) 0.048 (±0.016) 0.40 (±0.24)

Figure 7 shows the spatial distribution and variations of the RF-based SM retrieval model across
the CONUS sites. A satisfactory performance is achieved with ubRMSE smaller than 0.045 cm3/cm3

(Figure 7a) and R larger than 0.7 [-] (Figure 7b) for the majority of sites. Sites with small R values
generally correspond to those with relatively few concurrent in-situ observations and CYGNSS data
(the number of concurrent samples is less than 100) as shown in Figure 7b. Overall, the 5-fold
cross-validation results indicate that the RF-based SM retrieval model is capable of generating
satisfactory SM estimates.

In addition to the 5-fold cross-validation, a site-independent cross-validation, or the
“leave-one-subject-out” method, is applied which depicts the most challenging strategy to determine
how well the proposed method generalizes for new sites’ observations that are totally unseen
during the training process. For this purpose, the RF model is trained over 105 sites and tested
on all observations at the unseen site. This validation procedure is conducted independently for
106 sites. The overall performance statistics across 106 sites in the site-independent cross-validation
are provided in Table 3. The mean ubRMSE of all sites is relatively low with a value of 0.054 cm3/cm3

indicating that the RF-based SM prediction model can predict the temporal variations of SM for new
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site or unseen regions. However, relatively large RMSE (0.084 cm3/cm3) and mean absolute bias
(0.056 cm3/cm3) across sites suggest that the ML-based prediction model is less capable of dealing
with systematic bias issues. As noted above, different sites can have distinct climatology that can be
difficult for the ML model to capture if no a priori information is provided. In this site-independent
cross-validation method, this phenomenon is further exaggerated since no information will be available
for the learning process over the unseen site. Increasing the spatial coverage of the training dataset
with more complete characterization of various land surface conditions can potentially improve the
performance of ML-based SM retrieval model. However, with limited in-situ sites, increasing the
spatial representativeness of the training data will require a global satellite-based SM data which is
beyond the scope of this work.

Figure 7. Spatial distribution maps of the (a) unbiased RMSE (ubRMSE) and (b) correlation coefficient
(R) for all sites over contiguous U.S. The sizes of the filled circles are scaled as a function of the number
of observations.

Moreover, in order to test the ML-based model for predicting SM estimation under yearly temporal
variations, the model is first trained on the data from 2017 and 2018 and then tested on the data from
2019. This cross-validation process is referred as year-based validation and has been repeated for 2017
and 2018. The performance metrics are shown in Table 3 for each testing year. The ubRMSE values
for 2017, 2018, and 2019 in the year-based validation are 0.048, 0.047, and 0.050 cm3/cm3, respectively.
The relatively low ubRMSE values suggest that the ML-based prediction model can be applied to new
observations. In the year-based validation, each site provides partial time series data for the training,
and the corresponding ML-based model contains a certain amount of the site-specific information for
SM retrieval. The low absolute bias error and RMSE, as compared to the site-independent validation,
further indicates the importance of a priori information on the prediction capability of the ML-based
model. The smaller RMSE scores for 2017 and 2018 testing years can be primarily traced back to the
number of observation. For year 2019, the ML model is trained with a relatively small dataset and
tested on a large dataset.
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4.3. Effect of Underlying Land Surface Conditions

To evaluate the overall prediction performance of the ML-based SM retrieval model, it is also
important to quantify the impact of different land surface conditions since factors such as soil
texture are known to be critical parameters that affect both GNSS-R measurements and retrieval
performance. In Figure 8, the SM predictions are compared to in-situ SM under 12 main soil texture
classes. As demonstrated, the predicted and observed SM estimates are generally well aligned with the
1:1 line. For clay and clay loam classes, the observed SM changes from a minimum of 0.01 cm3/cm3

to a maximum of 0.5 cm3/cm3 with large variations. The predicted SM estimates have ubRMSE
values greater than 0.06 cm3/cm3 as compared to ISMN observations. Particularly for clay (Figure 8a),
the SM data are concentrated with either high or low values. Moreover, the sampling size of clay
is relatively small which further impedes the ML process. On the contrary, the SM is consistently
high/low for silty clay loam/sandy clay loam, leading to smaller ubRMSE of 0.042/0.036 cm3/cm3

and higher R of 0.884/0.928 [-]. For loam, silt loam, and sandy loam, the SM observations are more
evenly distributed as shown in Figure 8e,f,g. The ubRMSE values for these three soil texture classes
are around 0.050 cm3/cm3 and R values are generally high. As shown in Figure 8h,i, the observed
SM values are generally below 0.20 cm3/cm3 and thus relatively small ubRMSE values (0.028 and
0.036 cm3/cm3 ) are as expected.

Figure 8. Scatter plots of SM retrievals for different types of soil texture.

Furthermore, the ML-based model prediction capabilities for different land cover types are
analyzed and shown in Figure 9. In total, there are eight primary land cover types that are examined.
Regions with open shrublands (Figure 9a) and barren (Figure 9h) land cover are generally associated
with relatively dry soil at the ISMN sites. Thus, the ubRMSE values are relatively small (0.031 and
0.021 cm3/cm3) and correlations tend to be comparatively low (0.661 and 0.749 [-]). For other land



Remote Sens. 2020, 12, 1168 16 of 24

cover types, i.e., woody (Figure 9b), savanna (Figure 9c), grass (Figure 9d), croplands (Figure 9f), the
observed SM varies from a minimum of 0.01 cm3/cm3 to a maximum of 0.50 cm3/cm3. In addition,
the sampling sizes for these four land cover types are comparably large which benefit a ML-based
model to capture the empirical relationship between input features and reference data. The achieved
ubRMSE and R values are around 0.050 cm3/cm3 and over 0.85 [-] respectively. The relatively small
sampling size may be the main reason for a low R (0.786 [-]) over cropland with natural vegetation
mosaics land cover type (Figure 9g).

Figure 9. Scatter plots of SM retrievals for different types of vegetation land cover.

When synergistically considering the land cover type and soil texture class, the prediction
performance of the ML-based model is shown in Figure 10. As described above, the ubRMSE values
are generally small for open shrublands, barren, loamy sand, and sand types. For cases where the
dominant soil texture is sandy loam, the ubRMSE scores for different land cover types are mostly
below 0.05 cm3/cm3 except for cropland/natural vegetation mosaics. More importantly, the predicted
SM estimates generally have consistently high accuracy (with ubRMSE less than 0.05 cm3/cm3) for
croplands under different soil texture classes. The accurate soil water monitoring over croplands
is important, and hence, the prediction capability demonstrated here suggests that the ML-based
retrieval model can be utilized for agricultural soil water monitoring using the CYGNSS data.

The preceding analysis makes use of the entire ISMN dataset using the RF algorithm with eight
selected input features. It is important to note that the in-situ SM observations are collected using
different ground-based sensors with distinct set-up environments for the three examined observation
networks. It is advisable to investigate the impact of the different in-situ SM networks on the
performance of the learned ML model. To this end, three different RF-based regression models
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are learned with datasets from the three in-situ SM networks separately, i.e., COSMOS, SCAN, USCRN.
The 5-fold cross-validation results are shown in Figure 11 and Table 4 for each network-based ML
model. By training and testing the ML model with SM observations that are separated by SM network,
we find that the SM retrieval accuracy is enhanced such that each network-based ML model reaches
lower ubRMSE (an overall performance of 0.049 cm3/cm3, Table 4) than the ubRMSE (0.052 cm3/cm3,
Figure 6) of combining all SM networks. Hence learning three different ML models specific to each
SM network performs better than learning a single model for all SM networks. This indicates that
the representativeness of in-situ data and underlying land surface conditions of the different SM
observation networks affect the performance of the ML-based SM inversion model. Despite having
less collocated data for the training process, the ubRMSE of predicted SM estimates is 0.043 cm3/cm3

for COSMOS. Note that the COSMOS instruments are cosmic-ray water probes that provide SM
estimates at the spatial resolutions of dozens to hundreds of meters [41]. Compared to the point-scale
SM measurements obtained from SCAN and USCRN, the COSMOS can be more representative for
large-scale soil water conditions which benefits the ML-based model for satellite-based SM retrieval.
The predicted SM estimates are slightly underestimated for wet conditions when SCAN sites are
separately considered in Figure 11b. Thus, the ubRMSE/R values are respectively a bit lower/higher
for USCRN as compared to SCAN. Nevertheless, results demonstrated here suggest that the accuracy
and representativeness of the reference data are also important for the prediction capability of the
ML-based model.

Figure 10. SM prediction performance (ubRMSE value) comparison for varying soil texture and land
cover types.
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Table 4. Overall and averaged performance metrics for multiple ML models based on SM networks.
Numbers in parentheses are the standard deviations of metrics across different network-based models.

RMSE Bias ubRMSE R

Overall 0.049 −1 × 10−4 0.049 0.9
Average of sites 0.048(±0.016) 0.0085(±0.01) 0.046(±0.015) 0.58(±0.18)

Figure 11. Scatter plots and performance metrics of multiple ML models for each network type: (a)
the COsmic-ray Soil Moisture Observing System (COSMOS), (b) the Soil Climate Analysis Network
(SCAN), and (c) U.S. Climate Reference Network (USCRN).

4.4. Temporal Variations of Predicted Soil Moisture Retrievals

In addition to evaluating the overall performance metrics, it is important to understand the
ML-based model’s capability for capturing SM temporal variations. Here, two representative sites are
selected and demonstrated in Figures 12 and 13. For both sites, the predicted SM estimates closely
follow the temporal trend of the SM observations and correctly capture the precipitation events and the
drydown process (Figures 12a and 13a). It is interesting that the CYGNSS reflectivity estimates have
a generally good correlation with SM and NDVI for the site with grass land cover type (Figure 12b).
For the cropland site shown in Figure 13, NDVI is high (NDVI > 0.7 [-]) and the soil is relatively dry
(SM < 0.3 cm3/cm3) for the growing season (from May to September). The CYGNSS reflectivity well
captures the soil water condition instead of the vegetation information. Generally, the predicted and
observed SM estimates are align with the 1:1 line (Figures 12c and 13c), and the empirical cumulative
distribution function (CDF) lines (Figures 12d and 13d) further validate the high accuracy of predicted
SM estimates.

As demonstrated previously in Section 4.2, there are several sites with low R values.
When examining the land surface conditions of these sites, it is clearly seen that these sites are highly
heterogeneous with mixed grass, crops, savanna, surface water and occasionally urban land cover
types. The high heterogeneity not only can decrease the representativeness of in-situ SM observations,
but also it can lower the signal-to-noise ratio of CYGNSS observables leading to more problematic
input features and reference labels for the ML process. Nevertheless, the relatively low accuracy of
these few sites does not contradict the overall high performance of RF-based retrieval model.
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Figure 12. Comparison of (a) the in-situ observed and predicted SM time series and (b) CYGNSS
reflectivity and normalized difference vegetation index (NDVI) time series for site Vermon. (c) The
scatter plot and (d) cumulative density function (CDF) between predictions and measurements.

Figure 13. Same as Figure 12 but for site Uapb Dewitt.

5. Discussion

There is a growing interest within the hydrology community to utilize spaceborne GNSS-R
observations in SM retrievals. This trend has been particularly accelerated with the availability of
recent spaceborne GNSS-R observatories such as TDS-1 and CYGNSS. The allure for using such
techniques resides in GNSS-R’s relatively high spatial footprint over smooth Earth surface with
frequent observation capabilities. This potential can open new applications in hydrometeorology,
atmospheric research, and water resource management at microscale and mesoscale resolutions.
The goal of this paper’s research is to exploit CYGNSS data at high spatio-temporal resolution by
taking advantage of recent developments in machine learning algorithms that are excellent function
approximators and have a remarkable capability in learning complex and nonlinear relationships.
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The choice of ML approach particularly stems from the challenges of CYGNSS’s pseudorandomly
sampled measurements and sensitivity to fine-scale surface features which are challenging to manage
at high spatiotemporal resolutions within a physics-based modeling framework. However, effective
utilization of an ML algorithm for SM retrievals requires well prepared data which are labeled and
include reliable, physics-based ancillary input features in training phase.

The large number of ISMN sites over CONUS provides an opportunity to extensively exploit ML
approaches. Our analysis with ISMN sites demonstrates the potentiality of the ML-algorithms in SM
retrievals over various underlying land surface conditions such as soil textures and land covers at
high spatio-temporal resolutions. Particularly, the performance over croplands and sandy loam soil
provide promising results with higher accuracy. The achieved accuracy is further improved when the
ML-model is trained and tested over individual SM networks as opposed to combining all available
SM networks. In addition, the generalized methodology is investigated in both space and time using
site-independent and year-based cross-validation. The ML-based model is able to capture the temporal
variation with variable biases, and the results indicate the importance of a priori information on the
prediction capability of the ML-based model. While soil texture features are identified as the most
influential ancillary input for the SM prediction, both H-parameter and slope are determined as two
least significant features in our ML-model. This result is somewhat surprising from a physics-based
perspective since the small-scale roughness and topography are two important factors that can alter
the relative contributions of the coherent/incoherent energy observed in CYGNSS measurements.
This result could be attributed to the locations of ISMN sites which do not show significant variations
within and across individual SM network types in either slope or H-value as shown in Figure 14.
This indicates that the sites are located on relatively flat surfaces and that coherent reflections are
dominant. However, even if those grid cells are perfectly flat (although somewhat tilted), naturally,
a small-scale surface roughness of the order of the wavelength is always present. Spatial and temporal
changes of the decoherence due to surface roughness would interfere with the analogous changes in
the SM. Future studies perhaps could leverage physics-based modeling frameworks by guiding the
ML models with simulations to quantify potential source of errors in the retrievals in the absence of
alternative ancillary data.

(a) (b)

Figure 14. Distribution of (a) small scale roughness (H-value) and (b) topographic slope input features
for each SM network.

The correlation coefficient between the in-situ data and spaceborne SM retrieval depends on the
number of measurements and the dynamic range of the data. The overall performance of the proposed
algorithm should be evaluated over data from all sites which provide a wider dynamic range and
higher number of observations. As it is also shown in Table 3, correlation coefficient is over 0.8 in all
cases where the method is tested for more than a single site. In terms of averaging for each site, both
the number of measurements and the dynamic range of each site are lower leading to comparably
lower correlation values. Also for small number of measurements, the effects of outliers and the
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uncertainty of correlation can be higher. It is definitely a goal to obtain higher correlation for each site
in future studies. This could be done through site-based learning approaches or developing a model
for a group of highly similar sites.

The proposed methodology is potentially limited to similar terrains for which there exist in-situ
data. Direct application of this paper’s ML-model to Earth surfaces beyond CONUS requires further
study since the land conditions at ISMN sites are not expected to be representative of the majority of
the land scenes crossed by the CYGNSS flight tracks. However, the earth surfaces could be grouped
into similar land types by soil texture, topography, and land cover. Perhaps several ML-models for
each group could be investigated. In addition, reliable metrics are needed for the ML-based models to
learn heterogeneous and mixed scenes which do not necessarily lead to strong coherent reflections.
Future work will be needed to fully utilize CYGNSS data for a quasi-global SM data product. This can,
perhaps, be achieved by using the SMAP-based SM data as the reference [42]. The key difference
between the ISMN and SMAP as the reference label will be the spatial scale. The mismatch of spatial
scale representativeness and land surface heterogeneity effects will need further investigation.

6. Conclusions

In this work, an ML-based framework has been presented for estimating SM using the CYGNSS
observations over ISMN sites in CONUS. Three widely-used ML algorithms have been tested and
validated, among which the RF is observed to be the optimal ML inversion method for this study.
A feature selection process reduces the algorithm complexity with a refined input feature set. Several
key features are identified, including CYGNSS reflectivity, TES, incidence angle, NDVI, VWC, terrain
elevation, and the soil’s silt and clay proportions. Using RF as the utilized ML algorithm and with
selected input features, an overall ubRMSE of 0.052 cm3/cm3 is achieved via the 5-fold cross validation
strategy. More importantly, sufficient accuracy can be obtained via the site-independent (ubRMSE of
0.054 cm3/cm3) and year-based (ubRMSE less than 0.050 cm3/cm3) validation methods, suggesting
that the proposed ML-based SM retrieval model can be generalized in space and time with promising
confidence. Additionally, the ML inversion performance can be further improved when the training
process is separately conducted for different SM observation networks. Although the scale of in-situ SM
data from different networks varies, the results demonstrated here indicate that a proper consideration
of the spatial scales of CYGNSS observations, soil moisture reference data, and ancillary land surface
conditions is important for accurately retrieving SM estimates. Meanwhile, the ML-based model
performance is analyzed with respect to the land cover and soil texture conditions. Particularly, soil
texture features are identified as the most influential ancillary input for the SM prediction. Overall,
the ML model predicted SM estimates have high accuracy for croplands (with ubRMSE less than
0.05 cm3/cm3), indicating that the ML-based SM retrieval framework can be applied for agricultural
soil water monitoring.
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