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Abstract: We investigated the spatiotemporal variability of remotely sensed gross primary produc-
tivity (GPP) over Tiirkiye based on MODIS, TL-LUE, GOSIE, MuSyQ, and PMLV2 GPP products.
The differences in various GPP products were assessed using Kruskal-Wallis and Mann-Whitney U
methods, and long-term trends were analyzed using Modified Mann-Kendall (MMK)), innovative
trend analysis (ITA), and empirical mode decomposition (EMD). Our results show that at least one
GPP product significantly differs from the others over the seven geographic regions of Tiirkiye (x>
values of 50.8, 21.9, 76.9, 42.6, 149, 34.5, and 168; p < 0.05), and trend analyses reveal a significant
increase in GPP from all satellite-based products over the latter half of the study period. Throughout
the year, the average number of months in which each dataset showed significant increases across
all study regions are 6.7, 8.1, 5.9, 9.6, and 8.7 for MODIS, TL-LUE, GOSIF, MuSyQ, and PMLV2,
respectively. The ITA and EMD methods provided additional insight into the MMK test in both visu-
alizing and detecting trends due to their graphical techniques. Overall, the GPP products investigated
here suggest ‘greening’ for Tiirkiye, consistent with the findings from global studies, but the use of
different statistical approaches and satellite-based GPP estimates creates different interpretations of
how these trends have emerged. Ground stations, such as eddy covariance towers, can help further
improve our understanding of the carbon cycle across the diverse ecosystem of Ttirkiye.

Keywords: remote sensing; gross primary productivity; innovative trend analysis; empirical mode
decomposition; carbon cycle; Modified Mann—Kendall

1. Introduction

Gross primary productivity (GPP) represents the carbon taken up by the biosphere
that can be used for biotic processes. Understanding its changes across space and time is
crucial in understanding our changing planet, as it is the largest component of the global
carbon budget [1]. GPP has been increasing across much of the globe due, in large part,
to global greening [2,3] and CO, fertilization [4], and it is predicted to increase further
throughout the 21st century [5]. Simultaneously, water limitation is playing an increasing
role in controlling GPP at interannual to decadal time scales [6], often dampening its
response to otherwise favorable climatic conditions [7].

Satellite remote sensing has revolutionized our ability to estimate GPP [8-10] and is
particularly important for understanding its changes in areas where ground observations
are sparse. Interpreting GPP from space can be difficult because different interpretations
can result from different GPP data products [11-13] and from different statistical methods
for time series analysis [14-17]. Multi-method comparisons can help reduce uncertainties,
critique methods, and lend confidence that results are robust [18]. Doing so across diverse
regions can further help understand how, why, and where GPP is changing, and where our
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interpretations of changes are insensitive to a chosen satellite product or methodological
approach, thereby requiring additional study for more robust inference.

The calculation of trends over time for any natural phenomenon can employ paramet-
ric or non-parametric methods (or both). Among the parametric methods, linear regression
is the most frequently used. Despite numerous studies predicting the trend of GPP values
using linear regression [19-22], researchers tend to prefer non-parametric methods such
as the Mann—Kendall, Sen’s Slope, and Spearman’s Rho due to the preconditions of linear
regression, including the assumption of normal distributions, homoscedasticity, and the
absence of multicollinearity [4,23,24]. Certain details, which conventional methods struggle
to elucidate, can be examined through graphical methods such as Innovative Trend Analy-
sis (ITA) and Empirical Mode Decomposition (EMD). Contrary to conventional methods,
ITA and EMD provide detailed information on the fluctuations of the trend over time
and, in our case, the tendencies of trends at low, medium, and high GPP values. Utilizing
over-simplified methods to deduce the trend in GPP values may omit significant details.

GPP varies dynamically across multiple scales in time, but studies tend to conduct
trend analyses of annual GPP values. For example, the annual trend of GPP values has been
investigated in studies where the entire Earth is considered as the study area [25,26], in
studies for China [27-30], in studies for India [21,31] and in studies for Australia [32]. While
this may provide acceptable results for the study at hand, the trend of monthly GPP values
over time is important in natural areas, and especially in cultivated agricultural areas, for
understanding trends in productivity and investigating changes in seasonal patterns that
may have management implications [33]. Annual GPP values represent the whole year
after a single value has been obtained by averaging or summing, and do not explicitly
consider variations during periods that are sensitive to plant growth including agricultural
activity. The second innovation in this study, in addition to the multi-trend analysis, is the
trend analysis of monthly GPP values.

Here, we compare multiple satellite-based GPP estimates and multiple approaches
for time series analysis to interpret decadal-scale GPP trends, using the diverse geography
and vegetation of the Republic of Tiirkiye as a case study. Tiirkiye has relatively sparse
observations from the eddy covariance of surface-atmosphere carbon dioxide exchange
from which GPP can be inferred [34-36], emphasizing the importance of satellite remote
sensing in interpreting carbon cycling dynamics [37]. It also has a relatively large and
growing population and a changing climate with increases in temperature and atmospheric
heat content [38]. Precipitation has been increasing in parts of the north and east and
decreasing in the west [39,40], with an expansion of semi-arid regions [41] and predicted
future declines in precipitation throughout the country [42,43]. Carbon cycle processes have
changed in response to changes in aridity across different parts of Ttirkiye [44,45], further
emphasizing the importance of understanding trends in GPP. Here, we analyze multi-
decadal time series from six different GPP products across the seven different regions of
Ttirkiye, employing various trend analysis methods, both standard and novel, to interpret
patterns. In this study, alongside the conventional trend method (Mann—Kendall), the
simultaneous interpretation of two graphical trend methods (ITA and EMD) aims to develop
an original methodology in ecological and carbon cycle studies. This approach is designed
to prevent the over-simplification of trend analyses, thereby identifying trends with higher
temporal resolution. In addition, we aim to provide insight into how key components of the
carbon cycle of Tiirkiye have been changing and to provide a framework for multi-method
approaches for understanding these changes.

2. Materials
2.1. Study Area

Tiirkiye is located at the crossroads of Europe and Asia and between 36° and 42° North
and 26° and 45° East. The total land area of the country is approximately 780,000 km?
and elevation above sea level (asl) generally increases from west to east [46]. Four main
climate types—Mediterranean, Continental, Marmara (Transition), and Black Sea—are
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observed across Tiirkiye. The Mediterranean climate is characterized by hot and dry
summers and mild and rainy winters. The Continental climate, corresponding to the Dsa
category in the Koppen climate classification, is found in the mountainous parts of the
eastern region, southeast region, and inner region of Tiirkiye [47], characterized by hot
summers and cold winters. The Marmara region serves as an ecological and climatic
intermediary, bridging the Mediterranean climate found in the south with the Continental
climate of the north. The average annual temperatures are 14.5 °C in the eastern part of
the Marmara region and 13.6 °C in the north. While summer temperatures (in July) vary
around 25 °C along the coasts, these values tend to decrease in the inland areas [48]. The
Black Sea region receives relatively high precipitation throughout the year and its eastern
coast experiences the most rainfall, with more than 2200 mm annually, whereas the central
Anatolian region only receives about 400 mm each year (Figure 1b). The warmest areas are
along the Mediterranean and Aegean coasts, as well as in the southern and southeastern
parts of Tiirkiye, where average temperatures are consistently higher than in the rest of the
country (Figure 1c). The land cover map related to the study area is provided in Figure 1a.
Combined, these differences in climate and vegetation create unique opportunities to study
nationwide trends in GPP.
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Figure 1. Maps of elevation (a), annual average precipitation (1980-2020) (b), annual average
temperature (1980-2020) (c), and land use/land cover (2021) (d) of Tiirkiye.

Tiirkiye is divided into seven different geographical regions—Aegean, Black Sea,
Central Anatolia, Eastern Anatolia, Marmara, Mediterranean, and Southeastern Anatolia.
These regions are defined based on similarities and differences in climatic and topographic
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characteristics [49]. To provide a comprehensive understanding for the entirety of the coun-
try, we selected one location from each region to study trends in GPP using multiple remote
sensing-based estimates. The criteria for the selection of grids from which GPP values are
obtained encompass areas that are typically distant from residential areas in the regions
with the most significant agricultural activity in their respective geographical locations.

2.2. GPP Datasets

This section provides relevant information regarding the GPP datasets as well as the
methods that they use to estimate GPP; additional details are provided in the Supplemen-
tary Materials. To ascertain whether the similarity among GPP datasets can be analyzed
using parametric methods, an analysis was also conducted to determine whether these
datasets are normally distributed using the Shapiro-Wilk test, with a null hypothesis that
the data are normally distributed at the o < 0.05 level. The map representing GPP values
for 7 different points used as a study area is presented in Figure 2. In the study, due to
the different temporal and spatial resolutions of the utilized datasets, monthly averages
have been adopted for temporal resolution for comparison. The spatial resolution varies,
with the highest being 0.05 degrees and the lowest 0.5 degrees. In the selection of spatial
resolution, a lower resolution value was chosen, and for datasets with higher resolutions,
averages of 10 x 10 grids corresponding to 0.5 x 0.5 degrees in the selected area were
calculated. Descriptive information pertaining to the datasets used in the study is presented
in Table 1.
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Figure 2. Gross Primary Productivity across Tiirkiye as estimated by the TL-LUE dataset [50] for
June 2020.



Remote Sens. 2024, 16, 1994 5 of 30
Table 1. Temporal and spatial information of GPP dataset.
Data Length . Spatial Temporal
Dataset Date Range (Months) Units Scale Factor Resolution Resolution
MODIS 02/2000-12/2020 253 kgCm2m! - 50 km 8 days
FLUXCOM 01/1979-12/2018 480 gCm2m™! - 50 km monthly
TL-LUE 01/1992-12/2020 348 gCm2m! 0.1 5km monthly
PMLV2 01/1980-12/2014 420 umol m—2 g1 - 5km monthly
GOSIF 03/2000-12/2022 274 gCm2m! 0.01 5 km monthly
MuSyQ 01/1981-12/2018 456 gCm~24d! 0.01 5 km 8 days
2.2.1. MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS), launched into space
on the Terra satellite in 1999 and on the Aqua satellite in 2002, is designed to observe
the Earth’s surface, atmosphere, and oceans. One of the key functions of MODIS is to
regularly measure the carbon dioxide uptake of the Earth’s terrestrial vegetation through
GPP products [51,52] that are generated by calculating the daily net photosynthesis values
of plants and combining these values over 8-day observation intervals throughout the
year at 1 km (MOD17). The MODIS GPP algorithm, developed by Running et al. [53], is
based on the Light Use Efficiency (LUE) concept originally proposed by Monteith [54] and
depends on the type of vegetation in a specific area and the amount of sunlight absorbed
for photosynthesis. The MODIS GPP data used in the study were provided by [55]. The
flowchart for obtaining MODIS GPP values is given in Figure S1.

2.2.2. MuSyQ

The Multisource Data Synergized Quantitative (MuSyQ) algorithm employs methods
similar to the MODIS GPP algorithm, but it differentiates itself by using multiple remote
sensing products and implementing certain improvements in the calculation of the LUE
by taking into account the finding that the LUE for diffuse solar radiation is higher than
for direct solar radiation [56]. Particularly in cloudy regions, and in tropical, evergreen
broadleaf forests, the accuracy of GPP predictions can be enhanced by incorporating the
clearness index (CI) into the LUE estimation. The MuSyQ dataset was provided by [57].
The flowchart of the MuSyQ algorithm is provided in Figure S2.

2.2.3. PMLV2

The Penman-Monteith-Leuning (PML) model was initially developed by Leuning [58]
and introduced a biophysical model for surface conductance (Gs) based on the
Penman-Monteith (PM) equation [59]. Since then, there have been two improved ver-
sions of the PML model: PML-V1 and PML-V2. The PML-V2 employs a biophysical canopy
conductance (Gc) model to combine Evapotranspiration (ET) with GPD, as described by
Gan et al. [60]. To streamline the model, it retains only essential parameters that are of
physiological significance for stomatal response and assimilation [61]. Unlike PML-V1,
PML-V2 takes into account the effects of increasing Leaf Area Index (LAI), rising CO; levels,
and climate forcing on ET and GPP [62]. PML-V2 products consist of five components: GPP,
vegetation transpiration (Ec), soil evaporation (Es), evaporation of intercepted rainfall (Ei),
and the evaporation from ice, snow, and water bodies (ETwater) (see [13,63]). The PMLV2
dataset used here was provided by Zhang et al. [64].

2.24. TL-LUE

The two-leaf light use efficiency (TL-LUE) model calculates the GPP of sunlit and
shaded leaves separately and sums them along the canopy [65]. The revised (TL-LUE)
adds an atmospheric CO, concentration regulation scalar and modifies the air temperature
regulation scalar [50]. TL-LUE GPP values were obtained from the study by [66].
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2.2.5. GOSIF

The GOSIF GPP product is generated from solar-induced chlorophyll fluorescence
(SIF) data based on the relationship between SIF and GPP across various vegetation types,
utilizing data from the Orbiting Carbon Observatory-2 (OCO-2), MODIS, and meteoro-
logical data from the Modern-Era Retrospective analysis for Research and Applications
(MERRA-2). Developed by Li and Xiao [67], this product has a spatial resolution of 0.05°
and offers temporal resolutions of 8 days, monthly, and annually. The GOSIF GPP dataset
has been validated through comparisons with independent flux tower data, demonstrat-
ing high precision and the ability to effectively represent spatiotemporal variations in
large-scale GPP [68]. This validation, which considered each biome separately, confirmed
the dataset’s accuracy in representing photosynthetic activity, particularly in grassland
ecosystems. The monthly GOSIF GPP values were provided by Li and Xiao [67].

2.2.6. FLUXCOM

FLUXCOM is an initiative formed through the collaboration of various experts, aiming
to understand uncertainties in empirical scaling and to present global GPP values based
on machine learning [69]. In FLUXCOM, a variety of machine learning-based regression
tools, such as model tree ensembles, multiple adaptive regression splines, artificial neural
networks, and kernel methods, are used. This study aims to estimate CO, and energy fluxes
using two different scaling strategies: (1) 8-day average fluxes based solely on remotely
sensed data and (2) daily average fluxes based on remotely sensed and meteorological data.
Machine learning (ML) approaches have been applied and extensively cross-validated with
flux towers for both setups, and it is important to note that FLUXCOM was designed to
not have trends in the “RS + METEO” products used here [70]. For the calibration of GPP
values in the study, FLUXNET GPP values were used. The dataset was obtained from
http:/ /www.fluxdata.org (accessed on 11 December 2023).

Due to the varying lengths of these time series across datasets, the start date of the
latest commencing dataset, GOSIF, was chosen as the baseline start date. Similarly, the end
date of the earliest finishing dataset, PMLV2, was used as the overall end date to enable
more accurate comparisons between the datasets.

2.3. Validation of GPP Datasets

Validating a new global dataset is a challenging process, as ideal validation would
involve measuring daily GPP across a diverse range of biomes and climates. An algo-
rithm successful in a coniferous forest might be inadequate in a tropical savanna. There-
fore, a global array of validation sites is necessary. More fundamentally, each available
measurement for validating GPP represents a different spatial scale and presents unique
limitations [71]. Three types of data appear useful for validating global GPP data: direct
measurements of biomass [72], tower flux measurements [73], and measurements of atmo-
spheric CO, concentrations [74]. However, each data type has limited precision or scope.
Direct biomass measurements of GPP are typically measured on an annual basis (or longer)
and the sample area is often less than 1 hectare [53], with uncertain carbon losses due to
respiration. Tower flux measurements are continuous over time and sample a footprint
that may be of a similar spatial extent to a 1 km pixel of satellite images, but towers only di-
rectly measure NEE, such that deriving GPP requires additional modelling and subsequent
assumptions. Measurements of atmospheric CO, concentrations integrate over a large,
difficult-to-define land area and include anthropogenic CO, emissions and are often col-
lected through a monthly repeat snapshot sampling process. In short, no measure matches
the detail represented by GPP in terms of time, space, and ecosystem characteristics.

A network called FLUXNET, comprising hundreds of tower sites across all continents
and biome types, provides accurate seasonal measurements about vegetation carbon uptake
and local land CO; balances [75]. These towers enable validation of GPP values derived
from remote sensing products.
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The MODIS GPP dataset was validated using all station data in the FLUXNET network.
The MuSyQ dataset was validated using measurements from stations in the BigFoot and
FLUXNET networks [56]. For the PMLV2 GPP dataset, 26 EC towers selected in China
covering 9 PFTs were used and a Genetic Algorithm was employed during the calibration
process [76]. The TL-LUE model utilized 68 towers from the FLUXNET network for cali-
bration and 25 for validation [50]. The GOSIF dataset was developed using 91 FLUXNET
sites and has been tested for 10 different biome types with satisfactory results [67]. The
FLUXCOM dataset was developed using current machine learning techniques and informa-
tion from 224 towers in the FLUXNET system to represent 15 different PFTs [69]. Detailed
technical information on how the GPP datasets used in the study were calculated by the
developers is shared in the Supplementary Materials.

3. Methods
3.1. Kruskal-Wallis and Mann-Whitney U

The Kruskal-Wallis test is used for comparing the median values of data obtained
from different groups [77]. This non-parametric statistical method is preferred, especially
when the data are not normally distributed or when sample sizes are small [78]. The
Kruskal-Wallis test investigates the hypothesis that K groups of samples originate from
a single statistical population, or from comparable statistical populations, with respect to
their means [79].

After the Kruskal-Wallis test identifies that at least one group is different, the
Mann-Whitney U test can be applied for pairwise comparisons between groups. (This
test is also referred to as Wilcoxon’s rank sum [80].) The Mann—-Whitney U (MWU) test
combines the data from two groups to form an overall ranking [81] to jointly assess data
from both groups and calculate rank sums. The test statistic is then determined based on
the rank sums of both groups and the number of observations in each group and used to
test whether there is a significant difference between the group medians.

3.2. Modified Mann—Kendal Test

The Mann-Kendall test is a widely used method for detecting trends in time se-
ries data [15]. It does not account for autocorrelation (the correlation between consecu-
tive observations in a time series), which can lead to misleading results. The Modified
Mann-Kendall (MMK) test is designed to reduce the effects of autocorrelation [82]. This test
constitutes the fundamental principles of the original Mann-Kendall test while considering
the presence of autocorrelation. The specific equations of the MMK test are similar to those
of the original Mann-Kendall test but include some additions and corrections to account
for autocorrelation. Detailed information about MMK can be accessed in Berhanu et al.’s
study [83].

3.3. Innovative Trend Analysis

Innovative trend analysis (ITA) is a non-parametric method used for identifying trends
in time series data [17] regardless of data distribution and length and allows for a quick
graphical understanding of trends. In this method, observational data are divided into two
equal lengths starting from the beginning date and sorted from smallest to largest; one of
the key advantages of the ITA method is its capability to interpret the trend behaviors of
low-, medium-, and high-valued data [84]. The first sub-series is placed on the x-axis and
the second sub-series on the y-axis on the Cartesian coordinate plane. If the data fall on or
very close to the 1:1 (45°) line, it is practically understood that there is no significant trend
in the series being examined. If the data fall above (or below) the 1:1 (45°) line and continue
to deviate from the straight line in an increasing (or decreasing) manner, the trend is
monotonically increasing (or decreasing). Series that do not show a continuous increase (or
decrease) at smaller values but exhibit an increasing (or decreasing) character as the values
increase are referred to as series with a non-monotonic increasing (or decreasing) trend.
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The steps of obtaining the confidence interval limits used to determine the significance of
the trend values produced by the ITA method are described below.
The trend slope and indicator of the ITA are calculated using Equations (1) and (2).

_2E-7)
=T @)

where s is the trend slope, 1 is the number of data points available, ¥ is the mean of the first
part of the series, and ¥ is the mean of the second part of the series.

D =

S|

D is a trend indicator (a positive value indicates an increasing trend and a negative
value indicates a decreasing trend), n is the number of data points in each subseries, X is
the mean value of the first subseries, and x; and y; are the observed data values in the first
and second subseries, respectively.

The significance of the ITA is estimated using a probability distribution function.
The confidence interval of a standard normal distribution function with zero mean and
standard deviation of the ITA trend slope (05) at the significance level « is calculated using
the confidence limit of the trend slope (CL):

CL(l—zx) = 0$sas (3)

When the estimated ITA trend slope (i.e., s) is greater than the critical value, the null
hypothesis of no slope is rejected. Therefore, if the data points fall outside the specified
confidence limit, s calculated from the data series is considered statistically significant. In
this study, a 95% confidence level is considered. An example of a graphical representation
of the ITA method is presented in Figure 3.
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Figure 3. ITA example.
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Among the areas where the ITA method is most frequently used is the examination
of hydrological and meteorological variables. In this context, considering the strong link
between carbon cycles and water cycles [85], we seek to investigate the utility of ITA GPP
trend analysis. For the ITA analysis, the trendchange package [86] in R was utilized [87].

3.4. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a signal processing method that aims to
uncover the internal structure of data by decomposing a signal into its sub-components at
different frequencies [14]. EMD has been used for various applications, such as analyzing
time series data, identifying periodic or continuous structures in data, and decomposing
signals in the frequency domain. These components are called Intrinsic Mode Functions
(IMFs). Each IMF represents the local frequency modulation of the data and reflects the
time—variance relationship in the signal. IMFs preserve the intrinsic characteristics of the
data while determining their fundamental frequencies. EMD decomposes a signal into
IMFs through a series of progressive steps. For a signal component to be considered as an
IMF, it must satisfy two conditions: (i) the number of local maxima and minima and the
number of zero crossings must be the same or differ at most by one and (ii) the arithmetic
mean of the envelope defined by the local maxima and the envelope defined by the local
minima must be zero. The sum of the IMF and residual mode components, determined
through the decomposition and elimination processes of a signal by EMD, reconstructs the
original signal. EMD calculation steps are defined as follows.

Step 1: All extrema in the time series are identified. The local maxima and minima
are then used for interpolation and the upper Uy (t) and lower L, (¢) envelopes are derived
using cubic spline.

Step 2: The mean envelope value m(t) and the detailed component d(t) are calculated.

m(t) = M 4)

d(t) = x(t) —m(t) )

Step 3: If the resulting d(t) meets the stopping criteria, it becomes the first IMF. Oth-
erwise, the procedure is repeated on d(t) until the stopping criteria are met, where the
stopping criteria are defined as follows:

T o1di(t) —di_1(8)|
b 70 <o ©

t=1

where T represents the length of the time series and j denotes the number of iterative
calculations. The default value of SD is usually set between 0.2 and 0.3. Thus, in this study,
the default SD value was set to 0.2.

Step 4: Continue iterating steps two to three until all IMFs and the detailed signal are
obtained. Finally, the original time series f(t) can be decomposed as given below:

F(8) = YN IMFi(t) + Ry (t) ?)

where Ry (t) is the final residual and can be considered as the global trend signal.

The residual band obtained through the EMD method is commonly referred to as the
long-term trend component [88], which identifies changes in the nonlinear trend present in
the time series over time. In the literature, its application is noted in various fields such as
precipitation [89], air temperature [90], extreme sea levels [91], and regional drought [92].

We decomposed the GPP time series into sub-series with different frequencies using
the EMD method. This decomposition process utilized the EMD library [93,94] in R.
While the EMD algorithm performs a data-based decomposition, it still contains certain
hyperparameters including the maximum number of siftings and the maximum number of
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IMFs. The maximum number of siftings refers to the maximum iterations the algorithm
will perform during the extraction of each IMFE, which influences in how much detail the
algorithm will process each IMF and how long it will run. A larger maximum sifting
number can lead to longer extraction processes for each IMFE. This can create a significant
computational cost, especially for large datasets. Excessive sifting may sometimes result in
the over-sifting of the signal, causing the IMFs to be overly detailed and to fail to reflect the
main signal’s characteristics [95]. Depending on the specific application of the algorithm
and the characteristics of the dataset, the optimal value of this hyperparameter can vary.
In practical applications, it is typically adjusted through trial and error, and we achieved
this by choosing values from 10 to 30. In the EMD algorithm, the “maximum number
IMFs” setting determines the maximum number of IMFs the algorithm will extract from a
signal. This setting is a crucial hyperparameter that directly affects how EMD works and its
outcomes. The maximum number of IMFs was also set using a trial-and-error method. In
this study, the maximum number of IMFs varied between 4 and 8. After extracting the IMFs
and the trend component, the variance contribution rate (VCR) values of all the sub-series
were calculated. This value measures the extent to which each sub-series explains the
variance of the original time series. Although simple and practical, the EMD method also
has some disadvantages. For example, EMD-based techniques are sensitive to the noise
contained in the signal. A small change in the signal-to-noise ratio of the signal can lead
to significantly different signal decomposition results [96]. The EMD method also has a
mixing problem [97], which is caused by the mixing of frequency components between
various IMFs. These issues should be taken into account when using the EMD algorithm.

4. Study Design

The flowchart of the study is illustrated in Figure 4. First, we obtained global Gross
Primary Production (GPP) datasets from various sources. These datasets were carefully
selected to ensure a comprehensive representation of GPP values across different geograph-
ical locations. These datasets were then subjected to a sub-setting process in which data
corresponding to specific points in seven different regions in Tiirkiye were extracted for
a more localized analysis of GPP. Given the concern that GPP values examined at the
highest spatial resolution could potentially be misleading and may not accurately reflect
larger-scale variability, 50 x 50 km areas were defined within each region. For each of these
defined areas, average GPP values were calculated. Once the time series data for each
region and the corresponding dataset were obtained, a series of statistical analyses were
performed. First, correlation analyses were conducted to determine the degree of similarity
and strong relationships between data within the same region. Non-parametric statistical
tests, specifically the Kruskal-Wallis (KW) test and the Mann-Whitney U (MWU) test, were
used to evaluate differences between the datasets. Following the identification of similar-
ities and differences through these statistical tests, temporal trends in GPP values were
analyzed using three different methods. These methods were chosen to comprehensively
capture and analyze temporal dynamics and trends in GPP values over time. Each method
provided unique insights into the temporal evolution of GPP.
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Figure 4. Flowchart of the study.

5. Results
5.1. Statistical Evaluation of the GPP Datasets

None of the GPP product data follow a normal distribution across the study regions.
The time series of MODIS GPP for all regions, and histograms related to these time series,
are shared in Figure S3. The average GPP values for Antalya, Erzincan, Izmir, Kirklareli,
Konya, Samsun, and Sanliurfa are 2.53, 1.29, 2.51, 2.52, 0.97, 3.27, and 1 g C m2d1,
respectively. The lowest GPP value, 0 g C m~2d~!, was found in the Erzincan region,
while the highest GPP value, 8.72 g C m~2d~1, was observed in the Samsun region. The
time series of MuSyQ GPP for all regions, and histograms associated with these time series,
are presented in Figure S4. The average GPP values from MuSyQ were as follows: Antalya
2.04, Erzincan 1.13, Izmir 3.43, Kirklareli 2.51, Konya 0.68, Samsun 3.00, and Sanliurfa
1.05gC m~2d L. The lowest GPP value was 0.03, observed in the Erzincan region, while
the highest GPP value was 8.23 g C m~2 d !, which was observed in the Samsun region.
Distribution graphs and time series graphs for the study areas are presented in Figure S5.
The lowest GPP estimates from the PMLV2 were 0.11gCm2d ! and 0.33gCm~2d "},
recorded in the regions of Erzincan and Konya, respectively, while the maximum GPP
values recorded were between 7.27 g Cm 2d ! and 9.04 g C m 2 d !, observed in the
Antalya and Samsun regions, respectively (Figure S5). Recent years have seen notably high
values in the Antalya, Erzincan, Izmir, and Konya regions; the increase in the frequency of
high values in recent years can be observed from the time series graphs (Figure S6). In the
TL-LUE GPP datasets, the highest values were detected at 11.93 g C m 2 d ! in Samsun
and 8.51 g C m~2 d~! in Kirklareli. The lowest GPP from GOSIF values were identified in
Erzincan, while the highest were observed in Samsun (Figure S7). Similar to MuSyQ GPP
values, almost all of the GOSIF GPP values also exhibited a distribution that was heavily
right-skewed (e.g., Figure 5). The lowest values from FLUXCOM occurred in Erzincan,
while the highest values were identified in Samsun. The FLUXCOM GPP average values
for Antalya, Erzincan, Izmir, Kirklareli, Konya, Samsun, and Sanliurfa were 2.49, 1.34, 3.39,
2.07,0.85,2.79, and 1.31 g C m~2 d~!, respectively (Figure S8).
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Figure 5. Correlation matrices of GPP datasets from the (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirk-
lareli, (e) Konya, (f) Samsun, and (g) Sanliurfa regions.
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First, correlation coefficient values were calculated to determine relationships between
different GPP products from each data point from different regions (Figure 5). All rela-
tionships were statistically significant, with important differences in the strength of the
agreement. For instance, in the Antalya region, the highest correlation of 0.97 was observed
between GOSIF and TL-LUE, while the lowest was 0.88 between MODIS and MuSyQ
datasets. The scatter plots illustrate that variance tended to be lower for lower GPP values
and vice versa for higher GPP values. A noticeable increase in variance can be observed
between FLUXCOM and MuSyQ, and MuSyQ and GOSIF for high GPP values. In the case
of the Erzincan region, the highest correlation was 0.99 between GOSIF and TL-LUE, and
the lowest was 0.92 between FLUXCOM and MuSyQ datasets. Scatter diagrams for the
Erzincan region indicate a relatively lower variance at low values compared to medium
and high values. Regarding the Kirklareli region, the highest correlation coefficient of
0.99 was measured between GOSSIF and TL-LUE, while the lowest correlation coefficient
of 0.89 was observed between FLUXCOM and MuSyQ. For the Izmir region, the higher
variance can be observed for medium and high values compared to lower values. When
examining scatter plots for the Konya region, the variance between low and medium values
is significantly lower compared to very high values. The highest correlation coefficient in
Konya was 0.98 between GOSIF and TL-LUE, while the lowest was 0.83 between PMLV2
and FLUXCOM. In the Samsun region, an almost perfect scatter was observed between
TL-LUE and GOSIF, resulting in a correlation coefficient of 0.99. The lowest correlation, at
0.88, occurred between MuSyQ and FLUXCOM. When examining scatter plots between
FLUXCOM and other datasets, a noticeable difference is apparent. Finally, for the Sanliurfa
region, the highest correlation coefficient of 0.95 was between TL-LUE and GOSIF, while the
lowest correlation was 0.84, both between GOSIF and MODIS and GOSIF and FLUXCOM.
Low variance can be observed among low values, but variance noticeably increased for
medium and high values.

5.2. Kruskal-Wallis and Mann—Whitney U Test Results

Upon examining the KW test results, the KW test statistic values for all regions were
calculated as x? = 50.8, x2 = 21.9, x2 = 76.9, x% = 42.6, x> = 149, x% = 34.5, and x? = 168
(p < 0.05), respectively: at least one group among the GPP estimation methods differed
significantly from the others. Following the KW test, the MWU test was applied to test
which groups had significant differences. This test enabled pairwise comparisons and
groups differing from each other were tested at different levels of significance. Due to
the number of groups evaluated simultaneously being more than two, the Bonferroni
correction was applied to prevent an increase in Type I errors during the MWU test. The
KW and MWU test results for all regions are presented, comparatively, using box plot
graphs in Figure 6. The quartile information of the distributions of the GPP datasets can be
read on the box plot diagrams, and the data groups that are significantly different on the
graph are marked with an asterisk. A significant difference was found between the PMLV2
and all other datasets in Antalya. For the Erzincan region, PMLV2 showed significant
differences compared to MODIS, MuSyQ), and TL-LUE. In the Izmir region, the MODIS
dataset was significantly different from all other datasets, and significant differences were
also found between MuSyQ-TL-LUE, PMLV2-TL-LUE, and PMLV2-GOSIFE. In the Kirklareli
region, the pairs identified with significant differences, in order, were MODIS-PMLV2,
FLUXCOM-PMLV2, MuSyQ-PMLV2, and FLUXCOM-GOSIF. In the Konya region, nearly
all datasets showed significant differences, with only MODIS-MuSyQ, MODIS-GOSIF,
FLUXCOM-GOSIF, and MuSyQ-GOSIF appearing similar. In the Samsun region, MODIS-
PMLV2, FLUXCOM-PMLV2, FLUXCOM-GOSIFE, and MuSyQ-GOSIF were significantly
different. In the Sanliurfa region, similar to Konya, almost all datasets were significantly
different, except for MODIS-TL-LUE, FLUXCOM-MuSyQ, and MuSyQ-GOSIFE.
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Figure 6. GPP dataset similarity test results for the (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli,

(e) Konya, (f) Samsun, and (g) Sanliurfa regions of Tiirkiye (**** p < 0.0001, *** p < 0.001, ** p < 0.01,
*
p <0.05).
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5.3. Modified Mann—Kendall Results

The present study involves the temporal analysis of GPP values, employing Mann—
Kendall (MK) tests. These non-parametric tests provide insights into the direction of trends
in time series data. The purpose of using the Modified Mann-Kendall (MMK) test in this
study is to address the issue of autocorrelation, which can lead to inaccurate results in
datasets with high autocorrelation when using the MK test alone. The MMK test attempts
to eliminate internal dependency, aiming for statistically more reliable results. The monthly
trend results are presented in Table 2. The values pertaining to the Antalya region have
been interpreted in detail as an example.

In the analyses conducted on a monthly basis, no significant trend was observed in
any dataset for January in the Antalya region. In February, MODIS indicated a decrease
in GPP, while other datasets (except PMLV2) showed an increase. In March, no trend
was observed in the GOSIF dataset, while MODIS showed a decrease, and other datasets
indicated an increase. In April, MODIS indicated a decrease in GPP, FLUXCOM showed no
trend, and other datasets showed an increase. In May, MODIS again showed a decrease,
FLUXCOM had no trend, and other datasets exhibited a significant increase. In June, there
was no trend in FLUXCOM and MuSyQ, while other datasets showed an increase. The
same was observed in July and August. In September, no significant trend was detected
in the FLUXCOM, MODIS, and PMLV2, while other datasets showed an increasing trend.
In October, FLUXCOM and PMLV2 showed no significant trend, while other datasets
continued to show an increasing trend. In November, all datasets except FLUXCOM
showed an increasing trend and, in December, all datasets except MuSyQ showed an
increasing trend.

The TL-LUE dataset shows no trend during the winter months, while it displays an
increasing trend in all regions during the spring and summer months. The GOSIF dataset
generally exhibits an increasing trend and MODIS, distinct from other datasets, shows a
tendency to decrease in many regions during the months of March, April, and May. MuSyQ
shows no trend in January and December, while exhibiting an increasing trend in all other
months. PMLV2 shows no trend during the winter months but an increasing trend during
the spring and summer months. Monthly trend values for all regions are shared in the
Supplementary Materials (Tables S1-57).

After conducting an analysis of the monthly values, the datasets were examined using
the MMK test. According to the results presented in Table 3, significant increasing trends
were identified in TL-LUE, MuSyQ, and PMLV2 for the Antalya region. In the Erzincan
region, a notable increasing trend was detected exclusively in MuSyQ. In Izmir, significant
trends were observed in TL-LUE, GOSIF, and PMLV2. For the Kirklareli region, statistically
significant increasing trends were found only in TL-LUE and MuSyQ. In Konya, an upward
tendency was identified in TL-LUE, GOFIS, MuSyQ, and PMLV2. In Samsun, increasing
trends were observed in MuSyQ and PMLV2. Lastly, in the Sanliurfa region, significant
increases were detected in all datasets except for FLUXCOM and MODIS. MuSyQ showed
a strong and statistically significant upward trend in the Kirklareli, Konya, Samsun, and
Sanliurfa regions with a 99% confidence interval.
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Table 2. Monthly MMK trend analysis results.

Region

Datasets

—
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a

Antalya

TL-LUE
FLUXCOM
GOFIS
MODIS
MuSyQ
PMLV2

Erzincan

TL-LUE
FLUXCOM
GOFIS
MODIS
MuSyQ
PMLV2

[zmir

TL-LUE
FLUXCOM
GOFIS
MODIS
MuSyQ
PMLV2

Kirklareli

TL-LUE
FLUXCOM
GOFIS
MODIS
MuSyQ
PMLV2

Konya

TL-LUE
FLUXCOM
GOFIS
MODIS
MuSyQ
PMLV2

Samsun

TL-LUE
FLUXCOM
GOFIS
MODIS
MuSyQ
PMLV2

Sanliurfa

TL-LUE
FLUXCOM
GOFIS
MODIS
MuSyQ
PMLV2
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J and 1 indicate significant increasing or decreasing trends at 5% significant level; { and T indicate significant
increasing or decreasing trends at 1% significant level; <+ indicates no significant trend.

5.4. Innovative Trend Analysis Results

The ITA results for the GPP values for all regions are shared in Figure 7. Examining the
results for the Antalya region, a monotonic increasing trend can be observed throughout
the TL-LUE dataset, with distinct increasing trends in both low and high GPP values. The
FLUXCOM dataset is scattered along the trendless 1:1 line, indicating an absence of trend.
In the GOSIF dataset, while no clear trend is evident, there is a slight increasing trend in
medium GPP values. The MODIS dataset nearly shows a trendless pattern; however, an
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increasing trend is noticeable at higher GPPs values. In the MuSyQ dataset, while low and
medium values show an increasing trend, high values are distributed near the trendless
region. In the PMLV2 dataset, there is no trend in low GPP values and an increasing trend
as GPP becomes higher. In the Erzincan region, except for the FLUXCOM dataset, all
datasets exhibit a notable monotonically increasing GPP trend that is more pronounced at
high values. Regarding the ITA results for the Izmir region, no trend is observed in the low
and medium GPP values except for the MuSyQ, which increase towards medium values
with a smaller increase in high values and some higher values showing a decreasing trend.
TL-LUE, GOSIF, and PMLV2 also exhibit an increasing trend at high GPP values, while
MODIS shows slight decreasing trends in higher values. In Izmir, a monotonic increasing
trend is observed in TL-LUE, GOSIF, and PMLV2, while MODIS and MuSyQ display a
non-monotonic, increasing trend at medium values but trendless behavior at low and high
values. The ITA results for the Konya region display a markedly different trend compared
to other regions. Except for the FLUXCOM and GOSIF datasets, all other datasets show a
monotonically increasing trend. In the GOSIF dataset, while the medium values show a
clear increasing trend, its high values are scattered in the trendless region. In the PMLV2
dataset, very pronounced increases are observed at high GPP values.

Table 3. Modified Mann-Kendall trend analysis results for GPP estimates from different remote
sensing data products from selected areas in different regions of Tiirkiye.

Dataset Antalya Erzincan Izmir Kirklareli Konya Samsun Sanliurfa
Z 3.16* 1.17 2.61% 2% 3.03 % 1.58 3.68 **
TL-LUE p 0.001 0.23 0.008 0.044 0.002 0.11 0.0002
Slope 0.0021 0.00005 0.002 0.0015 0.0005 0.001 0.0007
Z 0.61 0.24 0.36 0.21 -17 —0.98 —0.48
FLUXCOM p 0.539 0.8 0.71 0.82 0.86 0.92 0.62
Slope 0.0001 0.00002 0.00004 0.00003 —0.0001 —0.00002 —0.0005
Z 1.9 1.05 2.13* 1.41 26% 1.37 4.69 **
GOFIS p 0.056 0.29 0.032 0.15 0.009 0.16 0.000
Slope 0.0013 0.0004 0.002 0.0014 0.0012 0.0013 0.0021
z 1.38 0.95 0.8 1.07 1.73 0.9 1.73
MODIS p 0.166 0.34 0.42 0.28 0.08 0.36 0.08
Slope 0.0015 0.0003 0.0008 0.0013 0.0008 0.0013 0.0006
Z 2.07*% 2.09 * 0.29 3.57 ** 5.28 ** 2.27* 6.66 **
MuSyQ p 0.038 0.035 0.29 0.0003 0.000 0.022 0.000
Slope 0.0006 0.0002 0.001 0.0019 0.0008 0.001 0.0014
Z 3.08 * 1.75 2.74% 1.93 3.44 ** 2.66* 2.87%
PMLV2 p 0.002 0.08 0.006 0.052 0.000 0.007 0.004
Slope 0.0012 0.0003 0.0015 0.001 0.0007 0.0016 0.0006

*p <0.05,** p < 0.001.

In examining the GPP values in the Samsun region, a distinct monotonic increasing
trend can be observed in MuSyQ and PMLV2. The TL-LUE dataset shows an increasing
trend at high values, and an increasing trend at medium values is apparent in MODIS
and GOSIF. In Sanliurfa, a notably different trend distribution is present compared to
other regions. In the GOSIF dataset, an increasing trend in low values slightly diminishes
in medium values but increases again in high values. The common point in the trend
analyses across all regions is the tendency for increases at high values. While there are clear
differences between the trends in the Sanliurfa and Konya regions, the trend movements in
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Second half of series

other regions are similar. To provide a more detailed analysis, the trend results obtained
with the ITA method are shared in the appendix for each time series (Figure S9).

5.5. Empirical Mode Decomposition Results

Using monthly data, it was generally observed that the second IMF had a high VCR
value. This measure essentially evaluates the explanatory power of the trend component on the
original series and provides insights into the significance of the trend. One of the key features
distinguishing the trend component obtained by EMD from other trend analysis methods is
its nonlinear structure and its ability to provide information about changes over time. Figure 8
presents an example of the IMFs and trend component obtained after EMD analysis. This
graph shares insights from the analysis of the MuSyQ dataset values from the Konya region.
The related time series was decomposed into a total of six sub-series, with the last sub-series
representing the trend. The sub-series that explained the most variance of the original data
was IMF1 with 57.1%, followed by the trend component with 16.5%. Examining the trend
component overlaid on the original time series reveals a decreasing trend during the first
100 months, followed by an increasing trend up to the 400th month, and then a slight decrease
thereafter. However, the overall trend from the beginning to the end points is increasing.

5
ANTALYA ERZINCAN
wd
.2
St
2
3
&
— FLUXCOM = — FLUXCOM
GOSIF "g 2 GOSIF
— MODIS S — MODIS
MuSyQ 3 MuSyQ
=— No Trend 1 =— No Trend
PMLV2 PMLV2
— TL_LUE 9 — TL_LUE
0 2 4 6 0 1 2 3 4 5
First half of series First half of series
(@) (b)
IZMIR KIRKLARELI
7.5
wn
.2
St
2
k)
“ 5.0
— FLUXCOM = — FLUXCOM
GOSIF = GOSIF
— MODIS S — MODIS
MuSyQ 325 MuSyQ
=— No Trend =— No Trend
PMLV2 PMLV2
— TL_LUE — TL_LUE
0.0
0 4 6 0.0 2.5 5.0 7.5
First half of series First half of series
(0 (d)

Figure 7. Cont.



Remote Sens. 2024, 16, 1994

19 of 30

5
KONYA SAMSUN
g 810
St e
2 2
3 [
o o
e b
g — FLUXCOM = — FLUXCOM
"g 2 GOSIF "8 5 GOSIF
8 — MODIS 8 — MODIS
A MuSyQ A MuSyQ
1 =— No Trend = No Trend
PMLV2 PMLV2
— TL_LUE — TL_LUE
0 0
0 1 2 3 4 5 0 5 10
First half of series First half of series
(e) ®
6
SANLIURFA /
/
84
[
o
e
= — FLUXCOM
"g GOSIF
g2 — MODIS
% MuSyQ
=— No Trend
PMLV2
— TL_LUE
0
0 2 4 6
First half of series
(8)

Figure 7. ITA results for (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli, (e) Konya, (f) Samsun, and
(g) Sanliurfa.

All the GPP values for each region were analyzed in this manner, and the
sub-series obtained through EMD along with their VCR values are shared in the
Supplementary Materials (Table S8). Upon examining Figure 9, for the Antalya region,
an increasing trend can be observed in all datasets except for FLUXCOM. In TL-LUE and
PMLV?2, a nearly linear increase is observed, whereas in GOSIF, MODIS, and MuSyQ, a
trend of initial decrease followed by an increase is detected. The lowest VCR, at 0.13%, is
calculated for FLUXCOM, while the highest, at 5.5%, belongs to GOSIF; the GOSIF and
MODIS trend bands exhibit similar behavior. In Erzincan, an increasing trend is apparent
in most datasets with the highest VCR (4.1%) in TL-LUE. In the Izmir region, a slight
increasing trend is observed in the FLUXCOM dataset with a VCR of 1.73%, while TL-LUE,
MuSyQ, GOSIF, and PMLV2 show an initial decrease followed by an increase. In Konya,
TL-LUE and MuSyQ exhibit similar behavior, as do MODIS and GOSIFE. The most pro-
nounced VCR, at 16.45%, is calculated for the trend in the MuSyQ data series. In Samsun, a
near-linear increase is seen in TL-LUE and a decrease followed by an increase is observed in
GOSIF, MODIS, and MuSyQ); this pattern is even more pronounced in PMLV2. In Sanliurfa,
the most distinct trend behavior belongs to the MuSyQ dataset with a VCR of 11.61%. The
TL-LUE trend series follows a near-linear course; the trend in the PMLV?2 dataset can be
interpreted as showing an overall trendless movement, decreasing until the midpoint and
then increasing. All the time series and trend components obtained with EMD are shared
in the Supplementary Materials (Figure S10).
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Figure 9. Trends in GPP extracted from the last mode of an Empirical Mode Decomposition (EMD)
on GPP estimates from different remote sensing data products from different regions of Tiirkiye,
(a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli, (e) Konya, (f) Samsun and (g) Sanliurfa.

6. Discussion
6.1. Overview

This study’s regional focus on Ttiirkiye, segmented into seven distinct areas, provided
a unique opportunity to explore GPP trends in varied ecological and climatic contexts. The
use of six different GPP datasets—that could not be validated due to the limited presence of
eddy covariance systems—aligns with the existing literature, showing an increasing trend
in GPP across many global regions [2,3]. Our methodology, which incorporated multiple
GPP estimates and trend analysis methods, lends confidence to the overall finding that
GPP increased at the study locations but also leads to important nuances when interpreting
results; we will describe these nuances in more detail below.

The datasets utilized, derived from various remote sensing methodologies, underscore
the potential and challenges of using satellite data for GPP estimation. The inclusion of
different calculation methods, namely Light Use Efficiency models (e.g., MODIS, MuSyQ,
TL-LUE), machine learning (FLUXCOM), GPP proxies (GOSIF), and biophysical models
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(PMLV?2) reinforces our results; for example, there are numerous outliers in the MODIS,
GOSIF, and TL-LUE GPP datasets in the Konya region, whereas in the Sanliurfa region,
similar findings are observed in the MODIS, PMLV2, GOSIF, and TL-LUE GPP datasets.
Moreover, ITA analyses have demonstrated that there is a pronounced increasing trend in
TL-LUE across all regions at high GPP values, meaning that large carbon uptake events are
becoming larger. Significant increases at high values of the PMLV2 dataset were observed
in the regions of Antalya, Erzincan, Izmir, and Konya. At the same time, the TL-LUE data
have exhibited a declining trend in recent years across all areas, GPP values from the GOSIF
dataset have shown a slight decreasing trend in recent years across all regions, except
for Erzincan, and PMLV2 data have maintained a continuous increasing trend, which
demonstrates the importance of using multiple datasets for a conservative interpretation of
GPP trends.

Although most trend analysis methods agree on the presence of an increasing trend
across most regions, they diverge in certain details. The MMK method follows a classical
ranking-based approach, allowing for the interpretation of the presence of a trend based
on a certain Z value, but lacks the graphical extrapolation capabilities of ITA and EMD.
ITA provides detailed information about the trend status at low, medium, and high values,
whereas EMD is more successful in explaining how the trend changes over time. The multi-
method analysis ensures that the results are less likely to be an artifact of the particular
method used [98].

6.2. Spatial Analysis of GPP Datasets

We noticed nuanced insights into the factors influencing GPP in various regions
of Tiirkiye. Samsun, positioned along the Black Sea coast, emerged as the region with
the highest average GPP, consistent with the wetter conditions (Figure 1) and coniferous
forests in the area, including the Anatolian black pine (Pinus nigra) that has a relatively
high photosynthetic capacity [99] and is relatively insensitive to ecoclimatic setting [100].
Additionally, Samsun’s climate, particularly its relative humidity, is more favorable to plant
growth than other regions, resulting in a relatively lower vapor pressure deficit (VPD).
GPP is strongly constrained by VPD [101] and the combination of favorable climate and
dense forest cover create an optimal environment for high GPP. The Kirklareli region,
known for its extensive agricultural activities, displayed the next highest average GPP. This
region, situated in the north of Thrace, benefits from the western Black Sea’s precipitation
patterns, receiving rainfall levels above the national average (Figure 1). The Izmir and
Antalya regions, both influenced significantly by their coastal locations, exhibit distinct
GPP dynamics. [zmir’s annual average precipitation tends to be lower than that of the
coastal regions of Samsun and Antalya (Figure 1). However, its average temperature is
higher than Samsun’s and similar to Antalya’s. The warmer temperatures in [zmir favor
agricultural practices that depend on warm and humid conditions, and this intensive
agricultural management impacts GPP, such that the selected region of Izmir has higher
GPP than Antalya, albeit with similar trends (Figures 7 and 9).

The Konya region is one of the least rainy areas in Tiirkiye and has a predominantly
arid climate (Figure 1). The majority of agricultural activities in this region rely on dry-
land farming due to the limited availability of water. Konya has little forest cover, and
the vegetation is largely dependent on the diversity of seasonally cultivated agricultural
crops. According to data from the Turkish Statistical Institute (TUIK), the cultivated area
in the region has increased from 1,326,220 hectares in 2004 to 1,507,451 hectares in 2022,
which is consistent with the observed trend of increasing GPP values in the study region
(Figures 7 and 9). Similarly, the Sanliurfa region is characterized by low rainfall but has
greater irrigation intensity than Konya, which supports large-scale agricultural opera-
tions [102]. After Konya, Sanliurfa has some of the lowest average GPP values among the
regions studied, but likewise with an increasing trend (Figures 7 and 9). These findings
highlight the complex interplay between climatic factors, vegetation types, and topogra-
phy in determining regional GPP and point to the importance of understanding ongoing
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GPP trends for ecological management and forecasting the impacts of climate change on
regional productivity.

6.3. Temporal Analysis of GPP Datasets

In the analysis of the temporal trends of GPP values, the study employed various trend
analysis methods, all of which were non-parametric, thus avoiding the strict preconditions
associated with parametric methods like linear regression. Among these, the MK method
is one of the most commonly used trend analysis methods. Although not a parametric
method, it is generally preferred for data without high autocorrelation [103]. To enhance
the reliability of the results, a modified MK method (MMK) was used in this study. Despite
efforts to mitigate false trends arising from autocorrelation through pre-whitening pro-
cesses, some studies have reported that MMK can still be prone to errors and may produce
misleading results [104]. Notably, it interpreted significant trends far less often than ITA
and EMD for the study datasets, such that the interpretation of GPP trends will often differ
if MK (or MMK) or the graphical trend analysis methods, ITA or EMD, were used. ITA
is adept at clearly delineating trends at both low and high values, while EMD provides
information on how trends in GPP have increased or decreased over specific years. When
assessing all regions collectively, the trend analysis results from ITA and EMD were similar.

Analysis with the MMK method using monthly GPP data across all regions revealed
that the FLUXCOM dataset, consistent with the literature [70,105], showed a trendless
pattern. In contrast, the MODIS dataset indicated a decreasing GPP trend during February,
March, and April (Table 2)—although this was not observed in other datasets—which
would lead one to search for the mechanisms underlying GPP changes during late winter
and early spring. The most pronounced increases in GPP values were calculated during
the summer months (Table 2), which would lead one to study how changes in climate, leaf
area index, and perhaps agricultural intensity have altered GPP since the 1980s.

Izmir and Antalya displayed similar trends in GPP values (Figure 7). It is believed that
this similarity is influenced by the fact that both regions share the same Képpen climate
classification (Csa), indicating a similarity in their climatic conditions.

In examining the results of the EMD method, the FLUXCOM dataset consistently
showed no trend across all regions, as expected [70,105]. A key distinction of the EMD
method was its indication of initially decreasing trends in GPP values, followed by increas-
ing trends (Figure 9), due, likely in part, to its search for the oscillating signals that underlie
a dataset [89]. The GOSIF dataset showed a slight decreasing trend in recent years in all
regions except Erzincan (Figure 9). Overall, these findings highlight the complexity of
analyzing GPP trends and the importance of selecting appropriate trend analysis methods
that can accurately reflect the temporal dynamics of GPP in various ecological settings. As
mentioned by Du et al., a potential reason is that the GOSIF dataset was reconstructed using
MODIS surface reflectance data, which may have led to some biases in its algorithms [106].

6.4. Differences and Similarities between GPP Datasets

In the study, correlation analysis and the Kruskal-Wallis test were applied to analyze
the similarities and differences among the datasets. Initially, scatter plots were used to
determine at which levels the datasets were more similar or different. It was generally
observed that, while the similarity was high at lower values, it decreased with higher values,
indicating the presence of increasing variance. Correlation values confirmed high positive
relationships across all regions, but since these values were linear and not statistically
powerful enough to compare the entire group together, the KW test was additionally
applied. The results of the KW test and subsequent pairwise comparisons indicated that,
in each region, at least one dataset possessed a distinct structure (Figure 6). The most
significant difference among the GPP datasets was observed in the PMLV2 dataset. Its
emphasis on following physical processes could be the reason for this divergence and, given
its explicit coupling of the carbon and water cycles, one may argue that it has advantages
for the temperate, semi-arid, and arid climate zones of Tiirkiye. A notable finding was that,
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in arid regions like Konya and Sanliurfa, almost all datasets exhibited differences (Figure 6),
further emphasizing the importance of water limitation on GPP, GPP products, and their
trends. Zhang and Aizhong Ye [107] reported similar results. Basically, the differences in
various remote sensing-based GPP products can be attributed to different algorithms using
different input data and having different parameter values when describing environmental
mechanisms over climate zones [108]. In addition, stomatal closure when drought occurs
in terrestrial ecosystems has been shown to affect photosynthesis due to limited leaf and
canopy water content or high VPD in the atmosphere. Different GPP models using different
model parameters, such as the maximum LUE and optimum temperature for different
ecosystems, are the second major contributor to the possible differences in arid regions.
Moreover, different GPP datasets in the literature have used different flux tower data to
calibrate LUE parameters, which may also contribute to differences in simulated GPP [109].
The use of different leaf area index data and land cover data [50] can also cause significant
differences. Additionally, the number of outliers in all datasets for these regions was
higher than in other regions. These analyses suggest that variations in the algorithms of
the datasets significantly impact the calculation of values in arid regions. Therefore, it is
recommended that, in developing new GPP prediction methods, one should consider these
variations and devise algorithms that account for the distinct characteristics of arid regions.

6.5. The Importance of the Findings

When making a general commentary on the results obtained from this study, a trend
of increasing greenness in Tiirkiye was identified, consistent with many global regions [3].
The observed low GPP values in the semi-arid regions of Tiirkiye (Konya, Sanliurfa, and
Erzincan) are attributed to the high sensitivity of semi-arid ecosystems to water availability.
Adverse trends in rainfall can lead to abrupt declines in vegetation productivity or the loss
of ecosystem resilience [110]. Additionally, vegetation in arid areas is more sensitive to
changes in environmental factors, which can significantly underestimate maximum LUE
values in arid ecosystem models [111]. Consequently, the lack of appropriate LUE parame-
ters in arid areas and the inability to accurately simulate the complex relationship between
water and the LUE contribute to most LUE models yielding low GPP estimates [112].

GPP values vary across different geographical regions, and it is strongly recommended
that these values be examined on a region-specific basis. Identifying the parameters that
most significantly affect GPP and, if necessary, using local adjustment coefficients to en-
hance the representational accuracy of GPP datasets are crucial. Given Tiirkiye’s geograph-
ical position, surrounded by seas on three sides and hosting a variety of microclimates, it is
essential to increase the number of ground observation stations to enable more accurate
carbon cycle analyses. Doing so across Tiirkiye’s geographical regions would be beneficial
given the differences in GPP magnitudes and trends. These measurements should then be
used to calibrate remote sensing datasets, ensuring that they accurately reflect the distinct
environmental and ecological characteristics of each region in Tiirkiye. This approach will
not only improve the accuracy of current GPP estimations but also enhance our understand-
ing of regional ecological dynamics, contributing to better environmental management
and policymaking.

6.6. Limitations of Study

Our study has some limitations. The most important limitation is that the GPP values
produced by remote sensing systems cannot be verified with site measurement data in the
study area. This is due to the very limited number of eddy covariance systems in Turkey.
The spatial resolution of the datasets used in the study is limited to 0.05 degrees, and more
accurate analyses could result from higher-resolution data in light of recent developments
in remote sensing systems.



Remote Sens. 2024, 16, 1994

25 of 30

7. Conclusions

In this study, spatiotemporal analysis of GPP values for seven major regions in Tiirkiye
was conducted. We evaluated different remote sensing products for GPP, since there are
inadequate measurement systems, i.e., flux towers and tower networks, in the study area.
While many studies in the literature have focused on the global-scale analysis of GPP
values, local-scale analyses are rarely conducted. Moreover, many studies in the literature
have focused on annual GPP sums, whereas this study presents monthly analyses of GPP.
The key conclusions drawn from this study can be listed as follows:

e  GPP values show high similarity among datasets at low values, but this similarity
decreases at high GPP values. The inputs used by the algorithms differ and more
meticulous regional calibration and validation are necessary. When conducting a
monthly trend analysis of GPP values, only the MODIS dataset exhibited a decreasing
trend at certain months. The factors causing this trend should be further investigated.
Additionally, significant increasing trends are detected in GPP values during summer
months. There are many potential mechanisms that underlie these trends, which
should be studied further to understand the changing carbon cycle of Tiirkiye.

e  The ITA and EMD methods could be promising alternatives to MMK as they provide
additional insight into how time series change. This comparison in the field of GPP
is a first, and future studies may benefit from these methods for trend analysis. The
ITA and EMD methods have already made substantial contributions to the literature
in terms of visualizing trends. While ITA can easily detect trends at low and high
values, EMD stands out for answering how the trend follows a nonlinear path over
time. Optimizing the hyperparameters of the EMD method could lead to the more
rational extraction of trend component information.

We hope that the present analysis helps motivate more studies on carbon cycling and
its trends, in Tiirkiye and other regions that are under-represented in flux networks, to
improve our mechanistic understanding of the carbon cycle across larger regions of the
globe. Also, researchers are encouraged to use data with higher spatial resolution in future
studies, to work with data classified according to plant functional type, and to analyze
variables that may affect the trends in GPP values.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16111994/s1, Figure S1. MODIS GPP algorithm flow chart.
Figure S2. The MuSyQ GPP algorithm flowchart.. Figure S3: Histograms and time series of MODIS
datasets (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli, (e) Konya, (f) Samsun, (g) Sanliurfa.
Figure S4. Histograms and time series of MuSyQ datasets (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirk-
lareli, (e) Konya, (f) Samsun, (g) Sanliurfa. Figure S5. Histograms and time series of PMLV2 datasets
(a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli, (e) Konya, (f) Samsun, (g) Sanliurfa. Figure S6.
Histograms and time series of TL-LUE datasets (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli,
(e) Konya, (f) Samsun, (g) Sanliurfa. Figure S7. Histograms and time series of GOSIF datasets
(a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli, (e) Konya, (f) Samsun, (g) Sanliurfa. Figure S8.
Histograms and time series of FLUXCOM datasets (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli,
(e) Konya, (f) Samsun, (g) Sanliurfa. Figure S9. ITA trend analysis results (horizontal and vertical
axes show GPP values in g C m~2 d 1), (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli, (e) Konya,
(f) Samsun, (g) Sanliurfa. Figure S10. EMD trend analysis results (the horizontal axis shows time;
the vertical axis shows GPP values), (a) Antalya, (b) Erzincan, (c) Izmir, (d) Kirklareli, (e) Konya,
(f) Samsun, (g) Sanliurfa. Table S1. Mann-Kendall and Sens’ Slope trend analysis results of Antalya
region. Table S2. Mann-Kendall and Sens’ Slope trend analysis results of Erzincan region. Table S3.
Mann-Kendall and Sens’ Slope trend analysis results of Izmir region. Table S4. Mann-Kendall and
Sens’ Slope trend analysis results of Kirklareli region. Table S5. Mann-Kendall and Sens’ Slope trend
analysis results of Konya region. Table S6. Mann-Kendall and Sens’ Slope trend analysis results of
Samsun region. Table S7. Mann-Kendall and Sens’ Slope trend analysis results of Sanliurfa region.
Table S8. Variance contribution rate of IMFs.
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