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Abstract: Reflectance spectroscopy for soil property prediction is a non-invasive, fast, and cost-
effective alternative to the standard laboratory analytical procedures. Soil spectroscopy has been
under study for decades now with limited application outside research. The recent advancement in
precision agriculture and the need for the spatial assessment of soil properties have raised interest
in this technique. The performance of soil spectroscopy differs from one site to another depending
on the soil’s physical composition and chemical properties but it also depends on the instrumenta-
tion, mode of use (in-situ/laboratory), spectral range, and data analysis methods used to correlate
reflectance data to soil properties. This paper uses the systematic review procedure developed by
the Centre for Evidence-Based Conservation (CEBC) for an evidence-based search of soil property
prediction using Visible (V) and Near-InfraRed (NIR) reflectance spectroscopy. Constrained by
inclusion criteria and defined methods for literature search and data extraction, a meta-analysis is
conducted on 115 articles collated from 30 countries. In addition to the soil properties, findings
are also categorized and reported by different aspects like date of publication, journals, countries,
employed regression methods, laboratory or in-field conditions, spectra preprocessing methods,
samples drying methods, spectroscopy devices, wavelengths, number of sites and samples, and data
division into calibration and validation sets. The arithmetic means of the coefficient of determination
(R2) over all the reports for different properties ranged from 0.68 to 0.87, with better predictions for
carbon and nitrogen content and lower performance for silt and clay. After over 30 years of research
on using V-NIR spectroscopy to predict soil properties, this systematic review reveals solid evidence
from a literature search that this technology can be relied on as a low-cost and fast alternative for
standard methods of soil properties prediction with acceptable accuracy.

Keywords: soil characteristics; variability; organic matter; carbon; texture; moisture; nitrogen;
salinity; machine learning; regression

1. Introduction

Monitoring the soil status is in great demand in precision agriculture to adjust practices
such as tillage, fertilization, and irrigation. A good understanding of the soil characteristics
can assist growers with their farming decisions, and more generally, can improve the
application of operations, practices, and treatments in soil management [1,2]. However,
standard analytical procedures like wet chemistry require specialized equipment and can
be extremely time-consuming and expensive, especially when dealing with a high spatial
sampling density [3,4]. As an alternative to the standard wet chemistry, soil Visible and
Near-InfraRed (V-NIR) reflectance spectroscopy has proven to be a fast, cost-effective, non-
destructive, environmental-friendly, repeatable, and reproducible analytical technique [5–7].
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V-NIR reflectance spectroscopy has been used now for more than 30 years to predict an ex-
tensive variety of soil properties like organic and inorganic carbon [8–13], nitrogen [14,15],
organic matter [16,17], moisture [18,19], texture [20,21], and salinity [22,23]. Although the
results of these studies are encouraging, they rely on a specific dataset and a single or a
handful of analysis procedures. Therefore, accumulating their findings systematically and
appraising the pool of outcomes can affirm the ability of V-NIR spectroscopy to predict
soil properties.

While numerous individual studies have shown the ability of V-NIR spectra to provide
reliable information on soil physical, chemical, and biological properties [11–13,24], their
findings are rarely compiled to compare, contrast, and critically appraise. Although some
reviews are showing the ability of reflectance spectroscopy for prediction of soil physical,
chemical, and biological properties [25–30], to the best knowledge of the authors, none of
them followed the highly structured approach of a “systematic review”. This is particularly
important because, contrary to ordinary literature reviews, a “systematic review” prevents
the risk of bias essential to excluding or including specific literature that could have a
considerable influence on the study outcomes [31]. Another issue with the available
reviews is that they mainly focused on a single property; examples are [28] review on
soil organic matter and [26] review on soil carbon content; moreover, available reviews
usually analyze both V-NIR and Mid-InfraRed (MIR) spectroscopy and usually compare
their results [26–28]. While it is reported that generally, MIR produces better predictions
than V-NIR [6,27], since the performance of MIR spectroscopy is highly influenced by
soil moisture content due to the strong water absorption bands in MIR, and because MIR
technology can hardly be employed in portable devices, the use of this technology is mainly
limited to laboratory conditions and is not suitable for on-the-go and in-field sensors, which
are well-required in precision agriculture applications. In fact, another reason that justifies
the focus on V-NIR is the lower cost of this technology compared with MIR that makes it
more accessible to both farmers and researchers.

Given the demand for fast and cost-effective soil property monitoring in modern
agricultural activities, and the necessity of evidence-based approaches to evaluate the
capacity of alternatives to standard procedures, here, we present the findings from a
systematic review and meta-analysis of the ability of V-NIR reflectance spectroscopy to
predict various soil properties. Although miscellaneous soil properties are reported in
the literature to be predicted by V-NIR spectroscopy with acceptable accuracy (Soriano-
Disla et al., 2014), the focus of this article is on six main properties that play decisive
roles in precision agriculture and farming practices: 1. Carbon content (as Total Carbon
(TC), Soil Organic Carbon (SOC), Inorganic Carbon (IC)), 2. Nitrogen content (as Total
Nitrogen (TN)), 3. Organic matter (as Soil Organic Matter (SOM)), 4. Water or moisture
content (as Moisture Content (MC)), 5. Soil salinity (as Soil Salinity Content (SSC)), and 6.
Texture (as Sand, Clay, and Silt). Having a fast, cost-effective, and reliable estimation of
these properties can result in more efficient farming decisions and practices. Therefore,
the research question of this study is: How accurately V-NIR spectroscopy can predict soil
carbon, nitrogen, organic matter, moisture, salinity, and texture?

2. Methodology

The systematic review used in this paper follows the procedure developed by the
Centre for Evidence-Based Conservation (CEBC). This includes drafting a protocol to
define a literature search followed by data extraction based on a defined set of ‘inclusion
criteria’ [32].

Following the CEE’s protocol, the research question, mentioned earlier was broken
down into PECO (Population, Exposure, Comparator, and Outcome) components as fol-
lows: (i) Population: Soil samples, (ii) Exposure: Visible and Near-Infrared Spectroscopy,
(iii) Comparator: standard laboratory methods of measurement like wet chemistry, and (iv)
Outcome: Predictive accuracy of soil properties through quantitative measures of perfor-
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mance like the coefficient of determination (R2), the Ratio of Performance to Deviation
(RPD), and the Root Mean Square Error (RMSE).

Articles reporting original research employing V-NIR spectroscopy to predict at least
one of these six selected properties were included: carbon, nitrogen, moisture, texture,
salinity, and organic matter. Only articles published in English after 1990 were included in
the search process. Both lab-based and in-field measurements were added to the manuscript
pool. All articles that did not satisfy these inclusion criteria were eliminated.

Unique PECO keywords were defined, and the same search string (Figure 1) was used
in four of the most common scientific search engines: Science Direct, Scopus, Web of Science,
and Google Scholar. To limit the number of records collected by Google Scholar and to
eliminate records that were less related to the research question, only the first relevant fifty
hits were stored. In total, 1314 references were collated in a bibliographic management
system software (Mendeley). By eliminating the duplicated records, the remaining number
of records reduced to 589 (Figure 1).
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Figure 1. Flow diagram of the systematic review. Numbers in parenthesis correspond to the number of selected (+) or
eliminated (−) manuscripts at each stage.

According to the proposed PECO, an article to be included for the meta-analysis must
expose soil samples to V-NIR spectroscopy and compare the results to standard laboratory
procedures through quantitative measures of performance. Article screening occurred at
two main stages; first, by investigating titles and then reviewing the abstracts (Figure 1).
At the first stage, all stored articles’ titles were analyzed thoroughly to check their relevance
to this systematic review’s research question. On the basis of the designed PECO, any article
unable to satisfy all the inclusion criteria cited before was excluded. After exclusion by
title, the next step requires exclusion by abstract using the same PECO inclusion/exclusion
criteria. To reduce the likelihood of personal mistakes and/or bias, two independent
reviewers did the screening in parallel and double-checked the disagreements.
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From the 589 unique articles selected, 326 records were excluded by title and 148 by
abstract (Figure 1). The results from the remaining 115 articles were extracted and used to
conduct the meta-analysis.

3. Results and Discussion
3.1. Number of Relevant Papers

The number of V-NIR spectroscopy articles for soil property prediction has noticeably
increased in the last decade (Figure 2). The research was conducted in 30 different countries,
predominantly from China (32) and the USA (16), followed by Italy (8), Germany (6),
and Brazil (6) (Figure S3 in the supplementary data). As can be seen in Figure 2, in the last
four years, more research has employed V-NIR technology for soil spectroscopy than at
any time before. This can be due to the need to identify soil characteristics in a fast and
cost-effective manner, and also, it implies that soil V-NIR spectroscopy is gaining more
attention and trust in the research community.

Agronomy 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 

 

Figure 2. Number of included manuscripts by publishing date. 

3.2. Instrumentation 

V-NIR spectroscopy application in soil studies is not restricted to a specific type or 

brand of instruments (Figure S2 in the supplementary data). However, ASD FieldSpec 

(field-portable spectroradiometer) and FOSS NIR System (laboratory-based instrument) 

appear to be the most popular instruments for this type of application, with ASD FieldSpec 

used in 39% of the reported outcomes compared to 21% for FOSS NIR System (Figure S2 

in the supplementary data). It is worthwhile to mention that some of the included articles 

have designed their own instruments [33,34]. Out of the 115 selected articles, only 25 arti-

cles have used NIR spectroscopy (700–2500 nm of wavelength) alone, while the rest used 

both visible and NIR (400–2500 nm of wavelength). In terms of spectral resolution, analy-

sis at the 2 nm interval was the most commonly used with 34% of the total reported out-
comes (Error! Reference source not found.). This is mainly due to the features of the em-

ployed instruments. 

3.3. Soil Samples Preparation 

Soil spectroscopy conducted in the laboratory on dried and sieved samples was re-

ported in 85% of the total reviewed articles. In situ measurement on the soil surface in-

stead represents 11% of the selected articles, while the remaining 4% have used soil spec-

troscopy on-the-go mounted on mobile platforms. There are some international protocols 

for sample preparation for reflectance measurements in the laboratory that some of the 

reviewed studies employed [35–37], but there are less pre-defined standards for in situ 

and on-the-go measurements. Most of the studies (almost 74% of the reports) took their 

soil samples from less than 10 sites and very few (7%) relied on existing samples from soil 

banks. The number of soil samples analyzed varied from less than 50 to more than 700, 

with samples between 50 and 150 being the most common (Error! Reference source not 

found.). The number of samples mostly relies on the variety and heterogeneity of the soil, 

the soil characteristics under study, the experimental design, and the application. Out of 

the 115 articles, 109 dried their soil samples before analysis, of which 67% were air-dried, 

and the remaining 33% used oven-drying methods. The oven-drying process duration 

was mostly (56%) up to 24 hours (Table S5 in the supplementary data). In total, 98 articles 

reported grinding soil samples before analysis, and 79 of them used a 2 mm sieve size. 

Although the drying and grinding procedures have happened for samples before spec-

troscopy analysis, they have usually coincided with reference analytical requirements 

(e.g., wet chemistry methods), and sometimes, they have been influenced by them. 

0

2

4

6

8

10

12

14

16

18

N
u

m
b

er
 o

f 
p

a
p

er
s

Figure 2. Number of included manuscripts by publishing date.

The 115 articles reviewed in this research were published in 54 different peer-reviewed
journals with Geoderma (18), Soil Science Society of America Journal (11), and Journal of
Near-Infrared Spectroscopy (8) in the lead (Figure S1 in the supplementary data).

3.2. Instrumentation

V-NIR spectroscopy application in soil studies is not restricted to a specific type or
brand of instruments (Figure S2 in the supplementary data). However, ASD FieldSpec (field-
portable spectroradiometer) and FOSS NIR System (laboratory-based instrument) appear
to be the most popular instruments for this type of application, with ASD FieldSpec used
in 39% of the reported outcomes compared to 21% for FOSS NIR System (Figure S2 in the
supplementary data). It is worthwhile to mention that some of the included articles have
designed their own instruments [33,34]. Out of the 115 selected articles, only 25 articles
have used NIR spectroscopy (700–2500 nm of wavelength) alone, while the rest used both
visible and NIR (400–2500 nm of wavelength). In terms of spectral resolution, analysis at
the 2 nm interval was the most commonly used with 34% of the total reported outcomes
(Figure 3). This is mainly due to the features of the employed instruments.
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3.3. Soil Samples Preparation

Soil spectroscopy conducted in the laboratory on dried and sieved samples was
reported in 85% of the total reviewed articles. In situ measurement on the soil surface
instead represents 11% of the selected articles, while the remaining 4% have used soil
spectroscopy on-the-go mounted on mobile platforms. There are some international
protocols for sample preparation for reflectance measurements in the laboratory that some
of the reviewed studies employed [35–37], but there are less pre-defined standards for in
situ and on-the-go measurements. Most of the studies (almost 74% of the reports) took
their soil samples from less than 10 sites and very few (7%) relied on existing samples from
soil banks. The number of soil samples analyzed varied from less than 50 to more than
700, with samples between 50 and 150 being the most common (Figure 4). The number of
samples mostly relies on the variety and heterogeneity of the soil, the soil characteristics
under study, the experimental design, and the application. Out of the 115 articles, 109 dried
their soil samples before analysis, of which 67% were air-dried, and the remaining 33%
used oven-drying methods. The oven-drying process duration was mostly (56%) up to
24 h (Table S5 in the supplementary data). In total, 98 articles reported grinding soil
samples before analysis, and 79 of them used a 2 mm sieve size. Although the drying and
grinding procedures have happened for samples before spectroscopy analysis, they have
usually coincided with reference analytical requirements (e.g., wet chemistry methods),
and sometimes, they have been influenced by them.

1 
 

 
Figure 4. Number of soil samples used in the reviewed articles.
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3.4. Preprocessing Methods

For the purpose of smoothing the spectral data, a variety of preprocessing methods
and mathematical pretreatments are used in the reviewed articles. Savitzky-Golay (24%),
first derivative (21%), and absorbance (i.e., log (1/reflectance)) (20%) were the most com-
mon methods (Table S4 in the supplementary data). Most articles have employed only one
preprocessing method, however, some studies have used different spectra pretreatments
and compared their results [38]. Furthermore, in some studies, multiple methods are used
in combination [39,40].

3.5. Analyzed Soil Properties

Most of the 115 articles included for the meta-analysis reported more than one soil
property. Although we have restricted our search to only six main properties, in the
reviewed articles, there were up to 81 soil properties reported to be predicted by V-NIR
spectroscopy (Table S6 in the supplementary data). Among the six properties that this
research focused on, SOC (28.2%) and TN (11.5%) have the highest number of reports
(Figure 5). These are the same properties that are very significant to measure and know for
agricultural activities.
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Moisture Content (MC), Soil Salinity Content (SSC)).

3.6. Machine Learning Methods

In the reviewed articles, various machine learning regression methods are utilized
to extract soil properties from the V-NIR reflectance spectra. The input of these machine
learning models is the reflectance of soil samples in different wavelengths, and they are
trained with the standard laboratory measurements of soil properties. The goodness of algo-
rithms’ prediction is evaluated by comparing their output with the standard measurements
through quantitative measures of performance such as the coefficient of determination
(R2) and the Root Mean Square Error (RMSE). Although most articles have reported the
goodness of their prediction through the coefficient of determination, it is important to note
that this indicator may be misleading since it doesn’t depend on the explained variance
only, but also the variance of the data set; the more variable the dataset, the easier a high
R2 may be achieved.
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The PLSR (Partial Least Squares Regression) is by far (62.3%) the most employed
machine learning method (Figure 6). As almost 70% of the studies have used the Partial
Least Squares (PLS) family of methods (i.e., PLSR and MPLSR), it can be inferred that this
method has proven suitable for the prediction of soil properties using V-NIR spectroscopy.
In addition to the fact that most studies have chosen this method over other machine
learning regression algorithms (e.g., linear regression), two inherent features can explain
the suitability of PLSR for soil spectroscopy:
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1. As mentioned earlier, most studies employ instruments measuring soil reflectance
in both visible and near-infrared regions of the electromagnetic spectrum (i.e., wavelengths
from 400 to 2500 nm), with a resolution of 2 nm. This leads to hundreds of variables in the
matrix of predictors, making it too large to be handled by standard regression models.

2. Similar to other hyperspectral spectroscopy applications, soil V-NIR spectroscopy
usually deals with a high resolution (2 nm mostly, as revealed by this systematic review)
input data. Dealing with this resolution, multi-collinearity among input values are ex-
pected, and it requires to be dealt with. On the contrary to standard regression algorithms,
PLSR, with some similarities with principal components regression, can handle this multi-
collinearity very well.

According to our meta-analysis, 82% of reports divided their whole datasets into
calibration and validation sets, while 18% of reports used a held-out cross-validation
approach. Of the reported outcome from the 115 studies, 24.6% used 61–65% of their
datasets for the calibration set (Figure S4 in the supplementary data). This aligns with the
standard practice of machine learning applications [41].

3.7. Meta-Analysis

To delineate the extracted data’s statistical features more precisely, the “violin plot”
was used for the meta-analysis instead of the classic box and whiskers plots. In addition to
the basic summary statistics of the box plots such as minimum, maximum, interquartile
range, median (with a white spot), and mean (with the bold horizontal line), the “violin
plot” provides insights on the density shape and distribution of data which facilitates
data analysis and exploration [42]. Accordingly, each violin plot illustrates at least nine
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different statistical values extracted from the reviewed articles’ analysis. Detailed values
of all the statistical features demonstrated in Figures 7, 8, and 10 are also presented in
Tables S1, S2, and S3 in the article’s supplementary data, respectively.

The coefficient of determination (R2), the Ratio of Performance to Deviation (RPD),
and the Root Mean Square Error (RMSE) are the most common statistical features reported
in the selected articles to evaluate the performance of soil property prediction through
V-NIR spectroscopy. Therefore, these measures are chosen in this study to report the
accuracy of prediction across soil properties (Figure 7) and regression models (Figure 8).
While higher R2 and RPD values represent better predictions, lower values of RMSE
indicate higher accuracy, as RMSE is a measure of error.
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According to Figure 7, V-NIR spectroscopy has reasonably predicted all the ten se-
lected soil properties. Certain properties, such as Moisture Content (MC), reported better
prediction results compared to others (e.g., silt). The arithmetic mean of the coefficient
of determination (R2) over all the reports for SOC, TN, SOM, TC, Clay, SSC, Sand, MC,
IC, Silt, are 0.75, 0.81, 0.73, 0.80, 0.70, 0.76, 0.76, 0.87, 0.79, and 0.68, respectively (Table S1
in the supplementary data). A discrepancy in the reported results has been observed
mainly with soil texture with an average RMSE between reported research studies for
clay and sand equivalent to 5.31% and 6.05%, respectively (Table S1 in the supplementary
data). It suggests that when using V-NIR spectroscopy, the prediction of soil texture as the
percentage of clay, silt, and sand (i.e., soil physical properties) is harder than the prediction
of chemical properties like carbon and nitrogen content and deals with more uncertainty.
One reason for this high uncertainty can be due to the compositional nature of soil texture
data [43]. In other words, soil clay, silt, and sand proportions are relative information,
as they are parts of a whole and should always add up to 100%. However, since machine
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learning methods estimate clay, silt, and sand fractions independently, they do not add up
to 100%. To overcome this obstacle, [44] applied a log-ratio transformation that allowed
all three particle size fractions to be modeled simultaneously while meeting the constraint
that all size fractions should add up to 100%. This method can be a solution for high errors
in soil texture prediction using V-NIR spectroscopy.

The Partial Least Squares Regression (PLSR), the Modified Partial Least Squares
Regression (MPLSR), and the Support Vector Machine Regression (SVMR) are the most
employed regression tools in reviewed articles to predict soil properties (Figure 6). By ana-
lyzing the reported outcome, we can conclude that the performance of PLSR and MPLSR
are similar and comparable, while slightly better than SVMR for most cases. In general,
MPLSR performed better than PLSR for TC and TN prediction with R2 value for MPLSR
equivalent to 0.82 and 0.89 compared to 0.78 and 0.79 for PLSR, respectively (Figure 8).
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Figure 8. Statistical measures for soil properties predicted by different regression methods.

The goodness of prediction for all 10 soil properties is illustrated in Figure 9. Ac-
cording to [45], when RPD is greater than 3 and R2 is greater than 0.9, the prediction is
“excellent”. Whereas RPD values from 2.5 to 3.0 and R2 values from 0.82 to 0.9 denote
“good” predictions. “Approximate quantitative predictions” are indicated by RPD values
between 2.0 and 2.5 and R2 values in the range from 0.66 to 0.81. The possibility “to
distinguish between high and low values” is revealed with RPD values between 1.5 and 2,
and R2 values between 0.5 and 0.65. “Unsuccessful” predictions have RPD values lower
than 1.5 or R2 values lower than 0.5.

Figure 9 indicates that most of the predictions for all the soil properties are satisfactory
(i.e., approximate quantitative predictions, good, and excellent), and the results are rarely
unsuccessful. It is worth noting that in this figure, each black circle is an independent
report from a reviewed article.
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Figure 10 compares the results for Soil Organic Carbon (SOC) predicted in the labora-
tory with in situ (in the field) conditions. It is worthwhile to mention that because some of
the reviewed articles mentioned SOC as the target of their analysis, and others mentioned
SOM, we followed the same terminology and discriminated the results. SOC was the only
property having enough data to compare the results of laboratory versus in-field analysis.
As expected, the results from laboratory analysis are slightly better than those from in situ
conditions. Although the difference in performance between the two methods of using
V-NIR spectroscopy, as reported by the selected articles, is not sharp, the pool from which
those numbers are obtained differs largely with many more records available for lab-based
analysis. This can be the main reason for more uncertainty in the results of lab-based
studies, indicated by higher spans and wider distributions of the data points in Figure 10.
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4. Conclusions

To analyze soil, as the most complicated biomaterial on the planet and the most
valuable ecosystem in the world [46], we need rigorous experiments and accurate anal-
yses. Traditional analytical procedures for soil property prediction are time-consuming
and expensive, especially when a large number of soil samples are needed. In this study,
a systematic review and meta-analysis conducted on papers published in the last 30 years
showed clear evidence that V-NIR reflectance spectroscopy could be used as an alternative
to the traditional wet chemistry for soil properties prediction. The arithmetic mean of
the coefficient of determination (R2) over all the analyzed reports for SOC, TN, SOM, TC,
Clay, SSC, Sand, MC, IC, Silt, are 0.75, 0.81, 0.73, 0.80, 0.70, 0.76, 0.76, 0.87, 0.79, and 0.68,
respectively (Table S1 in the supplementary data). Organic content and total nitrogen are
the properties most analyzed with V-NIR spectroscopy with promising results. Other pa-
rameters, such as soil texture, mainly sand, and silt, show few records that could suggest
the poor performance of this technique in predicting those properties. Being compositional
data and relative information can be one reason for this. Another reason can be due to
the presence of non-soil mineral material, such as SOM and carbonate, which can result in
inaccurate particle size measurements. To overcome this problem, such constituents should
be removed from soil samples before conducting V-NIR spectroscopy experiments [6].

Although this systematic review could suggest an unbiased collation of available
literature on V-NIR soil spectroscopy, it has some inherent methodological limitations.
The scientific search engines used in this review have picked mostly peer-reviewed articles.
The unintentional exclusion of unpublished and gray literature might have created publi-
cation bias since studies with significant “positive” results are more likely to be published
than those with negative outcomes.

As shown in Tables S1–S3 in the supplementary data, the number of records diverge
markedly from one soil property to the other. For example, as can be seen in Table S1,
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there are more than 200 reports on SOC, encompassing all three performance measures
(i.e., R2, RPD, RMSE), while on the contrary, there are only 10 reports on silt, limited to R2

values only. In this research, the minimum number of reports in each category included in
the meta-analysis was nine, since fewer reports can be misleading and biased. Moreover,
we assumed all the reviewed articles have the same quality, and we avoided weighing their
reports. Although, this can be another limitation of this systematic review, since not all
the articles have the same level of thoroughness in their experimental design, regression
modeling, and even presenting their findings. To minimize the effect of this limitation,
we excluded gray literature and included the peer-reviewed articles only.

PLSR was by far the most common regression method used, while MPLSR had
better performances mainly for TC and TN. ASD FieldSpec and FOSS NIR System are the
most popular instruments for this type of research. Most studies used 2 nm spectral
resolution, and the number of soil samples higher than 50 showed suitable for a more
robust prediction algorithm.

After over 30 years of using V-NIR spectroscopy to predict soil properties, now,
this research’s findings disclose the capability of this technology in a systematic way.
V-NIR spectroscopy presents a good trade-off between resources and the required accuracy
for soil properties prediction. We also expect more conclusive results from using this
technique in the future, due to the increase in the need for soil spatial variability assessment,
advancement in instrumentation technology, development in data mining techniques,
and the availability of a large global spectral library. More in-field experiments are needed
to show the ability of this method for fast and effective field experiments. As shown by this
study, now, there is not enough background to systematically prove the accuracy of in-field
measurements for most of the soil properties. Although, more studies in the future should
concentrate on soil texture to show the potential of V-NIR spectroscopy to alternate standard
texture analysis involving sieving and sedimentation of suspended soil in solution, which
is time-consuming and requires laboratory personnel and instrumentation. More precisely,
still, there are many other borders to explore to comprehend the soil’s physical, chemical,
and biological properties. Conducting systematic reviews on MIR spectroscopy’s ability
and considering other soil properties are some of the possible future works to fill in the gap.

Precision agriculture, as a technology to improve profitability while reducing the
impact of agriculture on the environment, essentially deals with variabilities [47,48]. To en-
able all growers to make the best decisions, especially low-income farmers from under-
developed and developing regions of the world, fast and cost-effective techniques are
required to substitute traditional means of measuring and understanding the variabilities.
On the basis of the finding of this research, soil V-NIR spectroscopy can be relied on for
this purpose.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
395/11/3/433/s1, Figure S1: Percentage of reviewed articles published in each journal, Figure S2:
Percentage of the reviewed articles using different spectroscopy devices, Figure S3: Worldwide
distribution of the reviewed studies, Figure S4: Percentage of the data used as the calibration set across
the reports, Table S1: The values of the statistical features of the violin plots presented in Figure 7,
Table S2: The values of the statistical features of the violin plots presented in Figure 8, Table S3:
The values of the statistical features of the violin plots presented in Figure 10, Table S4: The proportion
of spectra pre-processing methods reported in the reviewed articles, Table S5: The proportion of
drying duration in the reviewed articles, Table S6: The list of 81 properties that were predicted
by V-NIR spectroscopy in the reviewed articles, Table S7: Definition of the abbreviations used for
soil properties.
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