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Abstract: This paper presents the results from a study on the application of an artificial neural network
(ANN) model for regional flood frequency analysis (RFFA). The study was conducted using stream
flow data from 88 gauging stations across New South Wales (NSW) in Australia. Five different models
consisting of three to eight predictor variables (i.e., annual rainfall, drainage area, fraction forested
area, potential evapotranspiration, rainfall intensity, river slope, shape factor and stream density)
were tested. The results show that an ANN model with a higher number of predictor variables does
not always improve the performance of RFFA models. For example, the model with three predictor
variables performs considerably better than the models using a higher number of predictor variables,
except for the one which contains all the eight predictor variables. The model with three predictor
variables exhibits smaller median relative error values for 2- and 20-year return periods compared to
the model containing eight predictor variables. However, for 5-, 10-, 50- and 100-year return periods,
the model with eight predictor variables shows smaller median relative error values. The proposed
ANN modelling framework can be adapted to other regions in Australia and abroad.

Keywords: floods; artificial neural network; regional flood frequency; ungauged catchments

1. Introduction

Globally, floods are the most damaging natural disasters that cause enormous economic loss and
social disruptions across the landscape. In the last decade, floods accounted for roughly 45% of all
disasters (and people affected by them) and caused an average of 6000 casualties in each year [1].
Floods cause billions of dollars of damage annually worldwide, and even in the world’s driest inhabited
continent, Australia, flooding is the costliest natural disaster [1–3]. In recent years, floods have become
more frequent and highly disastrous due to global climate change [1].

One of the key steps in flood risk assessment process is the estimation of design floods [2].
A design flood is the peak discharge used to design hydraulic structures (e.g., bridge, culvert, retaining
wall) and the magnitude of the flood is represented by the annual exceedance probability (AEP) [4].
At-site flood frequency analysis is the commonly accepted method to estimate design flood in a
gauged catchment if observed streamflow data are available for a number of years. However, there are
numerous catchments where observed streamflow data are not available. Regional flood frequency
analysis (RFFA) is considered as the best option to estimate design flood for these catchments [5–7].

The efficiency of a RFFA technique primarily depends on two factors: (i) sufficiency and accuracy
of historical streamflow data in terms of record length and spatial coverage over the study area; and
(ii) the adopted regionalization method that explores flood characteristics in gauged catchments and
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transfers the relevant flood attributes to ungauged catchments. Some of the most successful RFFA
techniques include (i) an index flood estimation method [8], (ii) a quantile regression method [9] and
(iii) a parameter regression method [10,11]. All of these techniques are essentially linear, such that
floods are linearly related with catchment characteristics either in a log domain or domain with raw
data [12,13].

While efforts have been made to develop nonlinear RFFA methods to estimate design floods, the
application of such methods are quite limited. In the past few years, some non-linear methods, such as
an artificial neural network (ANN), gene expression programming and fuzzy models, were developed
and their efficiency was evaluated [12,13]. Aziz et al. [13] investigated the performances of ANN and
GEP methods using streamflow records from 452 gauging stations across Australia. They compared
the results with quantile regression technique, which is a linear RFFA method, and concluded that a
non-linear method produced better results compared to a linear method.

The working principle of ANN is similar to that of the human neural system [14]. Unlike other
data processing methods which learn through programming, an ANN model investigates the patterns
in a data set and correlate them. The ANN consists of simple computing units called ‘artificial neurons’.
Each unit is connected to the other units via weight connectors. These units calculate the sum of all
weighted inputs and bias. It then produces output of previously weighted input and bias using an
activation function.

In the last few decades, the ANN model (introduced by McCulloch and Pitts [15]) has
been extensively used to solve various mathematical problems, especially in the field of medical
science [14,16,17]. In recent years, the method has been used in engineering fields for forecasting and
data compression. Lapedes and Farber [18] applied the ANN model to investigate non-linear data
series and found better generalization capabilities of ANN models compared to a regression-based
model. ANN model is more capable of identifying non-linear connections between observed and
predicted data sets [19,20].

In the Australian context, studies on ANN-based RFFA modelling are limited. The majority of
previous RFFA studies have been based on linear models [5,10]. Aziz et al. [21,22] applied ANN-based
RFFA modelling; however, they applied a limited set of catchment characteristics in model building.
The objectives of this study are: (i) to develop and test ANN-based RFFA models using a higher
number of catchment attributes; and (ii) to recommend the best ANN-based RFFA model containing
an optimum number of predictor variables for the catchments in New South Wales.

2. Principle of ANN

The concept of an ANN model is schematically represented in Figure 1. The first column represents
various input variables (Xi) and the second column represents the specific weight of input variables
(Wi). The output is determined by considering a given vector. There is a constant value (1) among
the inputs which has been introduced to the neuron by its unique weight, known as bias (b). Bias
allows the ANN to change the activation function. It is important to note that bias is not essential for a
network but it helps in improving the performance of a network significantly [23].
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Mathematically, the input (I) and output (Y) of a neuron in an ANN model can be represented
as [23]:

I = X ×W + b (1)

Y =

{
1 i f I ≥ θ
0 i f I ≤ θ

where X is the input, W is the weight, b is the bias and θ is the sum of all weighted inputs.
The output of a neuron can be presented by different activation functions. A sigmoid function

(Equation (2)) is a commonly used activation function for such outputs [24]. This sigmoid function
maps the data between 1 and 0 (Figure 2). A sigmoid function is adopted in this study because it
is a bounded differentiable function. It is defined for all real inputs and at each point it produces a
non-negative derivative [21,22]. Other activation functions could have been adopted; however, the use
of the sigmoid function is deemed adequate in this study. The dependent and predictor variables in
this study are normalized to achieve zero mean and unit variance for each of the variables.

S(t) =
1

1 + e−t (2)
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Figure 3 shows a configuration of an ANN model with interlinking between the input and output
data layers. It consists of three input neurons, two hidden layers of three and two percepterons and an
output layer with two output neurons.
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In recent years, the application of ANN model has increased in rainfall-runoff modelling,
groundwater modelling, streamflow forecasting and water quality modelling (e.g., [25–30]). Table 1
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presents a list of relevant literature which used ANN successfully in solving hydrological and related
problems. It can be seen that the majority of studies used the feed forward (FF) algorithm in the ANN
architecture, back propagation (BP) for optimization, and log normal as a transfer function (Table 1).
In FF neural networks, the information only travels forward in the neural network through the input
nodes, then through the hidden layers and finally through the output nodes [23]. Optimization is
used for the fine-tuning of weights factors in ANN modelling based on the errors in the previous
iteration [23].

Table 1. List of studies on ANN in the field of hydrological modelling (1992–2019).

Author(s) and Year Variable Time Step Architecture Optimization T-Function

French et al., 1992 [31] Rainfall Hour FF BP Log
Crespo and Mora, 1993 [32] Flow Day FF BP HT
Allen and le Marshall, 1994

[33] Rainfall Day FF BP Log

Karunanithi et al., 1994 [34] Flow Day FF QP Log
Hsu et al., 1995 [19] Flow Day FF BP Log

Raman and Sunilkumar, 1995
[35] Flow Month FF BP Log

Smith and Eli, 1995 [7] Flow N/A FF BP Log
Clair and Ehrman, 1996 [36] Flow Year FF BP N/A
Minns and Hall, 1996 [37] Flow Hour FF BP Log

Poff et al., 1996 [38] Flow Day FF BP HT
Chow and Cho, 1997 [39] Rainfall Hour RC Mod BP HT

Hsu et al., 1997 [40] Rainfall Hour HYB MCP N/A
Loke et al., 1997 [41] Rainfall Min FF Mod BP N/A

Shamseldin, A.Y., 1997 [42] Rainfall-Runoff Day FF BP Log
Tawfik et al., 1997 [43] Flow Day FF BP Lin

Venkatesan et al., 1997 [44] Rainfall Year FF BP Log
Xiao and Chandrasekar, 1997

[45] Rainfall Min FF RSL TL

Dawson and Wilby, 1998 [46] Rainfall-Runoff 15 min FF BP Log
Fernando and Jayawardena,

1998 [47] Flow Hour FF BP N/A

Golob et al., 1998 [48] Flow Hour FF BP Log
Jayawardena and Fernando,

1998 [49] Flow Hour FF BP N/A

Phien And Sureerattanan,
1999 [50] Flow Day FF BP Log

Tokar and Johnson, 1999 [51] Rainfall-Runoff Day FF BP N/A
Zealand et al., 1999 [52] Flow Week FF BP Log

Luk et al., 2000 [53] Rainfall day FF BP Log
Coulibaly et al., 2000 [54] Inflow Day FF BP Log

Luk et at., 2001 [55] Rainfall Day FF-PR 1-TD 2 BP log
Zhang and Govindaraju, 2003

[56] Runoff Hour FF BP Log

Rajurkar et al., 2004 [57] Rainfall-Runoff Day FF BP Log
Dawson et al., 2006 [58] RFFA Year FF BP Log

Jain and Kumar, 2006 [59] Infiltration N/A FF BP N/A
Riad et al., 2004 [60] Rainfall-Runoff Day FF BP Log

Kisi and Kerem, 2007 [61] Flow Day FF-GRNN-RBF BP-N/A-N/A N/A
Chua et al., 2008 [62] Runoff Min FF BP Log

Shu and Ouarda, 2008 [63] RFFA Year ANFIS BP Tan-sig
Sciuto et al., 2009 [64] Rainfall Day FF BP Sig

Toth, E., 2009 [65] Flow Day FF BP Tan-sig
Wang et al., 2009 [66] Flow Month FF BP Tan-sig
Besaw et al., 2010 [67] RFFA Day CPN, GRNN RF WTA
Shamseldin, 2010 [68] Flow Day FF N/A Log

Wu t al., 2010 [69] Rainfall Month – Day FF BP HT
Aziz et al., 2011 [70] RFFA N/A N/A N/A N/A

Wu and Chau, 2011 [26] Rainfall-Runoff Day FF BP HT
Yilmaz et al., 2011 [71] Flow Day FF BP Log

Aziz et al., 2012 [21] RFFA N/A N/A N/A N/A
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Table 1. Cont.

Author(s) and Year Variable Time Step Architecture Optimization T-Function

Kia et al., 2012 [72] Food Year FF BP Log
Aziz et al., 2013 [13] RFFA Year FF BP HT
Isik et al., 2013 [73] Flow Day FF BP Log

Kalteh, A.M., 2013 [74] Flow Month FF BP N/A
Nourani et al., 2013 [75] Rainfall-Runoff Day FF BP N/A
Ramana et al., 2013 [76] Rainfall Month FF BP Log

Aziz et al., 2014 [77] RFFA Year FF BP Log
Aziz et al., 2014 [22] RFFA Year FF N/A HT

Makwana and Tiwari, 2014
[78] Flow Day FF BP Log

Aziz et al., 2015 [79] RFFA Year FF BP Log
Aziz et al., 2016 [80] RFFA Year FF N/A HT

Zemzami and Benaabidate,
2016 [28] Flow Day

(ANN-WH)-
(ANN-RDF)-

(ANN-OPDF))
N/A N/A

Tao et al., 2016 [81] Rainfall Hour FF BP Log
Aziz et al., 2017 [82] RFFA N/A FF BP HT
Lee et al., 2018 [83] Rainfall Month FF BP Log

Sadeghi et al., 2019) [84] Rainfall Hour FF BP Log
1 Partial recurrent neural networks; 2 Time delay neural networks.

3. Materials and Methods

Data from 88 stream gauging stations across New South Wales (NSW) were used to develop
the ANN model (Figure 4). Selected gauges were situated on natural streams and free from any
major regulation. Drainage area between the selected gauging stations varied from 8 to 1010 km2.
The first, second (median) and third quartile drainage area were 142.5, 260 and 537.25 km2, respectively.
The streamflow data of the selected stream gauging stations were downloaded from the WaterNSW
website [85]. The periods of annual maximum (AM) flow records at these stream gauging stations
varied between 25 to 82 years. This study was conducted based on eight predictor variables that
included (i) mean annual rainfall (MAR); (ii) areal potential evapo-transpiration (MAE), (iii) drainage
area (AREA) (iv) 6-hour duration rainfall for a 2-year return period (I62); (v) shape factor (SF); (vi) stream
density (SDEN); (vii) river slope (S1085) and (viii) proportion of forest (FOREST).

A 1:100,000 topographic map was used to delineate catchment boundary and drainage area for
individual gauge. Rainfall intensity data (I62) were obtained from the online portal of Australian
Bureau of Meteorology (BOM) using intensity-frequency-duration (IFD) estimation tool [86]. The MAR
and MAE data at the catchment centroid were extracted from Australian Bureau of Meteorology
website [86]. The shape factor (SF) for a catchment was considered as the shortest distance between
catchment outlet and centroid divided by the square root of the drainage area. The SDEN was calculated
as a ratio of the stream length (total length for all streams in a catchment) and drainage area. Stream
length was measured on a 1:100,000 topographic map using a digital distance meter. The forested
area for a catchment was measured on 1:100,000 topographic map using a planimeter. The minimum,
maximum and median parameter values are presented in Table 2.
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Table 2. Summary of catchment data used in this study.

Input Factors Units Min Max Median

Drainage area (AREA) km2 8.00 1010.00 260.00
Rainfall intencity (I62) mm/h 31.30 87.30 43.10

Mean annual rainfall (MAR) mm 626.17 1953.23 909.92
Shape factor (SF) - 0.25 1.62 0.76

Mean annual areal potential evapo-transpiration (MAE) mm 980.40 1543.30 1185.55
Stream density (SDEN) km/km2 0.51 5.47 2.71

River slope (S1085) m/km 1.53 49.85 9.07
Proportion of forest (FOREST) - 0.010 0.99 0.51

Five different ANN-based RFFA models were selected to assess their performances (Table 3).
Model 1 consisted of all the eight predictor variables. Other models consisted of more than one but
less than eight variables. It is important to note that models were selected based on the best potential
combination, but there could be other combinations as well. As recommendations in previous RFFA
studies, rainfall intensity was included in all five models and drainage area was selected as the predictor
variable [70,87].
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Figure 4. Location of selected stream gauging stations in New South Wales, Australia.

Six flood events of discharge magnitudes 2 (Q2), 5 (Q5), 10 (Q10), 20 (Q20), 50 (Q50) and 100 (Q100)
years return period were used as dependent variables. Design flood discharges were estimated by
fitting the Log Pearson type III (LP3) probability distribution function to the observed annual maximum
flood discharge [88,89]. The analyses were conducted using the FLIKE software, which is commonly
used for flood frequency modelling in Australia [90]. The main advantage of FLIKE is that it fits five
probability distribution functions for a given set of flood data and identifies the best frequency model
for that data set [91]. In this study, LP3 was selected because it was found as the best fit distribution for
Australian stream gauge data [10].
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Table 3. Five different ANN based regional flood frequency analysis (RFFA) models with adopted
catchment characteristics represented by green colour (predictor variables).
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A 2-layer feed forward neural network and with a backpropagation algorithm was selected in
this study.

The selected 88 stream gauging stations were sub-divided into three sets. Group 1 consisted of 62
stations (70%) and they were used for model training, Group 2 consisted of 13 stations (15%) and they
were used for validation. The third group (13 stations), were used to evaluate model performances
in predictions. It is important to note that the gauges in each group were selected randomly. The
analyses were conducted using a two-layer FF neural network with two hidden layers in each model
setup. The Levenberg–Marquardt algorithm was used for model training. The activation function was
represented in the model using a hyperbolic sigmoid function. The entire analyses were carried out
using MATLAB software. A set of statistical tests were performed to evaluate the model performance.
These include, root mean squared error (RMSE), root mean squared normalised error (RMSNE), relative
root mean squared error (RRMSE), coefficient of determination (R2), mean bias (BIAS), relative mean
bias in percent (rBIAS), absolute relative error (abs-RE) and quantile ratio (r, ratio of predicted and
observed discharge) as presented in Equations (3–10). These evaluation statistics were adopted from
Bloschl et al. [92].
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where Q̂i and Qi are the predicted and observed flood discharge, respectively, Qi is the mean observed
discharge and n is the number of stations.

4. Results and Discussion

Models performances in predicting flood quantiles are presented in Table 4 in terms of abs-RE and
R2. The results show that all the models perform well for the majority of quantiles, except for Q2 by
Model 1 (61%), Q5 by Model 4 (80%) and Q2 (320%) and Q5 (85%) by Model 5. Model 2 (two predictor
variables) performed reasonably well with the lowest and highest RE of 32.9% and 47.7%, respectively.
For all five quantiles, Model 3 performed very well (RE values in the range of 29.48%–52.24%). Model 4
performed well for most quantiles, except Q5. Model 5 predictions are relatively poor for all quantiles,
with the worst prediction for Q2 (RE of 319.61%). Overall, Model 5 produced the poorest results among
the five models.

Coefficient of determination (R2) values for Q5, Q10, Q20, and Q50 show a moderate model accuracy
for the Model 1 (R2 values ranging from 0.71 to 0.76). Model 2 performed well except for the Q100

(R2 value of 0.16). Model 3 performed well for Q2, Q5, Q10 and Q20. Overall, Model 1 and 3 produced
better results compared to other models. Model 4 performed the best for Q2 (R2 = 0.74) and worst for
Q20. As expected, R2 values for smaller ARIs (average recurrence interval) are higher than those of the
large ARIs. Model 5 performed the worst for R2 value which is consistent with RE value.

Table 4. Model performance in terms of absolute relative error (abs-RE) and the coefficient of
determination (R2) in predicting flood quantile.

Model 1 Model 2 Model 3 Model 4 Model 5

T Median
absRE(%) R2 Median

absRE(%) R2 Median
absRE(%) R2 Median

absRE(%) R2 Median
absRE(%) R2

Q2 61.31 0.63 36.13 0.71 29.48 0.77 38.28 0.74 319.61 0.42
Q5 23.39 0.73 32.93 0.74 52.24 0.48 79.96 0.51 84.89 0.47
Q10 10.25 0.76 34.19 0.69 33.23 0.73 29.84 0.62 44.94 0.49
Q20 34.06 0.71 39.50 0.57 33.43 0.69 46.99 0.39 38.44 0.21
Q50 33.99 0.74 38.09 0.59 38.90 0.37 30.69 0.55 46.69 0.52
Q100 33.09 0.57 47.72 0.16 38.32 0.42 35.42 0.51 67.21 0.05

Model performances in terms of RMSNE and RRMSE are presented Table 5 for all five models.
In regard to RMSNE, models performed well for most quantities, except Q2 in the case of Model 1,
Q20 for Model 4 and Q2, Q5 and Q100 for Model 5. The RRMSE value for Model 1 is highest for Q2,
which indicates low accuracy of the prediction. Model 2 predictions are relatively better with RMSNE
values of between 0.89 (Q2) and 2.47 (Q100). In addition, the best value of RRMSE is found for Q5 (0.48)
and the poorest value is found for Q100 (0.85). Model 3 performed well for Q10 with the value of 0.75;
however, for Q100, the RMSNE is poor with the value of 3.5. The RRMSE values for Q2, Q10 and Q20

are approximately the same (0.48). Furthermore, the values of RRMSE are the same (0.69) for Q50 and
Q100. The highest error is associated with Q5, with a value of 0.82. Model 4 performed well for Q2 and
Q10 with the values of 0.53 and 0.56, respectively, while the best performance was for Q50. Like other
indicators, Model 5 performed the worst for RMSNE and RRMSE.
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Table 5. Model performance in terms of root mean squared normalised error (RMSNE) and relative
root mean squared error (RRMSE) in predicting flood quantiles.

Model 1 Model 2 Model 3 Model 4 Model 5

T RMSNE RRMSE RMSNE RRMSE RMSNE RRMSE RMSNE RRMSE RMSNE RRMSE

Q2 5.28 0.76 0.89 0.54 1.18 0.48 3.29 0.53 27.88 3.29

Q5 1.51 0.50 1.23 0.48 0.98 0.82 5.90 1.19 7.67 0.91

Q10 1.17 0.46 1.79 0.51 0.75 0.48 3.25 0.56 1.49 0.67

Q20 2.25 0.52 1.30 0.58 1.30 0.49 5.27 0.74 1.89 0.89

Q50 1.65 0.45 1.87 0.55 2.25 0.69 2.07 0.58 4.84 0.67

Q100 2.05 0.61 2.47 0.85 3.50 0.69 4.86 0.68 7.60 0.96

Table 6 presents the comparison between five models in terms of model predictions for different
floods. There is no clear trend of underprediction or overprediction, nor any trend for small or large
floods. All models overpredicted for some floods and underpredicted for some other floods. Overall,
Model 3 produced the best result (relative bias of 33%) and Model 4 produced the worst result (relative
bias of 1258%).

Table 6. Model performance in terms of mean bias (BIAS) and relative mean bias (rBIAS) in predicting
flood quantile.

Model 1 Model 2 Model 3 Model 4 Model 5

T BIAS rBIAS BIAS rBIAS BIAS rBIAS BIAS rBIAS BIAS rBIAS

Q2 −20.08 −125.13 2.26 −22.09 −0.91 −40.08 −97.66 329.24 −174.27 53.26

Q5 −5.89 −2.67 10.63 −40.19 110.80 12.49 −12.04 590.09 −8.30 73.48

Q10 13.66 18.83 3.44 −59.29 26.56 −7.02 −59.87 1057.57 48.93 −15.29

Q20 −102.98 −26.97 −16.63 −30.76 21.09 −24.73 −122.62 2777.88 109.56 −20.44

Q50 5.10 29.04 −2.96 −56.57 44.02 −68.93 −66.57 429.41 213.44 112.79

Q100 3.32 29.22 311.68 −54.28 187.66 46.73 −62.77 2366.70 164.90 −170.32

Figure 5 shows a graphical comparison of model performance for predicting flood discharge
for the flood events of different magnitudes. In general, Model 2 and 4 overpredicted, while other
models underpredicted flood magnitude. Overall, Model 2 predictions are close to 1, which indicates a
better performance. Model 5 performed the worst with predicted discharge for Q2, which is more than
double the observed value.
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Figure 6 shows a comparison between five models in predicting flood quantiles. The results show
similar performances by Model 1 and Model 3, with little differences in the RMSE values for all six
flood quantiles. Model 5 performs relatively poorly for Q2, Q10, Q20 and Q100 and Model 4 performs
poor for the Q5. Overall, Model 3’s performances are better and it is considered as the best model for
predicting design flood for the catchments in NSW.
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The parameter setup for the Model 3 is similar to the current Australian Rainfall and Runoff (ARR)
model for NSW which consists of AREA, I62 and SF as predictor variables. While Model 1 (which
includes all eight predictor variables) performs well with respect to RE for all quantiles except Q2,
Model 3’s performances are the best. It is important to note that none of the models are the best for
all six quantiles. For example, with respect to RE, Model 3 is the best for predicting Q2 and Q20 but
Model 1 is better for predicting Q5, Q10, Q50 and Q100. Model 4 performs poorly with respect to BIAS.
Model 1 is the best based on R2 except for Q2 and Q100.

Table 7 compares the performance of our two best models (Model 1 and Model 3) with similar RFFA
studies based on ANN. It shows that both our models provide smaller median RE than Aziz et al. [22]
for higher ARIs (10–100 years). Also, in terms of R2, our models perform much better than those of
Dawson et al. [58].

Table 7. Comparison of ANN-based RFFA models reported in the literature.

Quantile
RE (%) R2

Present Work
Aziz et al. [22]

Present Work
Dawson et al. [58]

Model 1 Model 3 Model 1 Model 3

Q2 61.31 29.48 37.56 *N/A N/A N/A
Q5 23.39 52.24 40.39 N/A N/A N/A
Q10 10.25 33.23 44.63 76 73 66
Q20 34.06 33.43 35.62 71 69 65
Q50 33.99 38.90 39.09 N/A N/A N/A

Q100 33.09 38.32 44.53 N/A N/A N/A

*N/A represents the unavailability of the value in the literature.

The best model (Model 3) contains three predictor variables: AREA (the main scaling factor in
flood generation process), I62 (the main input that triggers runoff) and SF (the factor that affects travel
time of generated runoff). It has been found that the other five predictor variables (MAR, MAE, SDEN,
S1085 and FOREST) have minor roles in RFFA modelling in the study area.
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5. Conclusions

In this study, ANN-based regional flood frequency models are developed to estimate the design
floods. The models were tested using observed discharge data from 88 catchments in NSW. Five
models were tested considering two to eight predictor variables. The best combinations of predictor
variables were identified based on model performance in predicting design floods of 2, 5, 10, 20, 50
and 100 years return periods. Model performances were evaluated based on nine statistical error
metrics. The study found that model predictions are better when all eight predictor variables are
included. However, the results based on three predictor variables were found to be close to the results
for eight predictor variables. The study concludes that a high number of predictor variables does not
always improve the model predictions. The use of MAR, MAE, SDEN, S1085 and FOREST as predictor
variables provide little contribution in predicting design flood for an ungauged catchment. The key
predictor variables are catchment area, rainfall intensity and slope factor. The findings are very useful
because these predictor variables are readily available for the majority of the catchments. The results
demonstrate the potential use of the ANN-based regional flood frequency model. However, further
testing with larger data sets is necessary before it can be applied elsewhere.
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