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Abstract. In this paper, an automatic near-real time (NRT)
flood detection approach is presented, which combines his-
togram thresholding and segmentation based classification,
specifically oriented to the analysis of single-polarized very
high resolution Synthetic Aperture Radar (SAR) satellite
data. The challenge of SAR-based flood detection is ad-
dressed in a completely unsupervised way, which assumes
no training data and therefore no prior information about the
class statistics to be available concerning the area of inves-
tigation. This is usually the case in NRT-disaster manage-
ment, where the collection of ground truth information is not
feasible due to time-constraints. A simple thresholding al-
gorithm can be used in the most of the cases to distinguish
between “flood” and “non-flood” pixels in a high resolution
SAR image to detect the largest part of an inundation area.
Due to the fact that local gray-level changes may not be dis-
tinguished by global thresholding techniques in large satellite
scenes the thresholding algorithm is integrated into a split-
based approach for the derivation of a global threshold by the
analysis and combination of the split inherent information.
The derived global threshold is then integrated into a multi-
scale segmentation step combining the advantages of small-,
medium- and large-scale per parcel segmentation. Experi-
mental investigations performed on a TerraSAR-X Stripmap
scene from southwest England during large scale flooding
in the summer 2007 show high classification accuracies of
the proposed split-based approach in combination with im-
age segmentation and optional integration of digital elevation
models.
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1 Introduction

The demand for near real-time (NRT) information on nat-
ural disasters has increased considerably during recent years
worldwide. Flooding is considered as the world’s most costly
type of natural disaster in terms of both property damage and
human causalities. Because of their nearly all-weather day-
night capabilities, ensuring data-gathering on every over-
pass, satellite Synthetic Aperture Radar (SAR) sensors are
optimally suited for providing reliable information on ex-
tensive floods, which usually occur during long lasting pre-
cipitation and cloud cover periods. Flood information is
needed as quickly and detailed as possible to provide an
overview of the situation to improve crisis management and
response activities. For that purpose an unsupervised flood
detection approach particularly oriented to the analysis of
single-polarized very high resolution SAR satellite data is
presented.

Among supervised classification (e.g. Townsend et al.,
2002), various change detection methods (e.g. Bazi et al.,
2005; Brivio et al., 2002; Nico et al., 2000) and the appli-
cation of active contour models (e.g. Mason et al., 2007),
thresholding is one of the most popular image processing
techniques to separate flooded from non-flooded areas in
SAR imagery (e.g. Chen et al., 1999; Brivio et al., 2002; Mat-
gen et al., 2007). Commonly, this classification is performed
by assigning all elements of a SAR intensity image with a
scattering cross-section lower than a given threshold to the
class “flood”. One of the main advantages of this approach is
that it is computationally relatively inexpensive and therefore
suitable for rapid mapping purposes. Its results are usually
reliable and commonly, most of the extent of an inundation
area can be derived. The applicability of thresholding pro-
cedures for floodplain detection using SAR sensors depends
on the contrast between the flood and non-flood areas. Its
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results are satisfactory for calm water surfaces, which can be
regarded as specular reflectors with low backscatter values.
In contrast, the surrounding terrain usually exhibits higher
signal return due to increased surface roughness. Elevated
surface roughness of water bodies due to the influence of
waves, precipitation as well as diffuse and double bounce re-
flection at vegetation reduces the class-separability and also
complicates the determination of an appropriate threshold.

Since a flood separating threshold value depends on many
factors such as environmental and, satellite system parame-
ters, it can be highly variable and has to be determined in-
dividually for each satellite scene. In most cases threshold-
ing based derivation of inundation areas from remote sens-
ing data is generated by visual inspection of the image his-
togram and subsequent fine tuning of the threshold. How-
ever, such manual trial-and-error operations typically turn
out to be relatively time consuming; additionally, the qual-
ity of their results highly depends on the visual interpreta-
tion and hence subjective impression of the operator. There-
fore, such interactive threshold determination lacks objectiv-
ity and traceability. Automatic thresholding procedures can
overcome these problems. In the context of automatic im-
age thresholding, e.g. Sahoo et al. (1988), Pal and Pal (1993)
and Bazi et al. (2007) provide extensive methodological re-
views. Thresholding algorithms are either based on global
information (e.g. gray-level histogram of the whole data set)
or on local information (e.g. co-occurrence matrix) of an im-
age. Independently of the used algorithm, the use of a sin-
gle threshold for every image element in an entire data set is
called global thresholding (Pal and Pal, 1993). On the other
hand the partitioning of a data set into subregions and the
derivation of a threshold value for each of these subimages is
termed local thresholding (Sahoo et al., 1988).

Most parametric thresholding algorithms determine auto-
matically the desired gray value which best separates two se-
mantic classes under the assumption that the a priori proba-
bilities of the class-conditional densities in a histogram are
sufficient to properly model the class-distributions. The spa-
tial flood extent, in combination with the spatial resolution
and the coverage of the used satellite sensor determine the
percentage of the inundated area within a satellite scene.
Therefore the classes “flood” and “non-flood” may show
quite different a priori probabilities when looking at the en-
tire dataset compared to looking at a subset of it. This may
reduce the capability of any global thresholding algorithm to
detect an adequate threshold in the histogram, built from the
large SAR scenes, because local gray-level changes may not
be distinguished.

Due to these limitations a split-based approach (SBA) for
unsupervised flood detection in SAR data is applied which
originally has been proposed by Bovolo and Bruzzone (2007)
for the identification of tsunami induced changes in mul-
titemporal imagery. This approach comprises a tiling of
the satellite imagery into smaller subscenes of user-defined
size and a successive local thresholding analysis of a lim-

ited amount of splits with a high probability to contain large
quantities of image elements of the classes “flood” and “non-
flood”. Three thresholding approaches, all based on the KI
minimum error thresholding algorithm (Kittler and Illing-
worth, 1986) are tested. Different combination techniques
are applied to extract one global threshold from the analysis
of the selected image splits. The global threshold is then in-
tegrated into a multi-scale segmentation process, which con-
nects the advantages of small-, medium- and large-scale per
parcel segmentation and hence should lead to a more accu-
rate classification of the SAR data. Additionally, a high reso-
lution digital elevation model (DEM) is used to improve the
classification accuracy.

The effectiveness of the SBA in combination with sub-
sequent classification refinement steps by multi-scale seg-
mentation and DEM integration is analyzed using a large
TerraSAR-X Stripmap scene from southwest England during
a flood situation in July 2007.

The outline of the paper is as follows: in Sect. 2 the gen-
eral SBA adapted to flood detection in SAR data is descibed.
The application of the SBA to a TerraSAR-X scene of the
River Severn (UK) and the subsequent classification refine-
ment process is presented in Sect. 3. In Sect. 4, the results of
the SBA by the use of three different automatic thresholding
approaches as well as quality assessments of different refine-
ment steps are reported. Finally, conclusions are drawn in
Sect. 5.

2 A split-based automatic thresholding approach
for unsupervised NRT-flood detection

2.1 Image tiling and split selection

The image-tiling technique divides a SAR sceneX with di-
mensionsR, C into N quadratic non-overlapping subimages
Xn of user-defined sizes*s. The selection ofs and there-
fore N depends on the extent of the two classes “flood” and
“non-flood” within X, and on the spatial resolution of the
SAR scene. Due to the fact that the thresholding algorithms
only extract proper thresholds values if the histogram is not
unimodal, the selection process has to ascertain that the sub-
scenes contain a distinct number of pixels from both classes.
A minimum amount of 10% of each class seems to be suffi-
cient for accurate threshold detection up to reasonable over-
lapped class mixtures according to empirical assumptions of
Bazi et al. (2007) in automatic change detection. Appropri-
ate splits are selected, combining the statistical properties of
X and its subscenes. The coefficient of variation CVXn (ra-
tio between the meanµXn and standard deviationσXn of the
gray values ofXn) is used as an appropriate statistical mea-
sure to select splits with a wide data range. It serves as a
measure of the degree of variation within the data and can
therefore be used as an indicator of the probability that the
splits contain more than one semantic class.
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Erroneous selections may occur if a subset comprises both
agricultural crop land and high reflecting urban areas. Thus,
similar values of CVXn like for subsets containing the classes
“flood” and “non-flood” are reached. A second measureRXn

is added which selects the image splits in dependence of the
ratio between theµXn to the global intensity meanµX of
X. This step prohibits the mis-selection of subsets compris-
ing both agricultural crop land and urban areas characterized
by similar values of CVXn as splits covering large parts of
the classes “flood” and “non-flood”. Finally, the following
data ranges have been derived by the investigation of several
SAR data sets exhibiting flood situations for optimal split se-
lection:

Xn′=
{
Xn

∣∣CVXn ≥ 0.7∧ RXn0.4 ≤ . . . ≤ 0.9, n=1, . . . , N
}
. (1)

Optionally, ancillary data like vector layers containing the
position of the land-water boundary at normal hydrologi-
cal conditions may optionally be integrated into the split-
selection process. This information is in most cases already
readily available (e.g. SRTM water mask) or can be gen-
erated from pre-flood satellite archive scenes. The split-
selection process may be restricted to these subimages in-
tersecting the vector file. This reduces the probability of se-
lecting split-elements not containing any water surfaces.

Out of the total setN ′ of subimagesXn′ which fulfils
Eq. (1) a limited numberN ′′ of subimagesXn′′ is finally se-
lected for the threshold computation. The value ofN ′′ can be
manually set by the user before starting the algorithm. This
selection is made to constrain and equalize processing times
independently fromN ′. This final selection is carried out by
the computation of the Euclidean distance1CVRXn′ within
a 2-D feature space determined by CVXn′ andRXn′ between
the points of the respective subset and the meanµCVRXn′

of the cluster ofXn′ . TheN ′′ elements with the lowest Eu-
clidean distance are selected:

Xn′′=
{
X1, X2′ , . . . , Xn′

∣∣1CVRX1′ ≤ 1CVRX2′ ≤

. . . ≤ 1CVRXn′ , n ≤ N
′′
}

.
(2)

If the case occurs that no splits are selected according to the
predefined criterion, simultaneously the range of CVXn is de-
creased andRXn is increased stepwise by 0.05 until a mini-
mum set ofN ′′ splits is reached.

2.2 Automatic threshold selection procedure

The principal concept of using global thresholding algo-
rithms for delineating flood zones in SAR intensity data is to
assign all elements with a scattering cross-section lower or
greater than a thresholdτ to the class “flood” or “non-flood”,
respectively. This means that aR*C dimensioned gray-scale
imageX={xrc : r=0, 1, . . ., R−1, c=0, 1, . . ., C−1} with
G possible gray-levels (xrc=g, g∈{0, 1, . . ., G−1}) will be
transformed according toτ∈{0, 1, . . ., G−1} into a binary

form Y={yrc : r=0, 1, . . ., R−1, c=0, 1, . . ., C−1} with
following values:

yrc =

{
1 xrc ≤ τ

0 xrc > τ

}
, (3)

where 1=flood, 0=non-flood .
Difficulties may arise within the global thresholding pro-

cedure if the illumination varies across the image due to in-
cidence angle linked backscatter variances or atmospheric
conditions. However, within TerraSAR-X data, especially
Spotlight and Stripmap products, the system induced effect
is marginally existent due to only small variations of the in-
cidence angle from near- to far-range (3.562◦ maximum at a
ground swath width of 31.638 km). Therefore these system-
related backscatter variations can be neglected. Despite the
fact that the all-weather imaging capabilities of SAR sensors
are often emphasized in the literature, heavy precipitation in
combination with the relatively short wavelength of the ac-
tively emitted X-band microwaves may cause artefacts which
appear as dark patches due to the attenuation of the transmit-
ted signal as well as bright objects due to partial backscat-
tering at rain-cells. However, these effects are very rare and
appear just locally. Likewise, these exceptions can be disre-
garded.

In this study three bi-level thresholding techniques are
tested for the distinction between floodwater surfaces and
non-flood areas. The first is the original KI algorithm itself.
The second one computes the most prominent (global) min-
imum (GM) of the image histogram starting at the derived
minimum error cutting point. The third approach uses an
index function, combining the separability of the two distri-
butions and the most dramatic change in the KI’s criterion
function, to obtain the optimal threshold by the use of a qual-
ity index (QI).

2.2.1 Kittler and Illingworth’s algorithm

In this work the KI thresholding algorithm (Kittler and Illing-
worth, 1986) has been adopted, which has been used in re-
mote sensing image analysis predominantly in modified ver-
sions for automatic change detection in difference or (log)
ratio data (Bazi et al., 2005; Melgani et al., 2002; Bovolo
and Bruzzone, 2007; Moser et al., 2006). This is a global
parametric thresholding technique which uses a minimum er-
ror approach to group the sets of pixels of gray-scale images
into object and background classes and assumes that the im-
age histogramh(g) which gives the frequency of occurrence
of the various levels ofg to be the only available information
about the image. The histogram is viewed as an estimate of
the class-conditional probability density functions of a mix-
ture of two clusters. We assume that the histograms of the
selected subimagesXn′ can be modelled statistically by two
1-D normal distributions of the semantic classes “flood” and
“non-flood” p(g | i), i={1: flood, 2: non-flood}, with param-
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eters meanµi , standard deviationσi and a priori probability
Pi , so that

p(g) =

2∑
i=1

Pip(g |i ) (4)

where

p (g |i ) =
1

2πσi

e−(g−µi )
2/2σ2

i . (5)

Due to the fact that these parameters are usually not known in
advance they have to be estimated at some arbitrary threshold
level T which separates the two pixel populations with the
following properties (Kittler and Illingworth, 1986):

Pi(T ) =

b∑
g=a

h(g) (6)

µi(T ) =

∑b
g=a g ∗ h(g)

Pi(T )
(7)

σi(T ) =

∑b
g=a (g − µi(T ))2

∗ h(g)

Pi(T )
(8)

wherea=1 if i=flood,a=T +1 if i=non-flood,b=T if i=flood
andb=G if i=non-flood.

The selection of an appropriate thresholdτ is based on the
optimization of a given predefined criterion functionJ (T )

that averages the cost functionc(g, T ) over the histogram:

J (T ) =

G−1∑
g=0

h(g)c(g, T ) (9)

The cost function measures the cost of classifying pixels by
comparing their gray-levels with the thresholdT . Accord-
ing to the number of brightness levels of an image up toG

different threshold values can be tested in succession. For
each brightness value, the fitting criterionJ (T ) is calculated,
which is defined by

J (T ) = 1 + 2
[
P1(T ) logσ1(T ) + P2(T ) logσ2(T )

]
−

2
[
P1(T ) logP1(T ) + P2(T ) logP2(T )

]
.

(10)

As long as thresholdT is varied, the models of the Gaussian
distributions change. The better the model fits the data, the
lower is the criterion of this cost function. Therefore, the
brightness valueT , which reduces the criterion function, is
considered to be the optimal thresholdτKI since at this po-
sition, the classification error is minimized according to the
Bayes classification rule, i.e., the number of mis-segmented
pixels is smallest:

τKI = arg min
T

J (T ) (11)

One has to note thatτKI corresponds to the intersection point
of the two Gaussian populations. If an overlap between the
classes exists, as it is usually occurs in remote sensing data,
the tails of these underlying distributions are truncated by the
thresholding procedure and therefore the modelsh(g | i) will
be biased estimates of the true mixture components.

2.2.2 Global minimum thresholding

The second strategy used for automatic object-background
separation is a bottom of the valley approach which locates,
if existent, the most pronounced global minimum (GM) in
a subhistogram. This belongs to the position between adja-
cent peaks of a bimodal histogram which often is chosen as
a starting threshold in manual trial-and-error approaches by
visual inspection of the image histogram. Based on the posi-
tion of the threshold valueτKI which is located between the
two global maxima of a bimodal histogram the most pro-
nounced valley between the two distributions “flood” and
“non-flood” can be derived, primarily computing the direc-
tion in which the subhistogram declines in the surrounding
of the start valueτKI and moving step wise to this location
τGM where the global minimum occurs.

2.2.3 Quality-index thresholding

The third method proposed for automatic partitioning of bi-
modal histograms derives the threshold according to a quality
measure. For that purpose we use an index functionI [h(g)],
introduced by Miasnikov et al. (2004) as a measure for the
usefulness of bi-partitioning a 1-D projection of a dataset at
the position of a computed threshold.I [h(g)] is a composite
measure containing a term sep describing the separability be-
tween the peaks of two distributions in relation to their means
µi and variancesσ 2

i as well the term depth which accounts
for the largest variation in KI’s criterion functionJ (T ):

I [h (g)] = sep∗ depth (12)

where

sep=
(µ1 − µ2)

2

σ 2
1 + σ 2

2

. (13)

The depth ofJ (T ) is originally given by the difference be-
tween the value ofJ (T ) calculated at the minimum error
thresholdτKI and the closest local maximumJ (Tmax) of the
KI function. In this studyI [h(g)] is used for the search of
the thresholdτQI which best separates the class distributions
“flood” and “non-flood”. This is identical to the position
whereI [h(g)] is maximized:

τQI = arg maxI [h (g) , T ] (14)

The calculation of the closest local maximum is accom-
plished for each of the two class peaks ofJ (T )separated by
the calculated global minimum atτGM.

2.2.4 Split combination techniques

To derive a spatially coherent binary flood mask without
any discontinuance at the boarders of adaptively thresholded
splits one global reliable threshold is used for classification.

For its calculation two approaches can be applied using
the split inherent information (Bovolo and Bruzzone, 2007):
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mathematical combination techniques of (sub)histogram de-
rived thresholds and a (sub)histogram-merging strategy with
subsequent thresholding.

The principal concept of the first method is to compute for
every (sub)histogram of the selected splitsXn′′ a local thresh-
old τloc by any of the proposed KI, GM or QI thresholding al-
gorithms. To obtain a global thresholdτglob which is used for
the classification ofX simple mathematical operations can be
applied; e.g. the computation of the median or the arithmetic
mean. Due to the fact that all values of the variables are in-
tegrated with the same weight within the computations, the
arithmetic mean contains more information than the median.
However, it is more sensitive to outliers appearing just at one
side of the range of values, especially in the presence of just
a few samples. This may produce improper final threshold
values due to the limited numberN ′′ of selected splitsXn′′ ,
even if a robust split-selection procedure is applied.

The second method avoids the use of mathematical combi-
nation techniques by computingτglob directly from a merged
histogram which is a combination of the distributions of the
individual splitsXn′′ . However, the accuracy of the thresh-
old selection may be reduced by differences in the statistical
properties of the class-distributions in the respective splits.

3 Application for high resolution TerraSAR-X data
at the River Severn, UK

In this section the unsupervised flood detection approach is
applied exemplarily to a TerraSAR-X data set acquired dur-
ing heavy floods in southwest England at the River Severn in
2007. The proposed workflow (Fig. 1) contains the SBA for
automatic threshold computation of the pre-processed SAR
scene as well as a classification refinement process including
a multi-scale segmentation and an optional DEM integration
step.

3.1 Data set

A period of heavy precipitations over the Gloucestershire Re-
gion in Southwest England during the summer season 2007
caused severe flooding at the River Severn. The record
flood level at Tewkesbury was measured at 5.43 m on 22
July 2007 which was 0.13 m above the previously highest
record from the year 1947. The proposed SBA is applied
on a TerraSAR-X Stripmap scene (Fig. 2a) with 3.25 m pixel
spacing in range and azimuth direction showing the flood sit-
uation along a section of about 69 km length of the River Sev-
ern on 25 July 2007 (06:34:08 UTC) including the confluence
of River Avon coming from northeast. The data are HH po-
larized, which is the favoured polarization in flood mapping,
because it provides the most obvious discrimination between
open water and non-flood areas since it is less sensitive to
small scale roughness of waves on the water surface than VV
like-polarisation or cross-polarisations (Henry et al., 2006).

At the time of the satellite overpass there was no precipi-
tation and low wind speed (16.5 km/h). Additionally, two
ancillary data sets are available for this study: orthorectified
aerial photographs with a spatial resolution of 0.2 m recorded
about half a day prior to the TerraSAR-X overpass (24 July
2007 between 13:10:00 and 15:40:00 UTC) by a Rollei Mod-
ular AIC as well as a LiDAR-DEM with a horizontal resolu-
tion of 2 m and a vertical accuracy of 0.1 m.

3.2 Pre-processing

A preliminary despeckling was performed by adaptive filter-
ing to reduce salt-and-pepper structures within the data. The
speckle appearing on SAR imagery is a natural phenomenon
generated by the coherent processing of radar echoes (Lee,
1986). Its presence not only reduces the interpreter’s abil-
ity to resolve fine details, but also makes automatic segmen-
tation of such noisy images difficult. For this purpose the
Gamma-MAP filter (Lopes et al., 1990) was chosen because
it comprises a good trade-off between the quality of the fil-
tering result and the computation time. The filtering was ac-
complished by a mask-size of 3×3 pixels, which seems to be
a sufficient size for this data set.

For validation purposes of the results of the proposed
SBA and refinement process a reference map was created for
a small subset (approx. 5.4*106 pixels) of the TerraSAR-X
scene by visual interpretation and manual digitisation of the
orthophotos, which is covered by 23.8% of the class “flood”
and 76.2% of the class “non-flood”. The subset of the refer-
ence scene (see Figs. 2a and 5a) was chosen based on the
overlap between the SAR data, the aerial images and the
DEM. It comprises the heavily flooded Tewkesbury region.

3.3 Split-based approach

The SBA is applied to a TerraSAR-X sceneX with dimen-
sions ofR=14 461,C=20 153 pixels. According to a split
size of s=500, X is tiled into 1187 subimages, whereof a
quantityN of 637 subimages contains no pixels with no-data
values. An amount ofN ′=7 splits (Fig. 2a and b) were se-
lected out ofN according to the criterion defined in Eq. (1).
These remaining subscenes are considered as suitable for ef-
fective threshold detection. This assumption can be con-
firmed by the fact that selected subimages intersect the vi-
sually detectable land-water boundary (see Fig. 2a). Out of
N ′ a fixed number ofN ′′=5 splits are sorted out according to
Eq. (2) to perform the final threshold selection (Fig. 2a and
b). The three proposed thresholding algorithms (KI, GM and
QI) are applied to the five splits and different combination
techniques for the derivation of one global threshold are exe-
cuted. The performing of the thresholding algorithms as well
as the results is presented in Fig. 3 exemplarily by splitX′′

4.
For this split the KI algorithm computes a threshold value
τKI =26 whereJ (T ) reaches its minimum. Based onτKI the
global minimumτGM=29 of the histogram is localised. The
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Fig. 1. Block scheme of the proposed workflow for automatic flood detecting within large SAR satellite data.

Fig. 2. (a)TerraSAR-X data of the River Severn (25 July 2007) with
splitsXn′ , Xn′′ and outline of the validation area,(b) Location of
Xn, Xn′ andXn′′ within the feature space (CVXn′ /RXn′ ), (c) PDF
of X.

criterion function derived by the KI as well asτGM are used
to calculate the threshold positionτQI=28 where the index
function reaches its maximum.

3.4 Classification refinement process for unsupervised
flood detection

The classification refinement process has the purpose to im-
prove the accuracy of the classification result derived by
global thresholding. It consists of two main parts: a multi-
scale segmentation and an optional DEM integration step.

3.4.1 Multi-scale segmentation

Pixel-based and segmentation-based classification tech-
niques can be considered as main concepts for the identifica-
tion of flooded areas in radar imagery. Conventional classi-
fication approaches use pixels as smallest geometrical com-
ponents of raster data. However, the parameters which can
be employed for the classification are limited. Additionally,
pixel-based classifiers do not make use of spatial informa-
tion of the image and are thus not suited in cases where land
cover units are composed of spectrally heterogeneous ele-
ments. By the use of segmentation techniques, some dis-
advantages of pixel-based image thresholding can be solved.
Image segmentation partitions an image into uniform regions
based on similarity criteria of gray values or textural proper-
ties (Meinel and Neubert, 2004). The created homogeneous,
non-overlapping segments have a strong correlation with real
objects or areas of the earth’s surface. Due to the increasing
spatial resolution of earth observation imagery per-parcel ap-
proaches gain in importance in the field of remote sensing
image analysis. Especially for data of the new generation of
SAR sensors with up to one meter pixel spacing (TerraSAR-
X, COSMO-SkyMed) the use of segmentation-based meth-
ods appears promising. These images can exhibit very high
spectral variances within a given thematic class due to both
the reduced mixed pixel phenomenon and the SAR intrinsic
speckle effect. In addition to spectral related characteristics
of the image objects further parameters such as contextual
information, texture and object geometry can be used for im-
proving classification accuracy.

However, the quality of the classification result depends
on the properties of the calculated image segments. Gener-
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Fig. 3. Histogram of splitX4′′ and derived threshold values by the use of the(a) criterion function of the KI algorithm,(b) GM algorithm, c)
Index function of the QI algorithm.

ally, high homogeneity segmentation parameters cause small
segments, which, similar to pixel-based classifiers, produce
noisy classification results but are able to detect small ob-
jects, whereas low values of the homogeneity criterion gen-
erate large segments at the expense of fine detail. Therefore,
segmentation algorithms connecting the advantages of multi-
scale segmentation and per-parcel classification by automatic
thresholding seem promising for improved flood mapping.

Image objects were created using the Fractal Net Evolu-
tion concept of the Definiens Developer software (Baatz and
Scḧape, 1999; Definiens AG, 2008). An iterative bottom-up
segmentation algorithm based on a pair wise region merging
technique is employed to segment the image according to the
maximum allowable heterogeneity of the image objects, de-
fined by an initially set scale parameter. This scale parameter
is a homogeneity criterionh combining spectralhc and shape
homogeneityhs , with hs being composed of the smoothness
hcompactand compactnesshsmooth. The fusion of the objects
within the segmentation process follows the local mutual best
fitting algorithm. This leads to the lowest increase of object
heterogeneity by merging two adjacent objects which exhibit
the lowest distance in a feature space determined by mean
spectral values or texture features. For classification refine-
ment we developed an approach containing a threefold pro-
cessing step which alternates multi-scale segmentation and
classification by the SBA-derived global thresholdτglob:

1. Large-scale segmentation step and thresholding by
τglob.

2. Medium-scale segmentation of objects of class “non-
flood” and thresholding byτglob.

3. Small-scale segmentation of objects of class “non-
flood” and thresholding byτglob.

Step 1 partitions the input dataX into an initial set of
large image objects containing some variations in the spec-
tral properties of the merged pixels. Subsequently, the cre-
ated objects are thresholded byτglob. Most of the inunda-
tion area is classified by this step, however fine tuning is
reached by the following two steps, progressively enforc-
ing the spectral homogeneity constraints of non-flood ob-
jects in a defined neighbourhood around flood objects and
thresholding byτglob. A scale parameter ofh=75 (unit-
less) was selected for the initial segmentation ofX in step 1
based on visual interpretation of the image segmentation re-
sults with different scale parameters. This value was consid-
ered appropriate as reaching the best compromise between
maximal possible heterogeneity and minimal homogeneity
within the resultant object primitives, leading to an aver-
age object size of 2995 pixels. Steps 2 and 3 were per-
formed by a reduced scale parameter ofh=40 (average ob-
ject size: 908 pixels) andh=5 (average object size: 16 pix-
els) respectively to detect fine detailed flood objects. The
composition of homogeneity was controlled by both spectral
and shape properties. Spectral homogeneity was set to an
overall spectral factor ofhc=80%. Shape-homogeneity cri-
teria included an overall shape factor ofhs=20% which was
subdivided into smoothness (hsmooth=10%) and compactness
(hcompact=10%). Medium- and small-scale segmentation was
accomplished within a distance of max. 5 objects and 1 ob-
ject respectively to the class “flood”. This restriction pro-
hibits the flood mapping of medium- and small-scale image
elements with too large distance from the flood objects and
additionally reduces the computational requirements of the
segmentation. The settings for the scale parameterh, hc/hs

and hsmooth/hcompact are defined as constants so that they
need not be set by the user.
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3.4.2 DEM integration

We observe that thresholding is capable of detecting the ma-
jority of flooded surfaces inX, but there are multiple ar-
eas of relatively high backscatter surrounded by flood ob-
jects, which are flooded with high probability but interpreted
as non-flooded. These areas correspond predominantly to
flooded surfaces which are broken by emergent vegetation.
With X-band SAR flooded and non-flooded vegetation with a
closed canopy can hardly be differentiated, due to very simi-
lar radar cross-sections. Additionally, some wrongly labelled
flood regions exist with a small surface roughness and there-
fore low backscatter characteristics similar to calm water like
streets, smooth agricultural crop land or radar shadow. For a
hydrological plausible improvement of the classification re-
sult the topographic information of a high resolution DEM
is added into the classification process as it can be used to
extract flooding under dense vegetation and forest cover (e.g.
Wang et al., 2002; Mason et al., 2007) and within residen-
tial areas. The proposed approach is appropriate for floods
primarily caused by over-bank flow; predominantly affecting
areas connected to the main river channel and also can be
applied if no river gauge readings are available for hydraulic
floodplain modelling. A prerequisite for this method is that
major parts of the flood surface are already detected by the
automatic thresholding step, thus a spatially coherent flood
surface can be derived. The classification procedure using
the DEM can be separated into two parts: an inclusion and
an exclusion step. During the inclusion step, topography in-
formation can be used in combination with contextual infor-
mation to classify potentially flooded objects with backscat-
ter intensities higher than the originally defined threshold,
e.g. protruding vegetation or urban areas into the flood class.
First, all classified flood objects without any conjunction to
the core flood area and exceeding a predefined elevationH

are temporarily excluded from the classification result:

H =

 Sf∑
sf =1

Sh

/
Sf

 + 1.5 ∗ σSh
(15)

whereSf is the number of flood objects,Sh the elevation of
each single flood object andσsh the standard deviation ofSh.

After that, an iterative classification process is performed
considering local neighbourhood relations: If an object of the
main flood area is found next to a non-flood object the height
distance between the non-flood objects and the surrounding
flood objects is calculated. In the case that the mean altitude
of the non-flood object is lower or equal than the elevation of
the contiguous flood objects, the non-flood object is recoded
as flooded area. This processing step is repeated until no fur-
ther non-flood object fits to this criterion. In case microto-
pographic features exist (e.g. embankments, walls) that may
prevent flooding of areas at lower elevations, the integration
of objects stops if these obstructions with higher elevations
are detected as non-flood objects. If the segmentation fails

to delineate such objects or the resolution of the DEM is too
coarse classification errors may occur in this processing step.

At the exclusion step, wrongly masked objects in regions
with higher elevation than the main flood area can be elimi-
nated. However, due to the fact that most parts of the flood-
plain are connected to the main river channel which is a body
of flowing water, the altitude of the land-water boundary de-
creases downstream. Therefore using a global threshold for
the exclusion step is not effective and a value which is repre-
sentative for each position along the river is required instead.
Accordingly, the altitude of every single flood object without
connection to the main expanse of the flood area is compared
to the altitude of the nearest object of the core flood area and
removed from the mapping result if it exceeds a height differ-
ence of 1.0 m. This value was chosen to account for slightly
higher objects which should be retained due to local varia-
tions in water height caused by the dynamic nature of floods.

4 Results

In this section, the performance of the proposed automatic
approach of unsupervised threshold selection as well as
the subsequent classification refinement process containing
threefold image segmentation and an optional DEM integra-
tion are assessed.

The results of the threshold computations by the use of
the KI, GM and QI algorithm are presented in Table 1. It
was possible to model the histogram of each selected split
by a mixture of two Gaussian distributions. Thus, by any of
the applied algorithms a threshold value could be derived.
In comparison, no decision threshold could automatically
be identified from the histogram ofX (Fig. 2c) because of
the small a priori ratio at the visual detectable global mini-
mum between the class “flood” (P1=0.023) and “non-flood”
(P2=0.977), and the nearly unimodal distribution of the data
set.

The local threshold positions of the selected subscenes
computed by the KI, QI and GM algorithms exhibit slightly
different values. This results from the varying class-
statistical properties in the respective splits. The results de-
rived by the QI algorithm are characterized by the lowest
range of threshold values (26.0 to 29.0) which indicates less
sensitivity to class statistics. A total amount of nine global
threshold values (Table 1) have been derived by combining
the three thresholding algorithms (KI, GM, QI) with three
different split combination techniques (cf. Sect. 2.2.4), lead-
ing to seven different values ofτglob in the range of 22.6 to
29.0. According to this a subset ofX (see Fig. 2a), for which
the real flood extent is known, has been classified by these
seven thresholds with different segmentation adjustments:

– P: chessboard segmentation with an object size of
1 pixel (, pixel based application);
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Table 1. Local thresholds computed by the KI, GM and QI algorithm for splitsXn′′ and global thresholds derived by the use of different
split combination techniques.

Thresholding SubsceneXn′′ (sub)histogram (sub)histogram-
approach threshold combining merging

X1′′ X2′′ X3′′ X4′′ X5′′ Mean Median

KI 25 21 17 26 24 22.6 24.0 23.0
GM 29 26 23 29 29 27.2 29.0 29.0
QI 26 27 29 28 26 27.2 27.0 25.0

– L, M, S: uni-scale segmentation at large-, medium- or
small-scale;

– L-M: bi-scale segmentation at large- and medium-scale;

– L-M-S: tri-scale segmentation at large-, medium- and
small-scale;

– L-M-S-DEM: tri-scale segmentation with subsequent
DEM integration.

In Fig. 4 the accuracy assessment of the SBA and the clas-
sification refinement steps for each threshold value is illus-
trated by the missed alarm rate (MDR; i.e. the percentage of
flood reference pixels erroneously detected as non-flooded),
false alarm rate (FAR; i.e. the percentage of non-flood refer-
ence pixels erroneously detected as flood) and overall error
rate (OER; i.e. the percentage of erroneously labelled refer-
ence pixels). Generally, a trend can be stated that a rise of
the threshold value simultaneously is related to an increase
of the FAR and a decrease of the MDR. Thus, reduction of
false and missed alarms become two partially conflicting ob-
jectives. Regarding the classification accuracy of every sin-
gle threshold derived by the SBA, pixel-based thresholding
in all cases produces higher OERs than segmentation-based
classification. This observation can be explained by the huge
amount of false alarms which cannot by compensated by a
low quantity of missed alarms in relation to uni-scale and bi-
scale segmentation forτglob=22.6 to 27.2. Large-scale seg-
mentation (L) yields much better results than small- (S) and
medium-scale (M) image decomposition due to the highly re-
duced number of false alarms which exceed the rise in missed
alarms. These missed alarms of L further are strongly re-
duced by L-M and more considerably by L-M-S, due to the
fact that finer details on medium- and small-scale level are
identified as flooding in a defined neighbourhood of large-
scale flood objects.

L-M-S leads to lowest OERs by classification without an-
cillary data due to the fact that it combines the advantages of
small-scale (low number of missed alarms) and large-scale
(low number of false alarms) segmentation.

The integration of topographic information within the
classification process of the tri-scale segmentation addition-
ally reduces the percentage of the MDR. This results in the

best classification accuracy of L-M-S-DEM out of all seg-
mentation adjustments for all determined threshold values.

When comparing the scale-dependent classification results
of the individual threshold values, the minimum pixel-based
OER (8.68%) appears atτglob=23.0, which corresponds to
the threshold position derived by the KI algorithm applied
to the mixed pixel population of the merged (sub)histograms
of Xn′′ . In contrast values ofτglob< and>23.0 (τglob=22.6)
show higher pixel-based OERs.

The difference in OER between P and L-M-S increases
with rising threshold values. Additionally, by the use of seg-
mentation, the range of OER between the different threshold
values can be reduced. For example the range between the
highest and lowest OER at pixel-based classification reaches
3.83% whereas the overall error of L, L-M, L-M-S and L-M-
S-DEM just varies between 0.30% and 0.17%. This means
that independent of the applied thresholding algorithm and
split-combination technique, the variation of the classifica-
tion accuracy can be reduced by appropriate segmentation.
Thus, the method chosen for automatic thresholding is less
critical when applied to segmented data. Lowest classifi-
cation errors for M, L, L-M, L-M-S and L-M-S-DEM are
reached whenτglob=25.0, which also produces the best to-
tal classification result (OER: 4.55%) at L-M-S-DEM. The
threshold value of 25.0 is reached by the QI algorithm ap-
plied to the histogram of the merged distributions ofXn′′ .
The highest of the derived threshold values (τglob=29.0) also
results in the highest OERs for every classification result
without DEM integration due to a high FAR. This thresh-
old has been computed by the GM algorithm in combination
with (sub)histogram merging. The threshold value is over-
estimated due to the loss of a clear global minimum in the
data set by the combination of the different class populations
of Xn′′ . However, usingτglob=29.0, the OER comes close to
the best classification result at L-M-S-DEM. This is due to
the following facts: the relatively high OER of 7.52% at L-
M-S is fairly reduced by the exclusion step of the DEM inte-
gration process and the largest amount of correctly classified
pixels at L-M-S (MDR: 3.46%) generates a more compact
core flood area, which helps to identify more easily flooded
vegetation and anthropogenic objects during the DEM inte-
gration step.
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Fig. 4. (a)MDR and FAR for class flood and(b) OER calculated for the resultant global threshold values by the use of different segmentation
scales.

Fig. 5. (a) Classification result by thresholding withτglob=25 derived from the merged histogram ofXn′′ with L-M-S-DEM by the QI
algorithm(b) global density function of the reference subset as well as class-conditional density functions of “flood” and “non-flood” of the
reference data and of thresholding results P (global density function separated by the vertical black curve), L-M-S and L-M-S-DEM.

The final flood map for the subset of X obtained by L-M-
S-DEM with a threshold ofτglob=25.0 is shown in Fig. 5a.
The producer’s accuracy reaches 82.01%, the user’s accu-
racy 98.65% and the overall accuracy is 95.44%. This is a
good result with overall accuracies considerably higher than
commonly reported on the literature, which rarely reaches
90%. The result shows a coherent flood surface without salt-
and-pepper effects and a good representation of the land-
water boundary due to multi-level segmentation. Addition-
ally, compared to pure per-pixel classification, less image el-

ements are classified outside the floodplain. The remaining
errors in waterline position found at the riverbanks are either
due to emergent vegetation or caused by a slight decrease of
the flood extent between the acquisition of the orthophotos
(water level at Mythe gauge: 12.49±0.05 m a.s.l.) and the
SAR data (water level at Mythe gauge: 12.22±0.05 m a.s.l.),
whereas emergent hedges between adjacent flooded fields are
predominantly labelled as “flood”. Some objects within the
floodplain are not detected by the classification with DEM
integration due to some remaining artefacts in the LiDAR to-
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pography information such as short vegetation, which cause
overestimations of the real ground surface elevation. False
alarms just appear at the boarder of the extracted flood ex-
tent. These are related to crop fields with short vegetation
which show a similar spectral characteristic as water areas.
Due to the fact that the DEM exclusion step only removes
objects at higher elevations without connection to the main
flood area, these regions initially labelled as main flood could
not be deleted.

Generally, the algorithm performs very well in rural areas.
In the partly flooded Tewkesbury town, however, only some
larger regions could be detected as flooded. These are areas
which are not brightened by double bounce effects as well as
contributions from side-lobes of strong reflectors and there-
fore can be detected due to their intensity value below the
derived threshold. Supervised methods with a considerable
amount of user interaction are necessary to perform a more
accurate classification in urban areas using SAR data (Mason
et al., 2008).

It is assumed that the obtained classification accuracy
could be slightly increased if the flood extent extracted from
the SAR data and from the aerial photos would be fit to
one another. An estimation of the flood extent at the satel-
lite overpass time was done by Mason et al. (2008) for the
same SAR scene by linearly interpolating between the aerial
photo flood extent on 24 July and the flood extent of 27 July
derived from aerial photos acquired on a second flight cam-
paign. Due to the fact that the aerial photos of the 27th were
not at our disposal during our investigations, no such correc-
tion could be accomplished.

The advantage of segmentation-based thresholding is also
apparent if the class distributions derived from pixel- and
object-based flood detection are compared (Fig. 5b): the
class distributions derived by pixel-based thresholding ac-
cording toτglob=25.0 show a rigorous truncation of the right
tail of the class flood and of the left tail of the class “non-
flood” whereas the populations derived by thresholding of
the segmented image with L-M-S and especially L-M-S-
DEM come closer to the shape of the reference classes’
distributions. This is due to the fact that the segmentation
process also integrates image elements above the selected
threshold into a homogeneous image object in dependence
of the chosen homogeneity criterion. Thus, besides pure
spectral information derived by histogram thresholding, also
topological information is made available for classification.

5 Conclusions

A split based automatic thresholding and classification re-
finement process has been applied as a test case to a
TerraSAR-X Stripmap scene of the River Severn, UK, for
unsupervised flood detection in large high resolution single-
polarized SAR data sets. This approach already has success-
fully been applied in operational rapid mapping activities.

The proposed method tiles a SAR image into a set of seg-
ments and automatically selects a fixed number of splits ac-
cording to their probability to comprise adequate portions of
both classes “flood” and “non-flood”. To derive one global
threshold by the analysis of the split inherent information
mathematical combination techniques of (sub)histogram de-
rived thresholds as well as (sub)histogram-merging strategies
with subsequent thresholding have been analyzed. All three
thresholding strategies (KI, GM, and QI) were able to deter-
mine a threshold value by the analysis of the histogram of ev-
ery single selected split and of the merged class-populations
of the individual splits, respectively.

The following results could be derived by thresholding
a reference subscene decomposed by different segmenta-
tion adjustments: object-based context-sensitive threshold-
ing has proven superior to pixel-based context-insensitive
procedures due to the addition of spatial information to the
pure spectral information derived from histogram threshold-
ing. Lowest OERs could be obtained by a threefold seg-
mentation step which consists of an alternating multi-scale
image decomposition and thresholding approach that com-
bines the advantages of small-, medium- and large-scale ob-
ject generation. By the use of image segmentation, the vari-
ation in OER for the classification results derived by differ-
ent threshold values can be fairly reduced in comparison to
pixel-based thresholding approaches. Thus, the classification
results of decomposed images are less sensitive to the used
threshold algorithm as well as the applied split combination
technique. Lowest OERs could be achieved by combining
the KI algorithm with the (sub)histogram merging strategy
whereas for the image segmentation adjustments M, L, L-M,
L-M-S, L-M-S-DEM greatest classification accuracies could
be achieved by a higher threshold value derived by the QI
algorithm in combination with the (sub)histogram merging
strategy.

High resolution topographic information has been suc-
cessfully combined with multi-scale segmentation to en-
hance the mapping performance in areas that partly consist
of flooded vegetation and anthropogenic objects as well as to
remove non-water look-alike areas.

Experimental results of the SBA have shown that it is com-
putationally more efficient than global threshold derivation
by the use of the whole SAR scene. This is due to the fact that
the most time-consuming step of global threshold detection
is the computation of the image histogram which depends
on the number of pixels of the analyzed data. In contrast
the KI thresholding procedure is very fast, as no iterations
are needed, but only the calculations of the criterion func-
tion for a defined gray-level range. The processing times of
the GM and QI algorithm are nearly identical to the com-
putational speed of the KI algorithm because only some ad-
ditional calculations are needed to determineτGM and τQI,
respectively. The computation can be accelerated if the po-
sition of the threshold can be restricted a priori. Due to the
fact that the criterion function may have local minima at the
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boundaries of the histogram meaningless thresholds can be
avoided by a constraint of the loop. The computational ef-
fort of the SBA (less than 10 s for the entire scene on an a
Intel Xeon 5160 CPU with 3.0 GHz and 3 GB of RAM) is
much lower than the refinement process by image segmenta-
tion, whose processing time rises according to the number of
used segmentation-scales (160 s at L-M-S-DEM for the se-
lected validation area). Therefore, the interpreter has to find
a compromise between computational effort and classifica-
tion quality.

The presented thresholding algorithm works successful in
most of the cases, due to the fact that there is usually a suf-
ficient contrast between the land and water surface. Future
work will be related to extract the flood extent from rough-
ened water surfaces.
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