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1 Introduction and¢ : R?" — R is proper single valued functioM and

N are convex subsets d@&". Our main intention in this
Discrete and continuous time problems with higher orderpaper is to derive optimality conditions for Mayer
ordinary and partial differential inclusions have wide problem for the second order differential inclusions
applications in the field of mathematical economics and
in problems of control dynamical system optimization

and differential game<2[4], [9,10], [13,20], [25,26,27]. minimize ¢ (x(1),X (1)) (1)
In particular, the problems including the higher order /

discrete and discrete-approximate differential inclasio X'(t) € F(x(t),X(t), aete[01), (2)
and the higher order partial differential inclusions are x(0) € M, X(0) € N. 3)

studied by E.N.Mahmudov1p,16,17]. Especially, the
problems including the second order discrete andThe problem is to find an ar(t), satisfying @) almost
differential inclusions are studiedl,6]. A lot of everywhere (a.e.) off0,1] and the boundary conditions
investigations on the second order differential inclusion (3) at t = O that minimizes the Mayer functional
(SODIs) usually are devoted to existence and viability ¢ (X(1),X(1)). A feasible trajectory(-) in the problem is
problems §,8], [11,12],[14,19. In the classical Mayer taken to be an absolutely continuous function on time
problem for the SODIs with initial boundary constraints interval [0, 1] together with the first order derivatives for
given by sets make the examined optimal control problemwhichx”(-) € L7([0,1]).
quite complicated. The change of the initial point For construction of optimality conditions we begin
constraints changes the problem. Ththe authors obtain  with the second order discrete problem and then using
sensitivity relations for the Mayer problem associatedfirst and second order difference operators and an
with the first order differential inclusion and derive auxiliary multifunction, we approximate the convex
optimality conditions. problem ()—(3) by the discrete approximation problem.
Let R" be ann-dimensional Euclidean space of the Generally, there are some difficulties in constructing
state variable and letP(R") be a family of subsets d&". adjoint inclusions and transversality conditions at the
Assume thaf : R?" — P(R") is a multi-valued mapping endpointst = 0 andt = 1 , respectively. We achieve by
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the approximation and formulation of the equivalence

theorems.
SettingA = 1 and by passing to the formally limit in

conditions of the discrete-approximation problem as the

discrete ste@ — 0, we establish the sufficient optimality
conditions to the convex optimal probled) {(3).

Notions that we use in our paper are similar to the

notations of Mahmudov in 18. The multi-valued
functionF : R" x R" — P(R") is convex if its graph is a
convex subset dk" x R" x R", where its graph is defined
with gphF = {(x,u,v) : v € F(x,u)}. The multivalued
mappingF is convex closed if its graph is a convex closed
setinR3". Itis convex-valued iF (x,u) is a convex set for
each (x,u) € domF = {(x,u) : F(x,u) # 0}. The
Hamiltonian function and argmaximum set
multivalued mappindr are defined by

He (X, u,v*) = sup{(v,v*) :ve F(x,u)},v: € R",
\

for

F(x,u;v') = {ve F(x,u): (v,v") =He(x,u,v")},

respectively. For convek we setHr(x,u,v*) = —oo if
F(x,u) = 0.

The interior of the sef c R3" is denoted by ik and
the relative interior of the seA , i.e. the set of interior
points of A with respect to its affine hull AfA is denoted
by riA.

The convex con&a(z), z= (x,u,V) is called the cone
of tangent directions at a poigj € A to the setA if from
z=(X,0,V) € Ka(2) it follows thatz is a tangent vector
to the setA at pointzy € A, i.e., there exists such function
K(A) € R thatzg +Az+k(A) € Afor sufficiently small
A >0andA~1k(A) —0,asA | 0.

If for any zg € riKa(zo) there exists a convex cone
K C Ka(z) and a continuous mapping/(z) defined in
the neighborhood of the origin such that

(i) zo € riK, LinK = LinKa(z), where LirK is linear
span ofK,

(i) W@ =2+r(2), r(2)|z|-*—0asz—0,
(i) 20+%W(2) € A, Zze KNS (0) for somee > 0, where
S:(0) is the ball of radiug,

then the con&a(2) is called local tent.
For a convex mapping at a point(x,u,v) € gphF

KgphF(X7 U,V) = Conqg phF_ (X7 U,V)]

={(X,0,V) :X=A(X1 —X),U=A(Up—Uu),Vv=A(v1 —V)},

Y (xl,ul,vl) (S gphF
For a convex mapping a multifunction defined by

Fo(v (XU, v)) = { (X5, u7) 0 (X7, u", =V7) € Kgpne(X, U, V) }

is called a locally adjoint mapping (LAM) t& at point

(X, u,v) € gphF, whereKj (X, u,v) is the dual cone to

the cone of tangent directiol§ pnr(X, U, V).

The following multivalued mapping defined by

F*(v'; (x,u,v)) i= {(x*,u*) tH(x1,u1,v*) —H(X,u,v")

< (XX =X) (U, g — U), Y, ) € RPN

veF(xuv)

is called the LAM to non-convex mapping at point
(x,u,v) € gphF . Clearly for the convex mapping,
H(-,-,v*) is concave and the latter definition of LAM
coincide with the previous definition of LAM. Note that,
the similar notion is given by Mordukhovicl2], and is
called coderivative of multifunctions at a point.

In the following section we deal with second order
discrete Mayer problem

minimizeg(Xr_1,X7) 4)
Xt+2€F(Xt,Xt+1),t=0,...,T—2, (5)
X0 €M, X1 —Xo € N, (6)

where x € R" , g(-,-) : R" x R" — R U {£w} is
real-valued functionfF : R?" — P(R") is multivalued
mapping andT is fixed natural numberiM and N are
convex subsets of R". A sequence {x}{_,
={x%:t=0,1,...,T}is called the feasible trajectory for
the stated problemdf—(6). If the multivalued functior

is convex andg(-,-) is convex proper function, the
discrete problem4)—(6) is said to be convex.

Definition 1.1. If one of the following cases for points

X € R"is fulfilled
(i) (. %¢y1.%,2) €ri(gphP),

(i) (><t°,>&°+l,><t°+2) e'int(g phF), t=0,..T-2 (with the
possible exception of one fixegl),

andg(-,-) is continuous atx{,x’ ;) , we say that the
regularity condition for the convex problend)((6) is
satisfied.

Condition I. Suppose that the cones of tangent directions

Kgphr(%, %+ 1,%2) to the graph of the mappirfg in the
problem @)—(6) are local tents, wherg are the points of
the optimal trajectory{% }{_,. Suppose, moreover, that
the function g(xr_1,xr) admit a continuous CUA
he(-,%r_1,%7) [18,23] at the point (%r_1,%7) , which
ensures that the  subdifferential dg(Xr_1,%7)

= 0ht(0,)?T_1,)'ZT) is defined.

2 Necessary and Sufficient Conditions for
Discrete Inclusions

We consider the second order discrete convex
problem @)—(6). Let wus introduce a vector
W= (X0,X1,...,x7) € R"T*D and define in the space
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R"T+D the following convex sets

S ={w= (x0,X1,....X1) | (%, %+1,%+2) € gPhF},
t=01,... T—2
M = {w= (Xo,X1,...,XT) | X0 € M} and
N = {wW=(X0,X1,...,XT) | X1 — X0 € N,Xg € M}.

First of all we should compute the dual coniég(w),
Ky (W) andKg (w).

Lemma 2.1.Let Kypnr(X, %11, %+2) be cones of tangent
directions, wheréx;, %+1,%+2) € gphF. Then

K& (W) = {W' = (0. 25) | (X404 2)

€ K phr(Xe: X1, X 2), X = O,k;«ét,t+1,t+2}

Proof. If for sufficiently smallA > 0, w+ AW € §,
t=0,...,T —2, thatis if for sufficiently smalh > 0,

(% + A% , %41+ AR, X2 + AKei2) € gphF then
W € Kg (w). Therefore we can write

Kg (W) = {V_V| (X, %11, %e42) € KgphF(xtaxt+l7Xt+2)}7

t=0,1,....T—2

By the definition of dual cone we have' € K¢ (w) if and
only if

(W*, W) = i(xﬁ,n) >0, VWe Kg(w).
k=

Then from the arbitrariness of
X,k # t,t + 1Lt + 2, of vectorsw, the inequality is
satisfied ifx; = 0,k # t,t + 1,t + 2. So the last inequality
takes the form

(%) + (% 1. %+1) + (¢ 2,%42) > 0,
where (X, Xe+1,%+2) € Kgphr(Xe, %4+1,%+2) Hence

(4, X 1, 0) € Ké‘phF(x{,xtH,tz) . This completes the
proof of the lemma.

Lemma 2.2.Let Ky (xo) be the cone of tangent directions

at pointxp € M to the setM, Kn(Yo — Xo) be the cone of
tangent directions at poingg — %o € N to the selN and let

the set® = {(x,y) [ Xxe M,y—x€ N} =M x (M+N) be

given. Then we have

K5 00,30) = { (¢, X +Y" €Ki (30, ¥ €Ki (Yo —0) .

for a fixed(xg,Yo) € ®.

Proof. Since (X,y) € Ko(Xo,Yo) if and only if for
sufficiently smallA > 0, (xo+AX, Yo+ AY) € @, i.e.
(Yo +AY) — (X0 +AX) € N and (x + AX) € M, then
X € Ku(xo) andy — X € Kn(Yo — Xp). So we obtain the

components

cone of tangent directions to the séx at fixed point
(X0:Y0),

Ko(%0,Y0) = { (R9) | R € Ku(%0). 7~ R € Kn (Yo~ %0) }.

By the definition of dual conéx*,y*) € K (Xo,Yo) if and
only if

<(X*vy*)v()_(vy)> >0,V ()_(7)7) € Kd’(XOvyO)'

The last inequality is equivalent to the followirfg", X) +
(y*,y) > 0, for all X € Ky (xo) andy —X € Kn(yo — Xo) or
after some calculations” +y*,X) + (y*,y—X) > O for all
X € Km(Xo) andy — X € Ky (Yo — Xo). Then we obtain the
inclusionsx* +y* € Ky (Xo) , Y* € K (Yo — Xo) thatx* and
y* satisfy. So we derive the dual cone

K (0:Y0) = { (¢.y") | X +Y" €Kiy (0, ¥ €Ki (Yo —0) .

Lemma 2.3.Let Km(Xo) be the cone of tangent directions
at pointxp € M to the setM andKy (x; —Xp) be the cone of
tangent directions at poini — Xg € N to the sefN. Then

K (W) = {W" = (0.7 | % € Kiy(0),
—0, t:1,...,T}

e

and
Kiw) = {W' = (. %¢) | %6+ € Ky (%),
Xi €Ki %), X =0,t£0,1}.

Proof. Sincew+ AW € M if and only if Xy € Ky (xo), we
have

Ky (W) = {v—vz (Xo,..-,XT) | %o € KM(xo)}
and hence
K w) = {W' = 0, X6) [ %6 € Ky (%),
—0, t:1,...,T}.

o

If w+Aw e N for sufficiently smallA > 0 , i.e.
(X1 +AX%1) — (X0 +AXo) € N and (xo + AX%) € M, then
%o € Km(X0) andX; — X € Kn (X1 — Xo). If we use Lemma
2.2, we obtain

K(w) = {W=(Ro,....%r) | % € Kt (%),
X1 — %o € KN(Xl—Xo)}-

By the definition of dual coner* € Kz (w) if and only if

T
(W*, W) = Z(x;;,xk) > 0, Vwe Kg(w).
k=0
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The last inequality is equivalent to the following where

(X6 + X7, X0) + (X],X1 — Xo) + (X3,%2) + -+ + (X7, %7) > 0,
for all Xg € Km(xo) andX; —Xp € Kn(Xg — Xo), and X
arbitrary for k # 0,1. From the arbitrariness of
componentsy, k£ 0,1, and Lemma 2.2, we derive

Kiw) = {W" = (... %) | %6+ € K (%),

xieK,ﬁ(xl—xo),x[*:O,t;AO,l}.

Now we give the necessary and sufficient conditions for

the problem 4)—(6) in the sense of the terminology of
first order discrete inclusion& §,20,23].
Theorem 2.1.Let F be convex mapping and(-,-) be

(Xr_1, %) € 09(%r—1,%7) and for
t=0,1,...,T-2,% = 0 by the fact thap(%,t) = 0. By
Lemma 2.1 and Lemma 2.3 we have

W(t) = (07"'vovx:(t)v)q-&-l(t)v)q-&-Z(t)aov .. .,0),

04 (1), x4 1(1), 6 2(1)) € Kgpne(Re, %1, %42), - (9)
t=0,1,....,T—2
wWh = (%3,0,...,0),w; = (%, %5,0,...,0),
wherex; € Ky (Xo), X5 + X6 € K (%), % € KX — Xo).
Now, using the component-wise representation8)fwe
deduce that

convex continuous function at the points of some feasible

trajectory {x}/_, . Then for {%}{, to be an optimal
trajectory of the problem4)—(6), it is necessary that
there exist a numberA € {0,1} and vectors
X, x5, u,t=0,..., T —1, simultaneously not all equal to
zero satisfying
transversality inclusions

() O — U, U g) € PO 20 (R %y, %v2)),s

t= sy ey 1T &y
(i) (U3 — %53, —X) € A0g(57_1, %),

(iii) uy € Kiy (Ro), —x§ —X; € Kij (%o), —X%; € K (X1 — o).

the discrete Euler-Lagrange and

0= X3+ %, +%p(0),

0=x;+X] +x;(0),

0=x()+Xx{t-1)+x({t-2),
t=2..T-2

(10)

By the definition of LAM and from the second formula of
(9) we derive that

04 (1):%51(1) € F* (X 42(t); (R, %1, %e42))
t=0,1,.. T-2

Introducing the new notations¢,,(t) = uf,; and
o(t) =X 0, t=0,1,...,T —2in the third formula of

(11)

And if the regularity condition is satisfied these (_1)(()[)Twe obtain by {1) that

conditions are sufficient for the optimality of the

trajectory{% }{_o-
Proof. Denotingf(w) = g(xr_1,%T1) , we will reduce this

problem to the problem with geometric constraints.
Indeed it can be easily seen that our basic problem

(4)—(6) is equivalent to the following one
minimize f (w)

T-2 5 5 (7)
subjectto P=([]S)NMnNN,
t=0

whereP is a convex set.

By the hypothesis of the theoren{%}{_, is an
optimal trajectory, consequentlyy = (Xp,...,%7) Is a
solution of the problem 7). The result taken from
Theorem 3.4 in 18], provides necessary optimality
conditions for the convex mathematical programminyg (
According to this theorem there exist vectoss(t)
KgW),t =0,1,....T —2,wg € K (W), w; € Kg(W), not
all zero, and the numbeér € {0, 1}, such that

T-2

)\V\P*:%\Aﬁ(t)—kvvé—k\/\f{, WO € gy f(W).  (8)
t=

From the definition of the functiof it is easy to see
that vectom® ¢ dy, f (W) has a form

W =(0,...,0,%% 4, %%),

(—X;—XE, U’{) € F*(XE; (Xo,%1,%2))

(=X — U, Uy) € F* (x5 (%1,%2,%3)),

¢ — U, W) € F (%2 (&, %11, %42))
t=2,....T-2

On the other hand if we denotg = ug, x5 = —x§ and

X¢ = —X; in the first and second inclusions, respectively,
we can generalize the formulaZ) as

(12)

O¢ — U, Uh) € F7 (0 (% %41, %42))
t=0,1,....T -2,

whereuy € Ky (%), =X — X; € Kij (%),
—X; € K{ (X1 —%o) and these are (i) and (jii) in the result
of the theorem, respectively.

Finally, fort =T —1andt =T we have

A =% 4(T=2)+x5 4(T-3)
)‘)_(fl' = Xilk'(T - 2)7
or on the accepted notations
A 1= Ur 11— X
T:*l T;l T-1 (13)
)\XT - —XT.

Therefore(ut _; —X7_1,—X7) € Adg(Xr_1,%7).
Thus taking into account the formulas2j and (3), we
complete the first part of the proof of the theorem.
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As for the sufficiency of the obtained conditions, it is {u*(t)},{x*(t)} and a numbei € {0,1}, not all zero,
clear that by Theorem 3.Bf under the regularity such that
condition, the representatiorl@ holds with parameter

A = 1 for the pointw® € 8, f (W) N KA(W). (X*(t) —u(t),u"(t+9))
Theorem 2.2.Suppose that for the non-convex problem € QF (X" (t+20); (X(t),X(t+ 8),X(t + 20))), (21)
(4)—(6) Condition | holds. Then the necessary condition t=0,0,20,...,1—20.

for the optimality of the trajectory{%}{_, for this

non-convex problem is that there exist a number By Theorem 2.1 the transversality condition at the
A €{0,1} and pair of vector§x'},{ui} , simultaneously ~ starting point takes the form

not all equal to zero, satisfying the conditions of Theorem

2.1. u”(0) € Ky (X(0)),
Proof. In this case Condition | ensures the conditions of —X"(0) —x*(0) € Ky (X(0)), (22)
Theorem 3.24[8 for the problem 7). Therefore, —X"(8) € K5n(X(8) —X(0)).

according to this theorem, the necessary condition is _ N .
obtained as in Theorem 2.1 by starting from the relationThe transversality condition of second order discrete

(8), written for the non-convex problem. approximation problem with objective function
0g(xt_1,Xt) by Theorem 2.1 in extended form is as
following

3 Necessary ar)d Sufficient Cpndi@ions of (=X"(1=98)+u*(1-9),—x"(1)) € AdIg(X(1—5),%(1)).

Optimality for Discrete-approximation (23)

Problem Notice that the functionp in problems 14)—(16) and
(18 —(20) is in the form

Let & be a step on the-axis andx(t) = x;(t) be a grid ¢ (X(1—0),Ax(1—0)) = &g(x(1— 6),x(1)).

function on a uniform grid of0, 1] . The first and second

order difference operators are as following Therefore we may rewrite tansversality conditi@3)(as

L L following
- = _ 2 — —_
(24)
and in special caséx(0) = %(x(é) —x(0)). where

Using difference operators, given above, with the  g(x(1—5),x(1))) = ¢(x(1—3),Ax(1—3)).  (25)
problem ()—(3) we now associate the following second

order discrete-approximation problem In order to Write_24) in terms of subdifferential op , we
prove the following theorem:
minimize ¢ (x(1— &), Ax(1— &), (14) Theorem 3.1.Supposé (-, -) is a proper convex function

given by the relationZ5) that isg (x,v) = ¢ (x, 5%) . Then

2 — _
AX() € F(x(1),Ax(1)) , 1=0,9,...,1-25,  (15) the following inclusions are equivalent:

x(0) € M, Ax(0) € N, (16)

(X, V") € 3@ (00, \P), (X0, \P) € domg, (26)
Let us use the following straightforward auxiliary mapping VP xo)
. (27)

(X" + V", 87°) ea¢(x°

QU U) = 2u—x+ 5%F (x, %() (17)
Proof. The subdifferentiaby @ (x°,\°) of proper convex

to reduce the problen®) and (LO) to a problem of the form  function ¢ is a convex closed set and is bounded for
(4)—(6) and so rewrite the probleni4)—(16) as following  (x°,\°) € ri(dom$) [18,21,23,24. By using the
subdifferential definition we obtain the subdifferentials

minimize ¢ (x(1— 9),Ax(1—9)), (18)
X(t+28) € Q(X(t),X(t + 3)), (19) O (x°, V) = {(7"7 V) [ FV) =BV
t=0,6,25,...,1—25, Z<)_(*,X—X0>—|—<\_fk,V—VO>,V(X,V)ERzn} (28)
x(0) € M, x(0) € x(0) 4 oN. (20)

and
By Theorem 2.1 for the optimality of the trajectory

{X(t)} ;== {X(t) : t=0,9,...,1}, in problem (L8 —(20) it 20 (xo v°—x°)

is necessary that there exist a pair of vectors
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_ 0
> (X, x—X0) + (v*, %( - VOTX>,V(X,V) € RZ“} Then by the definition of subdifferential, we have
of functions¢ and ¢ , respectively. The last relation can He (X1 Up — X \f*) _ HF(x u—x \f*)
be rewritten as following B o
VO 0 . V—X VW0 - B X" +uf —v* U —X U—X u* — 2v*
209(X. 555 ) = e vl ) o0, 5) ST T )

After some necessary arrangements we obtain that

— V?;,x—x°>+ <ﬁ v—\P) ¥(x,v) € RZ“}. (29)

> (x 5

Ui —Xa
o)

Ve x (2up — X1,V*) + 67HE (X1, V) = (2u—x,V")
From the equivalenc@(x,v) = ¢ (x,——), we derive

o
from (28) and Qg) that _52HF (X, u ; X’\fk) S <X]_ o X, X*> + <U]_ o U, U*>. (33)

X=X — v , V= ﬁ7 Using the connection between the Hamiltonian functions
Y 0 Hq andHe [17]
or simply U—xX
X =% 4V, V= OV, Ho (X, U,v*) = (2u—x,V*) + 82HE (X, —V), (34
Then(x',v") € 3, @(,\") if and only if (x* +v",6v") € the inequality 83) is replaced with the inequality
99 (0, 1),
We should express the LAND* in (21) in terms of
LAM F*. Ho(X1,U1,V*) — Ho(X, u,v*) < (X1 — X,X*) + (up — u,u®),

Theorem 3.2.Let F : R" x R" — P(R") be a convex
: i i : hich implies (x",u") € dxuHo(x,u,v*). Since
multivalued mapping andQ be mapping defined as W* ) ) XUV 2 Ve
QU) = 2u— X+ 8°F(x, %) . Then the following < (V5 (U, V) = deuHo(x u,v7), v € Qx,u;v7), we
inclusions are equivalent conclude thatg1) holds. . .
Conversely, let31) holds then similarly, using3d) we

X+ uf—v* ut—2v* U—X X4+u—v obtain inclusion 33) and therEforEQO).
( , )EF* (\ﬁ; (x ),
o
—X

32 ’T’T) Theorem 3.2 can be generalized to the non-convex
(30) case; if the problem 4)—(6) is non-convex and
X+Uu—v cE (x u—'\f*) v ER" consequently the mappirkgis non-convex then using the
02 A definition of a local tent we can establish the equivalence
of the inclusions in Theorem 3.2 for non-convex function
(X*,U*)EQ*(W;(X,U,V)),VE Q(X,U;\fk), (31) F

whereQ(x,u;v*) is the argmaximum set for mappir@

and Theorem 3.3.Let F be a convex-valued mapping such

that the coneKgpng(x,u,v), (X,u,v) € gphQ of tangent
X, U V') = {ve Q(x,u) | (v,v*) = Ho(x, u,v*)}. directions  for  the  mapping  defined as
QA )= ve Qo) (wv) ol ) Q(x,u) = 2u— X+ 62F(x,%<) determine a local tent.
Then the inclusions3Q) and @1) are equivalent.

. . . X+U—V
Proof. Taking into account thate Q(x, u;v*) and=5—~ € Proof. See 7]

F(x,%*;v") , we ensure that the LAMs are nonempty at a
given point.

By [18], F*(v;(xU,v)) = dxuH (X u,ve), Lemma 3.1.Let Ky (X(0) — X(0)) be the cone of tangent
v e F(x,u;v*) , holds for convex mappind=, where directions of the setdN at point X(6) — X(0) and
AxuH (X, u,v*) = —dy[—H(x,u,v*)]. Using this formula Kn(AX(0)) be the cone of tangent directions of the Set

we find that at AX(0) , then Kgn(X(3) — X(0)) = Kn(AX(0)).
UoX Xt U_v U x Furthermore the relation between the dual cones of these
F*(v*; (%, = )) = BeuHr (X, > V) conesK} (X() — %(0)) = Ky (A%(0)) holds.
X4+U—V u—x Proof. = Observe, first, that for  arbitrary
—5 ¢ F(x T?Vk)- y € Ksn(X(0) — X(0)) and for sufficiently smallA > 0

relationx{4) — X(0) + Ay € ON or in other words, relation
M + %y € N holds. SinceKyn(AX(0)) is a cone of
U—X tangent directions and > 0 , we havey € Ky(AX(0)).

) €8uHe(x —=.v"). (32)  Consequentisn(X(3) — X(0)) C Kn(4%(0)).

Therefore we may rewrite3Q) as

(x*+u*—v* u* — 2v*
02 )

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 5, 1719-1728 (2016)www.naturalspublishing.com/Journals.asp

N SS ¥

1725

Conversely, ify € Ky(AX(0)), then for 6 > 0
y € 3Kn(A%(0)) and henceAX(0) + Y € N. By the
difference formula, we obtain(d) — X(0) + Ay € oN .

respectively, only it is taken into account that LAM is
positive homogeneous on the first argument.
Transversality condition39) is obtained from Z4) by

Hence by the definition of cone of tangent directions denotingdx'(t) and éu*(t) again withx*(t) andu*(t) ,

y € Ksn(X(0) —
proof of the theorem.

On the other hang* € K3, (X(0) — X(0)) if and only
if the inequality (y,y*) > 0
y € Ksn(X(0) —
the theorem, the
y € Kn(A%(0)). Hence it follows thaty* € K (AX(0)) .

Going in the reverse direction, by the same way we obtain
So the relation between the

thaty” € K3, (X(8) —X(0)) .
dual cones holds. That completes the proof.

Theorem 3.4.Let F be a convex function ang be
proper function that is convex with respect xoand
continuous at points of some feasible

X))}t =0,0,...,

is satisfied for all e | condi
%(0)). Therefore from the first relation of are also sufficient for optimality ofX(t)}. Let us denote
last inequality holds for all v*(t4 )=

trajectory
1. Then for the optimality of the

%(0)) . That completes the first part of the respectively.

The third inclusion in 40) is in the result of Lemma
3.1 applied to the third inclusion o2p).
Under the regularity condition, condition88)—(40)

M , then it is obvious that
XE(t) — u*(t) +u*(t+ 0) —x*(t+ 29)
52
X*(t) — Ov¥(t) — 2x*(t 4+ 20) + Ov*(t + 0) + X" (t + 20)
=A% (t) + AVE (). (41)

trajectory {X(t)} in the discrete approximation problem Therefore from88) and @1), the inclusion 85) holds.

(18—(20) it is necessary that there exist a number
v*(t)} simultaneously not all

A € {0,1} and a paifx*(t),

On the other hand by conditioB%) and Theorem 3.1
we have

equal to zero, satisfying the approximate Euler-Lagrange

and transversality inclusions and adjoint boundary

condition fort = 0:
(4% () +Av'(1), <>>
eF( (t+25); (X(t),A (t))), (35)
t=20,30,...,1—29;

(VA8 +AX(1-8) —X (1)) EA 9 (X(1-0), AK(1-3)), (36)

—X(8) € KN (4%(0))

v(0)+ax(0) ek G0

respectively, wherg"(t) = M{W, andv*(0) is the
value ofv*(t) fort = 0.

( (1= 8) — 2 (1) +x*(1) —x* (1 - 8) —5x*(1))
5 TS
€109 (X(1—5),A%(1-5)).

and hence, by the notations given above this inclusion is
simply (36), that is

(Vi(-3) + AX (1— &), —x* (1)) € A0 ((1— ), AK(1-5)).

The first inclusion of 87) is not different from the
third inclusion of @0). Also since the con&y,(X(0)) is
convex, then by the first and the second inclusiongi6f (
the second inclusion of 37) follows, where
V*(O) _ u*(0)762x*(6).

Theorem 3.5.Suppose that Condition | is satisfied for the

Proof. By Theorem 3.1 and Lemma 3.1 the conditions non-convex problem, thefX(t)} is an optimal trajectory

(22), (22) and @4) for convex problem takes the form

X (6) — U () 4+ U (t+8) — X (t+28)  UF (t+8)—2x*(t+25)
( 5 , )

€ F*(x* (t+20); (X(1), AX(1), A2K(1))),  (38)
t=0,5,25,35,....1—25:
(“*(1_5);)(*(1_5), _X;(l)) EAIP(KA1—3),%(1), (39)
u*(0) € Ky (X(0)),
x*(0) = x"(3) € Ky (X(0)), (40)
—X"(0) € K (4%(0)),

of this problem if there exist a numbére {0,1} and a
pair {x*(t),v*(t)} simultaneously not all equal to zero,
satisfying @5), (36) and @7) for non-convex case.

4 Sufficient Conditions of Optimality for the
Mayer Problem

Theorem 4.1.For the optimality of the trajectory(f) in
the convex problem1)—(3), it is sufficient that there
exists a pair of absolutely continuous functions
{x*(t),v*(t)},t € [0,1], satisfying the second order
Euler-Lagrange differential inclusion
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O+ 20 v ) e F (e xOXOR D) = (Tl x0 - 50) - (PO e

Integrating @4) over the intervall0,1] and taking into
account thak(-),X(-) are feasible we obtain

the transversality conditions at the endpointsl and

t=0 d ,dx(t) 5 d  d(x(t)—X({t)) .
(=2 ()~ X)) — (=2 X (1) [ dt
(i) (v(1) + P52, —x (1)) € 9¢ (X(1).% (1)), /" 5 a a |

(iii) —x*(0) € K(%(0)) , v*(0) + dX;EO) € Ky, (%(0)), +(v'(1),x(1) —X(1)) — (v"(0),x(0) = X(0)) = 0. (45)

respectively, If we compute the integral on the right hand side 45)(
then it follows that
and the condition ensuring that the locally adjoint dx (1) dx*(0)
mappingF* is nonempty at a given point 0<( it X(1) = %(1)) —( Tt ,X(0) —%(0))
. 2~ ~ ~ ~ ~ ~
(iv) X e F(x(1),%(t),% (1)), a.et € [0,], +<dx(0) ~dx(0) (0)) <dx( ) dx(1) (1)
whereF (x,u;v") = {ve F(x.u) [ {(vv*) =H(x,u,v")} dt dt dt dt

is the argmaximum set for multivalued mappifg IV (1),X(1) — X(1)) — (V*(0),%(0) — X(0)),

Here we assumex(t),t € [0,1], to be absolutely andhence
continuous function together with the first order

derivative andddT € L1([0,1]). Besidesv*(t), t € [0,1] dx (1) N
is absolutely continuous angefT e L1([0,1)). 0= < dt +v(1),x(1)-X(1 )>
dx(1) dx(1) . dx(0) —dx(0) ..
Proof. From condition (i) of the theorem we have _< dt  dt X (1)> dt dt ’ (0)>
- _(9x(0) v*(0),x(0)—X%(0)).
(dg—tz(t)+d\fjk—t(t)’vkm)ea(xvvﬁ'(*(t)a’((t)vx*(t))- (42) S OO )>(46)

Thus, using the definition of subdifferential set of the Using transversality conditions (i) and (iii), for all fsile
Hamiltonian functionHg, (42) can be replaced by the arcsx(t),t € [0,1], the relations

inequality (1) ax1) (L)

<d2x*(t) N d\fk(t) X(t) _)’z(t)> N <\fk(t) dX(t) B d)~((t)> <\fk(1)+ dt ,X(l)—i(1)> < dt - dt ,X*(1)>
de2 dt Tdtdt < o(x(1),X(1)) — ¢(X(1),% (1)) (47)
X i o N and
= AR (X(1), , X — HE(X(1), , X . 0 ~
> He (X(t). X (). (1) ~He (K1), (0. (1)), (43) @O 0 50 =0
Moreover, by the qefinition of the Hamiltonian function, dt~ ’ T
we can rewrite43) in the form <d>;(t0) B d);(tO) —x'(0)) >0
2y . e
<d;(—t2(t),x(t) — X))+ %<\ﬁ(t)’x(t) —X(t)) hold. Thus 46), (47) and last inequalities imply
) 5 0< (DX (1)~ $(RD.X(D).  (48)
> ( e X (1) — T X (1)) then it follows thaixt),t € [0, 1] is optimal.
Thi h Theorem 4.2. Let problem {)—(3) be non-convex
's means that problem, that is functiog) : R2" — R is non-convex with
d2x* (t . d2(x(t) — (t respect tox, andF is a non-convex mapping. Then for the
0< <T§),X(t)—x(t)>—<%7xwt)> optimality of arc X{t),t € [0,1], among all feasible
d solutions of the probleml]—(3) it is sufficient that there
+a<\ﬁ(t),x(t) —X(t)). (44) exists a pair of absolutely continuous functions

{x*(t),v*(t)},t € [0,1] , satisfying the conditions:
First two inner products ind@) can be shown as difference

of two derivatives, that is 0 (ﬁc’ﬁz@ + W L (t), v (t))
(0 20t) - X(0) €F* (- (1): (%(), X (1), %'(1))), a.et € [0,1],

(g X0 =%0) — (F= g X )
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