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Abstract: In the present paper we consider the Mayer Problem for SecondOrder Differential Inclusions with initial boundary
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1 Introduction

Discrete and continuous time problems with higher order
ordinary and partial differential inclusions have wide
applications in the field of mathematical economics and
in problems of control dynamical system optimization
and differential games [2,4], [9,10], [13,20], [25,26,27].
In particular, the problems including the higher order
discrete and discrete-approximate differential inclusions
and the higher order partial differential inclusions are
studied by E.N.Mahmudov [15,16,17]. Especially, the
problems including the second order discrete and
differential inclusions are studied [1,6]. A lot of
investigations on the second order differential inclusions
(SODIs) usually are devoted to existence and viability
problems [5,8], [11,12],[14,19]. In the classical Mayer
problem for the SODIs with initial boundary constraints
given by sets make the examined optimal control problem
quite complicated. The change of the initial point
constraints changes the problem. In [7] the authors obtain
sensitivity relations for the Mayer problem associated
with the first order differential inclusion and derive
optimality conditions.

Let Rn be ann-dimensional Euclidean space of the
state variablex and letP(Rn) be a family of subsets ofRn.
Assume thatF : R2n → P(Rn) is a multi-valued mapping

andϕ : R2n → R is proper single valued function,M and
N are convex subsets ofRn. Our main intention in this
paper is to derive optimality conditions for Mayer
problem for the second order differential inclusions

minimizeϕ(x(1),x′(1)) (1)

x′′(t) ∈ F(x(t),x′(t)), a.e.t ∈ [0,1], (2)

x(0) ∈ M, x′(0) ∈ N. (3)

The problem is to find an arc ˜x(t), satisfying (2) almost
everywhere (a.e.) on[0,1] and the boundary conditions
(3) at t = 0 that minimizes the Mayer functional
ϕ(x(1),x′(1)). A feasible trajectoryx(·) in the problem is
taken to be an absolutely continuous function on time
interval [0,1] together with the first order derivatives for
whichx′′(·) ∈ Ln

1([0,1]).
For construction of optimality conditions we begin

with the second order discrete problem and then using
first and second order difference operators and an
auxiliary multifunction, we approximate the convex
problem (1)−(3) by the discrete approximation problem.
Generally, there are some difficulties in constructing
adjoint inclusions and transversality conditions at the
endpointst = 0 andt = 1 , respectively. We achieve by
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the approximation and formulation of the equivalence
theorems.

Settingλ = 1 and by passing to the formally limit in
conditions of the discrete-approximation problem as the
discrete stepδ → 0, we establish the sufficient optimality
conditions to the convex optimal problem (1)−(3).

Notions that we use in our paper are similar to the
notations of Mahmudov in [18]. The multi-valued
functionF : Rn×R

n → P(Rn) is convex if its graph is a
convex subset ofRn×R

n×R
n, where its graph is defined

with gphF = {(x,u,v) : v ∈ F(x,u)}. The multivalued
mappingF is convex closed if its graph is a convex closed
set inR3n. It is convex-valued ifF(x,u) is a convex set for
each (x,u) ∈ domF = {(x,u) : F(x,u) 6= /0}. The
Hamiltonian function and argmaximum set for
multivalued mappingF are defined by

HF(x,u,v
∗) = sup

v
{〈v,v∗〉 : v∈ F(x,u)},v∗ ∈ R

n
,

F(x,u;v∗) = {v∈ F(x,u) : 〈v,v∗〉= HF(x,u,v
∗)},

respectively. For convexF we setHF(x,u,v∗) = −∞ if
F(x,u) = /0.

The interior of the setA⊂ R
3n is denoted by intA and

the relative interior of the setA , i.e. the set of interior
points ofA with respect to its affine hull AffA is denoted
by riA.

The convex coneKA(z0), z= (x,u,v) is called the cone
of tangent directions at a pointz0 ∈ A to the setA if from
z= (x,u,v) ∈ KA(z0) it follows that z is a tangent vector
to the setA at pointz0 ∈ A, i.e., there exists such function
κ(λ ) ∈ R

3n thatz0+λz+κ(λ ) ∈ A for sufficiently small
λ > 0 andλ−1κ(λ )→ 0, asλ ↓ 0.

If for any z0 ∈ riKA(z0) there exists a convex cone
K ⊆ KA(z0) and a continuous mappingΨ(z) defined in
the neighborhood of the origin such that

(i) z0 ∈ riK, LinK = LinKA(z0), where LinK is linear
span ofK,

(ii) Ψ (z) = z+ r(z) , r(z)‖z‖−1 → 0 asz→ 0,

(iii) z0+Ψ(z) ∈ A , z∈K ∩Sε(0) for someε > 0, where
Sε(0) is the ball of radiusε,

then the coneKA(z0) is called local tent.
For a convex mappingF at a point(x,u,v) ∈ gphF

KgphF(x,u,v) = cone[gphF− (x,u,v)]

= {(x,u,v) : x= λ (x1−x),u= λ (u1−u),v= λ (v1−v)},

∀ (x1,u1,v1) ∈ gphF.
For a convex mappingF a multifunction defined by

F∗(v∗;(x,u,v)) := {(x∗,u∗) : (x∗,u∗,−v∗)∈K∗
gphF(x,u,v)}

is called a locally adjoint mapping (LAM) toF at point
(x,u,v) ∈ gphF , whereK∗

gphF(x,u,v) is the dual cone to
the cone of tangent directionsKgphF(x,u,v).

The following multivalued mapping defined by

F∗(v∗;(x,u,v)) :=
{

(x∗,u∗) : H(x1,u1,v
∗)−H(x,u,v∗)

≤ 〈x∗,x1− x〉+ 〈u∗,u1−u〉,∀(x1,u1) ∈R
2n
}

,

v∈ F(x,u;v∗)

is called the LAM to non-convex mappingF at point
(x,u,v) ∈ gphF . Clearly for the convex mapping,
H(·, ·,v∗) is concave and the latter definition of LAM
coincide with the previous definition of LAM. Note that,
the similar notion is given by Mordukhovich [22], and is
called coderivative of multifunctions at a point.

In the following section we deal with second order
discrete Mayer problem

minimizeg(xT−1,xT) (4)

xt+2 ∈ F(xt ,xt+1), t = 0, . . . ,T −2, (5)

x0 ∈ M, x1− x0 ∈ N, (6)

where xt ∈ R
n , g(·, ·) : R

n × R
n → R

1 ∪ {±∞} is
real-valued function,F : R2n → P(Rn) is multivalued
mapping andT is fixed natural number,M and N are
convex subsets of R

n. A sequence {xt}
T
t=0

= {xt : t = 0,1, . . . ,T} is called the feasible trajectory for
the stated problem (4)−(6). If the multivalued functionF
is convex andg(·, ·) is convex proper function, the
discrete problem (4)−(6) is said to be convex.
Definition 1.1. If one of the following cases for points

x0
t ∈ R

n is fulfilled

(i) (x0
t ,x

0
t+1,x

0
t+2) ∈ri(gphF),

(ii) (x0
t ,x

0
t+1,x

0
t+2) ∈int(gphF), t = 0, . . .T − 2, (with the

possible exception of one fixedt0 ),

and g(·, ·) is continuous at(x0
t ,x

0
t+1) , we say that the

regularity condition for the convex problem (4)−(6) is
satisfied.
Condition I. Suppose that the cones of tangent directions

KgphF(x̃t , x̃t+1, x̃t+2) to the graph of the mappingF in the
problem (4)−(6) are local tents, where ˜xt are the points of
the optimal trajectory{x̃t}

T
t=0. Suppose, moreover, that

the function g(xT−1,xT) admit a continuous CUA
ht(·, x̃T−1, x̃T) [18,23] at the point (x̃T−1, x̃T) , which
ensures that the subdifferential ∂g(x̃T−1, x̃T)
= ∂ht(0, x̃T−1, x̃T) is defined.

2 Necessary and Sufficient Conditions for
Discrete Inclusions

We consider the second order discrete convex
problem (4)−(6). Let us introduce a vector
w = (x0,x1, . . . ,xT) ∈ R

n(T+1) and define in the space
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R
n(T+1) the following convex sets

St = {w= (x0,x1, . . . ,xT) | (xt ,xt+1,xt+2) ∈ gphF},

t = 0,1, . . . ,T −2,

M̃ = {w= (x0,x1, . . . ,xT) | x0 ∈ M} and

Ñ = {w= (x0,x1, . . . ,xT) | x1− x0 ∈ N,x0 ∈ M}.

First of all we should compute the dual conesK∗
St
(w),

K∗
M̃
(w) andK∗

Ñ
(w).

Lemma 2.1.Let KgphF(xt ,xt+1,xt+2) be cones of tangent
directions, where(xt ,xt+1,xt+2) ∈ gphF. Then

K∗
St
(w) =

{

w∗ = (x∗0, . . . ,x
∗
T) | (x

∗
t ,x

∗
t+1,x

∗
t+2)

∈K∗
gphF(xt ,xt+1,xt+2),x

∗
k = 0,k 6= t, t+1, t+2

}

Proof. If for sufficiently small λ > 0, w+ λw ∈ St ,
t = 0, . . . ,T −2, that is if for sufficiently smallλ > 0,
(xt + λxt , xt+1 + λxt+1 , xt+2 + λxt+2) ∈ gphF then
w∈ KSt (w). Therefore we can write

KSt (w) =
{

w | (xt ,xt+1,xt+2) ∈ KgphF(xt ,xt+1,xt+2)
}

,

t = 0,1, . . . ,T −2.

By the definition of dual cone we havew∗ ∈ K∗
St
(w) if and

only if

〈w∗
,w〉=

T

∑
k=0

〈x∗k,xk〉 ≥ 0 , ∀ w∈ KSt (w).

Then from the arbitrariness of components
xk,k 6= t, t + 1, t + 2, of vectors w, the inequality is
satisfied ifx∗k = 0,k 6= t, t +1, t +2. So the last inequality
takes the form

〈x∗t ,xt〉+ 〈x∗t+1,xt+1〉+ 〈x∗t+2,xt+2〉 ≥ 0,

where (xt ,xt+1,xt+2) ∈ KgphF(xt ,xt+1,xt+2) . Hence
(x∗t ,x

∗
t+1,x

∗
t+2) ∈ K∗

gphF(xt ,xt+1,xt+2) . This completes the
proof of the lemma.
Lemma 2.2.Let KM(x0) be the cone of tangent directions

at pointx0 ∈ M to the setM, KN(y0 − x0) be the cone of
tangent directions at pointy0− x0 ∈ N to the setN and let
the setΦ =

{

(x,y) | x∈ M,y− x∈ N
}

= M× (M+N) be
given. Then we have

K∗
Φ (x0,y0)=

{

(x∗,y∗) | x∗+y∗∈K∗
M(x0), y∗∈K∗

N(y0−x0)
}

,

for a fixed(x0,y0) ∈ Φ.

Proof. Since (x,y) ∈ KΦ (x0,y0) if and only if for
sufficiently small λ > 0, (x0 + λx,y0 + λy) ∈ Φ, i.e.
(y0 + λy) − (x0 + λx) ∈ N and (x0 + λx) ∈ M, then
x ∈ KM(x0) and y− x ∈ KN(y0 − x0). So we obtain the

cone of tangent directions to the setΦ at fixed point
(x0,y0),

KΦ (x0,y0) =
{

(x,y) | x∈ KM(x0),y− x∈ KN(y0− x0)
}

.

By the definition of dual cone(x∗,y∗) ∈ K∗
Φ(x0,y0) if and

only if
〈

(x∗,y∗),(x,y)
〉

≥ 0 , ∀ (x,y) ∈ KΦ (x0,y0).

The last inequality is equivalent to the following〈x∗,x〉+
〈y∗,y〉 ≥ 0, for all x ∈ KM(x0) andy− x∈ KN(y0− x0) or
after some calculations〈x∗+y∗,x〉+ 〈y∗,y−x〉 ≥ 0 for all
x ∈ KM(x0) andy− x ∈ KN(y0 − x0). Then we obtain the
inclusionsx∗+y∗ ∈ K∗

M(x0) , y∗ ∈ K∗
N(y0−x0) thatx∗ and

y∗ satisfy. So we derive the dual cone

K∗
Φ(x0,y0)=

{

(x∗,y∗) | x∗+y∗∈K∗
M(x0), y∗∈K∗

N(y0−x0)
}

.

Lemma 2.3.Let KM(x0) be the cone of tangent directions
at pointx0 ∈ M to the setM andKN(x1−x0) be the cone of
tangent directions at pointx1− x0 ∈ N to the setN. Then

K∗
M̃(w) =

{

w∗ = (x∗0, . . . ,x
∗
T) | x∗0 ∈ K∗

M(x0),

x∗t = 0 , t = 1, . . . ,T
}

and

K∗
Ñ(w) =

{

w∗ = (x∗0, . . . ,x
∗
T) | x∗0+ x∗1 ∈ K∗

M(x0),

x∗1 ∈ K∗
N(x1− x0) , x∗t = 0 , t 6= 0,1

}

.

Proof. Sincew+λw∈ M̃ if and only if x0 ∈ KM(x0), we

have

KM̃(w) =
{

w= (x0, . . . ,xT) | x0 ∈ KM(x0)
}

and hence

K∗
M̃(w) =

{

w∗ = (x∗0, . . . ,x
∗
T) | x∗0 ∈ K∗

M(x0),

x∗t = 0 , t = 1, . . . ,T
}

.

If w+ λw ∈ Ñ for sufficiently small λ > 0 , i.e.
(x1 + λx1)− (x0 + λx0) ∈ N and (x0 + λx0) ∈ M, then
x0 ∈ KM(x0) andx1− x0 ∈ KN(x1− x0). If we use Lemma
2.2, we obtain

KÑ(w) =
{

w= (x0, . . . ,xT) | x0 ∈ KM(x0),

x1− x0 ∈ KN(x1− x0)
}

.

By the definition of dual conew∗ ∈ K∗
Ñ
(w) if and only if

〈w∗
,w〉=

T

∑
k=0

〈x∗k,xk〉 ≥ 0 , ∀ w∈ KÑ(w).
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The last inequality is equivalent to the following
〈x∗0+ x∗1,x0〉+ 〈x∗1,x1− x0〉+ 〈x∗2,x2〉+ · · ·+ 〈x∗T ,xT〉 ≥ 0,
for all x0 ∈ KM(x0) and x1 − x0 ∈ KN(x1 − x0), and xk
arbitrary for k 6= 0,1. From the arbitrariness of
componentsxk, k 6= 0,1, and Lemma 2.2, we derive

K∗
Ñ(w) =

{

w∗ = (x∗0, . . . ,x
∗
T) | x∗0+ x∗1 ∈ K∗

M(x0),

x∗1 ∈ K∗
N(x1− x0) , x∗t = 0 , t 6= 0,1

}

.

Now we give the necessary and sufficient conditions for
the problem (4)−(6) in the sense of the terminology of
first order discrete inclusions [18,20,23].
Theorem 2.1. Let F be convex mapping andg(·, ·) be

convex continuous function at the points of some feasible
trajectory {x0

t }
T
t=0 . Then for {x̃t}

T
t=0 to be an optimal

trajectory of the problem (4)−(6), it is necessary that
there exist a number λ ∈ {0,1} and vectors
x∗t ,x

∗
T ,u

∗
t , t = 0, . . . ,T −1, simultaneously not all equal to

zero satisfying the discrete Euler-Lagrange and
transversality inclusions

(i) (x∗t −u∗t ,u
∗
t+1) ∈ F∗(x∗t+2;(x̃t , x̃t+1, x̃t+2)),

t = 0,1, . . . ,T −2,

(ii) (u∗T−1− x∗T−1,−x∗T) ∈ λ ∂g(x̃T−1, x̃T),

(iii) u∗0 ∈ K∗
M(x̃0),−x∗0− x∗1 ∈ K∗

M(x̃0),−x∗1 ∈ K∗
N(x̃1− x̃0).

And if the regularity condition is satisfied these
conditions are sufficient for the optimality of the
trajectory{x̃t}

T
t=0.

Proof. Denoting f (w) = g(xT−1,xT) , we will reduce this

problem to the problem with geometric constraints.
Indeed it can be easily seen that our basic problem
(4)−(6) is equivalent to the following one

minimize f (w)

subject to P= (
T−2
⋂

t=0

St)∩ M̃∩ Ñ,
(7)

whereP is a convex set.
By the hypothesis of the theorem,{x̃t}

T
t=0 is an

optimal trajectory, consequently, ˜w = (x̃0, . . . , x̃T) is a
solution of the problem (7). The result taken from
Theorem 3.4 in [18], provides necessary optimality
conditions for the convex mathematical programming (7).
According to this theorem there exist vectorsw∗(t) ∈
K∗

St
(w̃), t = 0,1, . . . ,T − 2,w∗

0 ∈ K∗
M̃
(w̃),w∗

1 ∈ K∗
Ñ
(w̃), not

all zero, and the numberλ ∈ {0,1}, such that

λw0∗ =
T−2

∑
t=0

w∗(t)+w∗
0+w∗

1, w0∗ ∈ ∂w f (w̃). (8)

From the definition of the functionf it is easy to see
that vectorw0∗ ∈ ∂w f (w̃) has a form

w0∗ = (0, . . . ,0,x∗T−1,x
∗
T),

where (x∗T−1,x
∗
T) ∈ ∂g(x̃T−1, x̃T) and for

t = 0,1, . . . ,T−2, x∗t = 0 by the fact thatg(x̃t , t) = 0. By
Lemma 2.1 and Lemma 2.3 we have

w∗(t) = (0, . . . ,0,x∗t (t),x
∗
t+1(t),x

∗
t+2(t),0, . . . ,0),

(x∗t (t),x
∗
t+1(t),x

∗
t+2(t)) ∈ K∗

gphF(x̃t , x̃t+1, x̃t+2), (9)

t = 0,1, . . . ,T −2,

w∗
0 = (x∗a,0, . . . ,0),w

∗
1 = (x∗b,x

∗
c,0, . . . ,0),

wherex∗a ∈ K∗
M(x̃0),x∗b + x∗c ∈ K∗

M(x̃0),x∗c ∈ K∗
N(x̃1 − x̃0).

Now, using the component-wise representation of (8) we
deduce that

0= x∗a+ x∗b+ x∗0(0),

0= x∗c + x∗1+ x∗1(0),

0= x∗t (t)+ x∗t (t −1)+ x∗t (t −2),

t = 2, . . . ,T −2.

(10)

By the definition of LAM and from the second formula of
(9) we derive that

(x∗t (t),x
∗
t+1(t)) ∈ F∗(−x∗t+2(t);(x̃t , x̃t+1, x̃t+2)),

t = 0,1, . . . ,T −2.
(11)

Introducing the new notationsx∗t+1(t) ≡ u∗t+1 and
−x∗t+2(t)≡ x∗t+2, t = 0,1, . . . ,T −2 in the third formula of
(10), we obtain by (11) that

(−x∗a− x∗b, u∗1) ∈ F∗(x∗2;(x̃0, x̃1, x̃2))

(−x∗c −u∗1, u∗2) ∈ F∗(x∗3;(x̃1, x̃2, x̃3)), (12)

(x∗t −u∗t , u∗t+1) ∈ F∗(x∗t+2;(x̃t , x̃t+1, x̃t+2))

t = 2, . . . ,T −2.

On the other hand if we denotex∗a = u∗0, x∗b = −x∗0 and
x∗c = −x∗1 in the first and second inclusions, respectively,
we can generalize the formula (12) as

(x∗t −u∗t ,u
∗
t+1) ∈ F∗(x∗t+2;(x̃t , x̃t+1, x̃t+2))

t = 0,1, . . . ,T −2,

whereu∗0 ∈ K∗
M(x̃0),−x∗0− x∗1 ∈ K∗

M(x̃0),
−x∗1 ∈ K∗

N(x̃1− x̃0) and these are (i) and (iii) in the result
of the theorem, respectively.

Finally, for t = T −1 and t = T we have

λx∗T−1 = x∗T−1(T −2)+ x∗T−1(T −3)

λx∗T = x∗T(T −2),

or on the accepted notations

λx∗T−1 = u∗T−1− x∗T−1

λx∗T = −x∗T .
(13)

Therefore(u∗T−1− x∗T−1,−x∗T) ∈ λ ∂g(x̃T−1, x̃T).
Thus taking into account the formulas (12) and (13), we
complete the first part of the proof of the theorem.
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As for the sufficiency of the obtained conditions, it is
clear that by Theorem 3.3[18] under the regularity
condition, the representation (10) holds with parameter
λ = 1 for the pointw0∗ ∈ ∂w f (w̃)∩K∗

P(w̃).
Theorem 2.2.Suppose that for the non-convex problem

(4)−(6) Condition I holds. Then the necessary condition
for the optimality of the trajectory{x̃t}

T
t=0 for this

non-convex problem is that there exist a number
λ ∈ {0,1} and pair of vectors{x∗t },{u∗t } , simultaneously
not all equal to zero, satisfying the conditions of Theorem
2.1.
Proof. In this case Condition I ensures the conditions of

Theorem 3.24[18] for the problem (7). Therefore,
according to this theorem, the necessary condition is
obtained as in Theorem 2.1 by starting from the relation
(8), written for the non-convex problem.

3 Necessary and Sufficient Conditions of
Optimality for Discrete-approximation
Problem

Let δ be a step on thet-axis andx(t) ≡ xδ (t) be a grid
function on a uniform grid on[0,1] . The first and second
order difference operators are as following

∆x(t)=
1
δ
[x(t+δ )−x(t)],∆2x(t)=

1
δ
[∆x(t+δ )−∆x(t)],

and in special case∆x(0) =
1
δ
(x(δ )− x(0)).

Using difference operators, given above, with the
problem (1)−(3) we now associate the following second
order discrete-approximation problem

minimizeϕ(x(1− δ ),∆x(1− δ )), (14)

∆2x(t) ∈ F(x(t),∆x(t)) , t = 0,δ , . . . ,1−2δ , (15)

x(0) ∈ M, ∆x(0) ∈ N. (16)

Let us use the following straightforward auxiliary mapping

Q(x,u) = 2u− x+ δ 2F
(

x,
u− x

δ

)

(17)

to reduce the problem (9) and (10) to a problem of the form
(4)−(6) and so rewrite the problem (14)−(16) as following

minimizeϕ(x(1− δ ),∆x(1− δ )), (18)

x(t +2δ ) ∈ Q(x(t),x(t + δ )), (19)

t = 0,δ ,2δ , . . . ,1−2δ ,
x(0) ∈ M, x(δ ) ∈ x(0)+ δN. (20)

By Theorem 2.1 for the optimality of the trajectory
{x̃(t)} := {x̃(t) : t = 0,δ , . . . ,1}, in problem (18)−(20) it
is necessary that there exist a pair of vectors

{u∗(t)},{x∗(t)} and a numberλ ∈ {0,1}, not all zero,
such that

(x∗(t)−u∗(t),u∗(t + δ ))
∈ Q∗(x∗(t +2δ );(x̃(t), x̃(t + δ ), x̃(t +2δ ))), (21)

t = 0,δ ,2δ , . . . ,1−2δ .

By Theorem 2.1 the transversality condition at the
starting point takes the form

u∗(0) ∈ K∗
M(x̃(0)),

−x∗(0)− x∗(δ ) ∈ K∗
M(x̃(0)), (22)

−x∗(δ ) ∈ K∗
δN(x̃(δ )− x̃(0)).

The transversality condition of second order discrete
approximation problem with objective function
δg(xT−1,xT) by Theorem 2.1 in extended form is as
following

(−x∗(1−δ )+u∗(1−δ ),−x∗(1))∈ λ δ∂g(x̃(1−δ ), x̃(1)).
(23)

Notice that the functionϕ in problems (14)−(16) and
(18)−(20) is in the form

ϕ(x(1− δ ),∆x(1− δ )) = δg(x(1− δ ),x(1)).

Therefore we may rewrite tansversality condition (23) as
following

(−x∗(1−δ )+u∗(1−δ ),−x∗(1)) ∈ λ ∂ϕ(x̃(1−δ ), x̃(1)),
(24)

where

ϕ(x(1− δ ),x(1)))≡ ϕ(x(1− δ ),∆x(1− δ )). (25)

In order to write (24) in terms of subdifferential ofϕ , we
prove the following theorem:
Theorem 3.1.Supposeϕ(·, ·) is a proper convex function

given by the relation (25) that isϕ(x,v)≡ ϕ(x, v−x
δ ) . Then

the following inclusions are equivalent:

(x∗,v∗) ∈ ∂x,vϕ(x0
,v0),(x0

,v0) ∈ domϕ , (26)

(x∗+ v∗,δv∗) ∈ ∂ϕ
(

x0
,
v0− x0

δ

)

. (27)

Proof. The subdifferential∂x,vϕ(x0
,v0) of proper convex

function ϕ is a convex closed set and is bounded for
(x0,v0) ∈ ri(domϕ) [18,21,23,24]. By using the
subdifferential definition we obtain the subdifferentials

∂x,vϕ(x0
,v0) =

{

(x∗,v∗) | ϕ(x,v)−ϕ(x0
,v0)

≥ 〈x∗,x− x0〉+ 〈v∗,v− v0〉 , ∀ (x,v) ∈ R
2n
}

(28)

and

∂ϕ
(

x0
,
v0− x0

δ

)

=
{

(x∗,v∗) |ϕ
(

x,
v− x

δ
)

−ϕ
(

x0
,
v0− x0

δ
)
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≥ 〈x∗,x− x0〉+
〈

v∗,
v− x

δ
−

v0− x0

δ
〉

,∀(x,v) ∈ R
2n
}

of functionsϕ andϕ , respectively. The last relation can
be rewritten as following

∂ϕ
(

x0
,
v0− x0

δ

)

=
{

(x∗,v∗) |ϕ
(

x,
v− x

δ
)

−ϕ
(

x0
,
v0− x0

δ
)

≥
〈

x∗−
v∗

δ
,x− x0〉+

〈v∗

δ
,v− v0〉

,∀(x,v) ∈ R
2n
}

. (29)

From the equivalenceϕ(x,v) ≡ ϕ
(

x,
v− x

δ
)

, we derive

from (28) and (29) that

x∗ = x∗−
v∗

δ
, v∗ =

v∗

δ
,

or simply
x∗ = x∗+ v∗ , v∗ = δv∗.

Then(x∗,v∗) ∈ ∂x,vϕ(x0,v0) if and only if (x∗+v∗,δv∗) ∈

∂ϕ(x0, v0−x0

δ ).
We should express the LAMQ∗ in (21) in terms of

LAM F∗.
Theorem 3.2. Let F : Rn × R

n → P(Rn) be a convex

multivalued mapping andQ be mapping defined as
Q(x,u) = 2u − x + δ 2F(x, u−x

δ ) . Then the following
inclusions are equivalent

(x∗+u∗− v∗

δ 2 ,
u∗−2v∗

δ

)

∈F∗
(

v∗;
(

x,
u−x

δ
,
x+u− v

δ 2

)

)

,

(30)
x+u− v

δ 2 ∈ F
(

x,
u− x

δ
;v∗

)

,v∗ ∈ R
n

(x∗,u∗) ∈ Q∗(v∗;(x,u,v)),v∈ Q(x,u;v∗), (31)

whereQ(x,u;v∗) is the argmaximum set for mappingQ
and

Q(x,u;v∗) = {v∈ Q(x,u) | 〈v,v∗〉= HQ(x,u,v
∗)}.

Proof. Taking into account thatv∈Q(x,u;v∗) andx+u−v
δ 2 ∈

F(x, u−x
δ ;v∗) , we ensure that the LAMs are nonempty at a

given point.
By [18], F∗(v∗;(x,u,v)) = ∂x,uH(x,u,v∗),

v ∈ F(x,u;v∗) , holds for convex mappingF, where
∂x,uH(x,u,v∗) = −∂x,u[−H(x,u,v∗)]. Using this formula
we find that

F∗
(

v∗;
(

x,
u− x

δ
,
x+u− v

δ 2 )
)

= ∂x,uHF
(

x,
u− x

δ
,v∗

)

x+u− v
δ 2 ∈ F

(

x,
u− x

δ
;v∗

)

.

Therefore we may rewrite (30) as

(x∗+u∗− v∗

δ 2 ,
u∗−2v∗

δ

)

∈ ∂x,uHF
(

x,
u− x

δ
,v∗

)

. (32)

Then by the definition of subdifferential, we have

HF
(

x1,
u1− x1

δ
,v∗

)

−HF
(

x,
u− x

δ
,v∗

)

≤
〈

x1− x,
x∗+u∗− v∗

δ 2

〉

+
〈u1− x1

δ
−

u− x
δ

,
u∗−2v∗

δ
〉

.

After some necessary arrangements we obtain that

〈2u1− x1,v
∗〉+ δ 2HF

(

x1,
u1− x1

δ
,v∗

)

−〈2u− x,v∗〉

−δ 2HF
(

x,
u− x

δ
,v∗

)

≤ 〈x1− x,x∗〉+ 〈u1−u,u∗〉. (33)

Using the connection between the Hamiltonian functions
HQ andHF [17]

HQ(x,u,v
∗) = 〈2u− x,v∗〉+ δ 2HF(x,

u− x
δ

,v∗), (34)

the inequality (33) is replaced with the inequality

HQ(x1,u1,v
∗)−HQ(x,u,v

∗)≤ 〈x1− x,x∗〉+ 〈u1−u,u∗〉,

which implies (x∗,u∗) ∈ ∂x,uHQ(x,u,v∗). Since
Q∗(v∗;(x,u,v)) = ∂x,uHQ(x,u,v∗), v ∈ Q(x,u;v∗), we
conclude that (31) holds.

Conversely, let (31) holds then similarly, using (34) we
obtain inclusion (33) and therefore (30).

Theorem 3.2 can be generalized to the non-convex
case; if the problem (4)−(6) is non-convex and
consequently the mappingF is non-convex then using the
definition of a local tent we can establish the equivalence
of the inclusions in Theorem 3.2 for non-convex function
F.

Theorem 3.3.Let F be a convex-valued mapping such
that the coneKgphQ(x,u,v), (x,u,v) ∈ gphQ of tangent
directions for the mapping defined as
Q(x,u) = 2u− x+ δ 2F(x, u−x

δ ) determine a local tent.
Then the inclusions (30) and (31) are equivalent.
Proof. See [17].

Lemma 3.1.Let KδN(x̃(δ )− x̃(0)) be the cone of tangent
directions of the setδN at point x̃(δ ) − x̃(0) and
KN(∆ x̃(0)) be the cone of tangent directions of the setN
at ∆ x̃(0) , then KδN(x̃(δ ) − x̃(0)) = KN(∆ x̃(0)).
Furthermore the relation between the dual cones of these
conesK∗

δN(x̃(δ )− x̃(0)) = K∗
N(∆ x̃(0)) holds.

Proof. Observe, first, that for arbitrary
y ∈ KδN(x̃(δ )− x̃(0)) and for sufficiently smallλ > 0
relationx̃(δ )− x̃(0)+λy∈ δN or in other words, relation
x̃(δ )−x̃(0)

δ + λ y
δ ∈ N holds. SinceKN(∆ x̃(0)) is a cone of

tangent directions andδ > 0 , we havey ∈ KN(∆ x̃(0)).
Consequently,KδN(x̃(δ )− x̃(0))⊆ KN(∆ x̃(0)).
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Conversely, if y ∈ KN(∆ x̃(0)), then for δ > 0 ,
y ∈ δKN(∆ x̃(0)) and hence∆ x̃(0) + λ y

δ ∈ N. By the
difference formula, we obtain ˜x(δ )− x̃(0) + λy ∈ δN .
Hence by the definition of cone of tangent directions
y∈ KδN(x̃(δ )− x̃(0)) . That completes the first part of the
proof of the theorem.

On the other handy∗ ∈ K∗
δN(x̃(δ )− x̃(0)) if and only

if the inequality 〈y,y∗〉 ≥ 0 is satisfied for all
y∈ KδN(x̃(δ )− x̃(0)). Therefore from the first relation of
the theorem, the last inequality holds for all
y ∈ KN(∆ x̃(0)). Hence it follows thaty∗ ∈ K∗

N(∆ x̃(0)) .
Going in the reverse direction, by the same way we obtain
that y∗ ∈ K∗

δN(x̃(δ )− x̃(0)) . So the relation between the
dual cones holds. That completes the proof.

Theorem 3.4. Let F be a convex function andϕ be
proper function that is convex with respect tox and
continuous at points of some feasible trajectory
{x0(t)}, t = 0,δ , . . . ,1. Then for the optimality of the
trajectory{x̃(t)} in the discrete approximation problem
(18)−(20) it is necessary that there exist a number
λ ∈ {0,1} and a pair{x∗(t),v∗(t)} simultaneously not all
equal to zero, satisfying the approximate Euler-Lagrange
and transversality inclusions and adjoint boundary
condition fort = 0:

(

∆2x∗(t)+∆v∗(t),v∗(t)
)

∈ F∗
(

x∗(t +2δ );
(

x̃(t),∆ x̃(t),∆2x̃(t)
)

)

,

t = 2δ ,3δ , . . . ,1−2δ ;

(35)

(

v∗(1−δ)+∆x∗(1−δ),−x∗(1)
)

∈λ ∂ϕ
(

x̃(1−δ),∆ x̃(1−δ)
)

, (36)

−x∗(δ ) ∈ K∗
N(∆ x̃(0)),

v∗(0)+∆x∗(0) ∈ K∗
M(x̃(0))

(37)

respectively, wherev∗(t) = u∗(t)−2x∗(t+δ )
δ , andv∗(0) is the

value ofv∗(t) for t = 0.

Proof. By Theorem 3.1 and Lemma 3.1 the conditions
(21), (22) and (24) for convex problem takes the form

(x∗(t)−u∗(t)+u∗(t+δ )−x∗(t+2δ )
δ 2 ,

u∗(t+δ )−2x∗(t+2δ )
δ

)

∈ F∗(x∗(t +2δ );(x̃(t),∆ x̃(t),∆2x̃(t))), (38)

t = 0,δ ,2δ ,3δ , . . . ,1−2δ ;

(u∗(1−δ )−x∗(1−δ )
δ

,
−x∗(1)

δ

)

∈λ ∂ϕ(x̃(1−δ ), x̃(1)), (39)

u∗(0) ∈ K∗
M(x̃(0)),

−x∗(0)− x∗(δ ) ∈ K∗
M(x̃(0)), (40)

−x∗(δ ) ∈ K∗
N(∆ x̃(0)),

respectively, only it is taken into account that LAM is
positive homogeneous on the first argument.

Transversality condition (39) is obtained from (24) by
denotingδx∗(t) and δu∗(t) again withx∗(t) and u∗(t) ,
respectively.

The third inclusion in (40) is in the result of Lemma
3.1 applied to the third inclusion of (22).

Under the regularity condition, conditions (38)−(40)
are also sufficient for optimality of{x̃(t)}. Let us denote

v∗(t + δ ) = u∗(t+δ )−2x∗(t+2δ )
δ , then it is obvious that

x∗(t)−u∗(t)+u∗(t + δ )− x∗(t +2δ )
δ 2

=
x∗(t)− δv∗(t)−2x∗(t +2δ )+ δv∗(t + δ )+ x∗(t +2δ )

δ 2

= ∆2x∗(t)+∆v∗(t). (41)

Therefore from (38) and (41), the inclusion (35) holds.
On the other hand by condition (39) and Theorem 3.1

we have

(u∗(1− δ )−2x∗(1)+ x∗(1)− x∗(1− δ )
δ

,
−δx∗(1)

δ

)

∈ λ ∂ϕ
(

x̃(1− δ ),∆ x̃(1− δ )
)

.

and hence, by the notations given above this inclusion is
simply (36), that is

(

v∗(1−δ)+∆x∗(1−δ ),−x∗(1)
)

∈ λ∂ϕ
(

x̃(1−δ),∆ x̃(1−δ)
)

.

The first inclusion of (37) is not different from the
third inclusion of (40). Also since the coneK∗

M(x̃(0)) is
convex, then by the first and the second inclusions of (40)
the second inclusion of (37) follows, where
v∗(0) = u∗(0)−2x∗(δ )

δ .

Theorem 3.5.Suppose that Condition I is satisfied for the
non-convex problem, then{x̃(t)} is an optimal trajectory
of this problem if there exist a numberλ ∈ {0,1} and a
pair {x∗(t),v∗(t)} simultaneously not all equal to zero,
satisfying (35), (36) and (37) for non-convex case.

4 Sufficient Conditions of Optimality for the
Mayer Problem

Theorem 4.1.For the optimality of the trajectory ˜x(t) in
the convex problem (1)−(3), it is sufficient that there
exists a pair of absolutely continuous functions
{x∗(t),v∗(t)}, t ∈ [0,1], satisfying the second order
Euler-Lagrange differential inclusion
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(i)
(

d2x∗(t)
dt2

+ dv∗(t)
dt ,v∗(t)

)

∈ F∗
(

x∗(t);(x̃(t), x̃′(t), x̃′′(t))
)

a.e.t ∈ [0,1],

the transversality conditions at the endpointst=1 and
t=0

(ii)
(

v∗(1)+ dx∗(1)
dt ,−x∗(1)

)

∈ ∂ϕ
(

x̃(1), x̃′(1)
)

,

(iii) −x∗(0) ∈ K∗
N(x̃

′(0)) , v∗(0)+ dx∗(0)
dt ∈ K∗

M(x̃(0)),
respectively,

and the condition ensuring that the locally adjoint
mappingF∗ is nonempty at a given point

(iv) d2x̃(t)
dt2

∈ F
(

x̃(t), x̃′(t), x̃′′(t)
)

, a.e.t ∈ [0,1],
whereF(x,u;v∗) = {v∈ F(x,u) | 〈v,v∗〉= H(x,u,v∗)}
is the argmaximum set for multivalued mappingF .

Here we assumex∗(t), t ∈ [0,1], to be absolutely
continuous function together with the first order

derivative andd2x∗(·)
dt2

∈ Ln
1([0,1]). Besidesv∗(t), t ∈ [0,1]

is absolutely continuous anddv∗(·)
dt ∈ Ln

1([0,1]).

Proof. From condition (i) of the theorem we have

(d2x∗(t)
dt2

+
dv∗(t)

dt
,v∗(t)

)

∈∂(x,v)H
(

x̃(t), x̃′(t),x∗(t)
)

. (42)

Thus, using the definition of subdifferential set of the
Hamiltonian functionHF , (42) can be replaced by the
inequality

〈d2x∗(t)
dt2

+
dv∗(t)

dt
,x(t)− x̃(t)

〉

+
〈

v∗(t),
dx(t)

dt
−

dx̃(t)
dt

〉

≥ HF(x(t),x
′(t),x∗(t))−HF(x̃(t), x̃

′(t),x∗(t)). (43)

Moreover, by the definition of the Hamiltonian function,
we can rewrite (43) in the form

〈d2x∗(t)
dt2

,x(t)− x̃(t)
〉

+
d
dt

〈

v∗(t),x(t)− x̃(t)
〉

≥
〈d2x(t)

dt2
,x∗(t)

〉

−
〈d2x̃(t)

dt2
,x∗(t)

〉

.

This means that

0≤
〈d2x∗(t)

dt2
,x(t)− x̃(t)

〉

−
〈d2(x(t)− x̃(t))

dt2
,x∗(t)

〉

+
d
dt

〈

v∗(t),x(t)− x̃(t)
〉

. (44)

First two inner products in (44) can be shown as difference
of two derivatives, that is

〈d2x∗(t)
dt2

,x(t)− x̃(t)
〉

−
〈d2(x(t)− x̃(t))

dt2
,x∗(t)

〉

=
d
dt

〈dx∗(t)
dt

,x(t)− x̃(t)
〉

−
d
dt

〈d(x(t)− x̃(t))
dt

,x∗(t)
〉

.

Integrating (44) over the interval[0,1] and taking into
account thatx(·), x̃(·) are feasible we obtain
∫ 1

0

[ d
dt

〈dx∗(t)
dt

,x(t)− x̃(t)
〉

−
d
dt

〈d(x(t)− x̃(t))
dt

,x∗(t)
〉

]

dt

+〈v∗(1),x(1)− x̃(1)〉− 〈v∗(0),x(0)− x̃(0)〉 ≥ 0. (45)

If we compute the integral on the right hand side of (45),
then it follows that

0≤
〈dx∗(1)

dt
,x(1)− x̃(1)

〉

−
〈dx∗(0)

dt
,x(0)− x̃(0)

〉

+
〈dx(0)

dt
−

dx̃(0)
dt

,x∗(0)
〉

−
〈dx(1)

dt
−

dx̃(1)
dt

,x∗(1)
〉

+〈v∗(1),x(1)− x̃(1)〉− 〈v∗(0),x(0)− x̃(0)〉,

and hence

0≤
〈dx∗(1)

dt
+v∗(1),x(1)−x̃(1)

〉

−
〈dx(1)

dt
−

dx̃(1)
dt

,x∗(1)
〉

+
〈dx(0)

dt
−

dx̃(0)
dt

,x∗(0)
〉

−
〈dx∗(0)

dt
+v∗(0),x(0)−x̃(0)

〉

.

(46)

Using transversality conditions (ii) and (iii), for all feasible
arcsx(t), t ∈ [0,1] , the relations

〈

v∗(1)+
dx∗(1)

dt
,x(1)−x̃(1)

〉

−
〈dx(1)

dt
−

dx̃(1)
dt

,x∗(1)
〉

≤ ϕ(x(1),x′(1))−ϕ(x̃(1), x̃′(1)) (47)

and
〈

v∗(0)+
dx∗(0)

dt
,x(0)− x̃(0)

〉

≥ 0,

〈dx(0)
dt

−
dx̃(0)

dt
,−x∗(0)

〉

≥ 0

hold. Thus (46), (47) and last inequalities imply

0≤ ϕ(x(1),x′(1))−ϕ(x̃(1), x̃′(1)), (48)

then it follows that ˜x(t), t ∈ [0,1] is optimal.
Theorem 4.2. Let problem (1)−(3) be non-convex
problem, that is functionϕ : R2n → R is non-convex with
respect tox, andF is a non-convex mapping. Then for the
optimality of arc x̃(t), t ∈ [0,1], among all feasible
solutions of the problem (1)−(3) it is sufficient that there
exists a pair of absolutely continuous functions
{x∗(t),v∗(t)}, t ∈ [0,1] , satisfying the conditions:

(i)
(

d2x∗(t)
dt2

+ dv∗(t)
dt +x∗(t),v∗(t)

)

∈F∗
(

x∗(t);(x̃(t), x̃′(t), x̃′′(t))
)

, a.e.t ∈ [0,1],
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(ii) ϕ(x,v)−ϕ(x̃(1), x̃′(1))
≥ 〈v∗(1)+ dx∗(1)

dt ,x− x̃(1)〉− 〈x∗(1),v− x̃′(1)〉,
∀(x,v) ∈R

2n,

(iii) −x∗(0) ∈ K∗
N(x̃

′(0)) , v∗(0)+ dx∗(0)
dt ∈ K∗

M(x̃(0)),

(iv) 〈d2x̃(t)
dt2

,x∗(t)〉= HF(x̃(t), x̃′(t);x∗(t)), a.e.t ∈ [0,1].

Proof. By condition (i) and definition of LAM in the non-
convex case (see Section 1)

HF
(

x(t),x′(t),x∗(t)
)

−HF
(

x̃(t), x̃′(t),x∗(t)
)

≤
〈d2x∗(t)

dt2
+

dv∗(t)
dt

+ x∗(t),x(t)− x̃(t)
〉

+
〈

v∗(t),
dx(t)

dt
−

dx̃(t)
dt

〉

or similarly

〈d2x(t)
dt2

,x∗(t)
〉

−
〈d2x̃(t)

dt2
,x∗(t)

〉

≤
〈d2x∗(t)

dt2
+ x∗(t),x(t)− x̃(t)

〉

+
d
dt
〈v∗(t),x(t)− x̃(t)〉.

From the latter inequality is justified (44). Thus the
continuation of the proof of the theorem is similar to the
one for Theorem 4.1.
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